Matematika 1 - vježbe. 11. prosinca 2015.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Matematika 1 - vježbe. 11. prosinca 2015."

Transcript

1 Matematika - vježbe. prosinca 5.

2 Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) = = 5 c) d) Zadatak.. Izrazite u radijanima: a) 7 b) 5 c) d)

3 Duljina luka kružnice i površina kružnog isječka φ l = rφ P = r φ Zadatak.. Kolika je duljina kružnog luka koji odgovara kutu od 4 kružnici radijusa 8m? Kolika je površina odgovarajućeg kružnog isječka? l = m, P = 8 m na Trigonometrijske funkcije na trokutu φ h p s sin φ = s h tg φ = s p cos φ = p h ctg φ = p s

4 Trigonometrijske funkcije na jediničnoj kružnici ctg φ cos sin tg 6 4 sin cos tg + ctg + Parnost sin( ) = sin() tg( ) = tg() cos( ) = cos() Periodičnost sin( + ) = sin() cos( + ) = cos() Adicijske formule ctg( ) = ctg() tg( + ) = tg( + ) ctg( + ) = ctg( + ) sin( ± ) = sin cos ± cos sin cos( ± ) = cos cos sin sin

5 Napomena Parnost i periodičnost posljedica su adicijskih formula - pokažite to! Zadatak.. Pokažite da je tg( + ) = tg +tg tg tg. Zadatak.. Pokažite da je sin( + ) = cos. Zadatak.. Pokažite da je cos t + sin t =. Grafovi 4

6 Ako je f(t) = A sin(ωt + φ), tada je A amplituda ω kutna brzina φ faza Pritom je graf funkcije f jednak grafu funkcije g(t) = A sin(ωt) pomaknutom za pomak τ = φ/ω ulijevo. Zadatak.4. Skicirajte grafove sljedećih funkcija: a) f(t) = cos(t + ) b) f(t) = sin(t ) c) f(t) = tg t d) f(t) = ctg(t ) a) f(t) = sin(t + ), A =, φ =, τ = /, T = b) A = /, /, T = / c) 5

7 d) 4 Jednoliko kružno gibanje Točka (, ) giba se po kružnici radijusa r jednolikom kutnom brzinuom ω. Tada je (t) = r cos(ωt) (t) = r sin(ωt) Konstantna brzina kojom se točka giba po samoj kružnici dana je s v = rω. Vrijeme T potrebno za jedan okret, tj. period kružnog gibanja je dok je frekvencija gibanja Zadatak 4.. T = ω ν = T a) Točka se giba po jediničnoj kružnici, prelazeći u jedinici vremena jedinice puta. Prikaži koordinate točke kao funkciju vremena. b) Točka se po kružnici radijusa 4 giba jediničnom brzinom (tj. jedinicu puta prevaljuje u jedinici vremena). Prikaži koordinate točke kao funkciju vremena. c) Točka se giba po kružnici radijusa, prelazeći u jedinici vremena jedinice puta. Prikaži koordinate točke kao funkciju vremena. 6

8 a) r =, v =, ω = 4, (t) = cos(t), (t) = sin(t) (, ) s = t b) r = 4, v =, ω = /4, (t) = 4 cos(t/4), (t) = 4 sin(t/4) 4 (, ) s = t c) r =, v =, ω = /, (t) = cos(t/), (t) = sin(t/) 7

9 (, ) s = t Zadatak 4.. (...) Funkcije (t) = 5+ cos(4t) i (t) = + sin(4t) opisuju kako koordinate točke (, ), koja se giba u ravnini, ovise o vremenu t. a) Odredite jednadžbu krivulje po kojoj se gibe točka. b) Kolika je brzina, period i frekvencija toga gibanja? a) ( 5) + ( + ) = 9 b) ω = 4, r =, v =, T = /, ν = / Deriviranje trigonometrijskih funkcija (sin t) = cos t (cos t) = sin t Zadatak 4.. Derivirajte: (tg t) = cos t (ctg t) = sin t a) f(t) = sin t b) f(t) = sin t cos t 8

10 c) f(t) = cos t d) f(t) = sin t cos t. sin t cos t = sin t. cos t sin t = cos t. sin t 4. cos t cos t+ sin t sin t (cos t) Zadatak 4.4. Derivirajte: a) f(t) = cos t sin t b) f(t) = sin t c) f(t) = sin t cos t d) f(t) = sin t + t. cos t sin t + cos t. 9 sin t cos t. cos t 4. cos t (+ t) sin t t(+ t) Zadatak 4.5. Derivirajte: a) f(t) = tg t b) f(t) = tg t c) f(t) = tg(sin t). cos t 9

11 . t cos t. cos t t cos sin t Zadatak 4.6. (9...) Ljestve dužine 5m naslonjene su na okomiti zid. Ako vrh ljesti klizi prema dolje brzinom m/s, koliko brzo se smanjuje kut elevacije φ (kut izmedu tla i donjeg kraja ljestvi), u trenutku kada je donji kraj ljestvi m od zida? Iz uvjeta zadatka imamo te d dt dobijemo =, a zanima nas dϕ dt tj. dϕ dt = /6. (ϕ) = 5 cos(ϕ) (ϕ) = 5 sin(ϕ) u trenutku kada je (ϕ) =. Koristeći formulu d dt = d dϕ dϕ dt = 5 cos(ϕ) dϕ dt = (ϕ)dϕ dt = dϕ dt, Integrali trigonometrijskih funkcija sin t dt = cos t + C dt = tg t + C cos t Zadatak 4.7. Izračunajte: a) cos t dt b) sin 4 d c) sin t + t dt d) sin + cos cos d cos t dt = sin t + C sin dt = ctg t + C t

12 . cos t + C. cos 4 + C. cos t + t/ + C 4. tg + + C Newton-Leibnizova formula Zadatak 4.8. a) / cos t + t dt b) / sin d /4 b a F () d = F (b) F (a) c) / /6 cos sin dt. sin t + t /. cos / /4. tg + ctg = / /6 = + 4 = 4 =

13 Arkus funkcije arcsin : [, ] [, ] arccos : [, ] [, ]

14 arctg : R, arcctg : R, Zadatak 4.9. Izračunajte: a) arccos b) arcsin ( c) arccos ) d) arccos e) arcsin f) arcsin + arccos ( g) arcsin ( ( ) ) + arccos )

15 a) b) c) 4 d) e) 6 f) g) Zadatak 4.. Izračunajte: a) arcsin(sin 6 ) b) arccos(cos ) c) arcsin(sin 4 ) d) sin(arcsin( )) e) cos(arccos ) f) arccos(cos( 6 )) a) 6 b) c) 4 d) e) f) 6 Zadatak 4.. Izračunajte: 4

16 a) cos(arcsin t) b) ctg(arccos v) a) Kako je arcsin t [ /, /], cos(arcsin t), pa je cos(arcsin t) = sin (arcsin t) = t b) v v Zadatak 4.. Izračunajte: a) arcctg b) arcctg c) arcctg( ) d) arcctg(± ) e) arctg( ) + arcctg f) arctg( ) arcctg( ) a) b) 4 c) 4 d) e) 6 f) 5

17 Derivacija inverzne funkcije (f ) () = f (f ()) Zadatak 4.. Izračunajte derivaciju arkus kosinusa. Iz f() = cos i f () = arccos slijedi (f ) () = f () = sin = sin(arccos ). Kako je arccos [, ], vrijedi sin(arccos ) = cos (arccos ) =, pa je (arccos ) = Zadatak 4.4. (arcsin t) = (arccos t) = (arctg t) = + (arcctg t) = + a) d d arcsin( ) b) d d arcsin c) d d arccos ( + ) a) 4 b) arcsin 4 c) 6 arccos( + ) (+) Zadatak

18 ) d a) (arctg d b) d d ( ) arctg c) + d d) d e) f) + d d + a) + / b) arcctg + /4 c) + arctg + C d) e) 4 f) 7