Termodinamica. Fizica moleculara

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Termodinamica. Fizica moleculara"

Transcript

1 ermodinamica Fizica moleculara Mărimi legate de structura discretă a substanţei Sisteme termodinamice emperatura empirică Principiul zero al termodinamicii scări de termperatură şi conversii între acestea Dilatarea solidelor şi lichidelor eoria cinetico-moleculară iteza termică Gazele ideale ecuaţia termică de stare a unui gaz ideal energia internă a gazului ideal ecuaţia calorică de stare a gazulu ideal transformările simple ale gazului ideal (transformarea izotermă şi legea Boyle-Mariotte, transformarea izobară şi legea Guy-Lussac, transformarea izocoră şi legea harles, transformarea generală, transformarea adiabatică) legea Dalton Primul principiul al termodinamicii Al doilea principiul al termodinamicii oeficienţi calorici capacitatea calorică, căldura specifică, căldura molară, relaţia Robert-Mayer Randamentul motoarelor termice ciclul arnot motorul Otto motorul Diesel

2 Marimi legate de structura discreta a substantei Deoarece masele atomilor şi a moleculelor sunt foarte mici, s-a introdus o unitate de măsură specială, numită unitate atomică de masă Se numeşte unitate atomică de masă şi se notează cu u, mărimea egală cu a -a parte din masa atomică a izotopului 6 : u m 6 7 Relaţia dintre unitatea de masă atomică şi unitatea de măsură în SI este: u,66 kg Masa atomică relativă a unei substanţe este numărul care arată de câte ori este mai mare masa unei molecule decât a -a parte din masa atomică a izotopului 6 Masa moleculară este masa unei molecule Masa moleculară relativă a unei substanţe este numărul care arată de câte ori este mai mare masa unei molecule decât a -a parte din masa atomică a izotopului 6 antitatea de substanţă este o mărime fizică fundamentală, notată cu υ Unitatea de măsură este molul, unitate fundamentală în SI Molul este cantitatea de substanţă a unui sistem care conţine atâtea entităţi elementare câţi atomi sunt în, kg de carbon 6 Masa unui mol, exprimată în grame, este numeric egală cu masa moleculară relativă a substanţei Masa unui mol se numeşte masă molară, se notează cu şi este o caracteristică a fiecărei substanţe Masa molară este mărimea fizică scalară definită ca raportul dintre masa m a corpului şi cantitatea de m kg substanţă υ conţinută de corp: şi [ ] SI υ mol olumul molar este volumul ocupat de un mol Se notează cu olumul molar este mărimea fizică scalară m definită ca raportul dintre ocupat de corp şik cantitate de substanţă υ : υ SI În condiţii normale mol de temperatură şi presiune ( 7, K şi p Pa ), volumul molar al oricărui gaz ideal este: şi [ ] m, mol Numărul lui Avogadro reoprezintă numărul de entităţi elementare dintr-un mol de substanţă; acest număr este acelaşă pentru oricare substanţă considerată Se notează cu N A Numărul lui Avogadro reprezintă mărimea fizică definită ca raportul dintr numărul de entităţi elementare N conţinute într-o anumită cantitate de substanţă şi cantitatea de substanţă υ : - υ N υ N A, [ N ] mol om avea relaţiile de legătură: N m ; N A - numai pentru gaze: υ A SI şi N A mol 6,

3 Sisteme termodinamice Orice fenomen fizic legat de mişcarea permanentă complet dezordonată care se manifestă la nivel molecular, se numeşte fenomen termic Se numeşte sistem termodinamic orice corp macroscopic sau ansamblu de corpuri macroscopice bine delimitate lasificarea sistemelor termodinamice Sistem termodinamic izolat: nu interacţionează şi nu schimbă masă cu mediul extern Sistem termodinamic neizolat: interacţionează cu mediul extern Sistem termodinamic deschis: între el şi mediul extern are loc schimb de energie şi schimb de masă Sistem termodinamic închis: între el şi mediul extern are loc schimb de energie, dar nu schimb de masă Mărimile fizice măsurabile care caracterizează proprietăţile sistemului termodinamic poartă denumirea de parametri de stare Aceştia pot fi: - extensivi: de exemplu: volumul, masa, cantitatea de substanţă, energia internă; - intensivi: de exemplu: presiunea, temperatura, densitatea Starea unui sistem termodinamic este determinată de mulţimea valorilor tuturor parametrilor de stare: - starea de echilibru este acea stare în care parametrii de stare variază în timp şi spaţiu; - starea staţionară este acea stare în care parametrii de stare variază în spaţiu, dar într-un punct oarecare dat, nu se modifică în timp; - starea de echilibru termodinamic este acea stare în care parametrii de stare nu variază în timp, şi nici în spaţiu

4 emperatura empirica Două sau mai multe sisteme termodinamice se află într-o stare de echilibru termic dacă, atunci când sunt puse în contact termic, între ele nu are loc schimb de căldură Echilibrul termic are proprietatea de tranzitivitate, care se enunţă: dacă sistemele termodinamice A şi B sunt în echilibru termic, iar B este în echilibru termic cu un al treilea sistem termodinamic, atunci sistemele termodinamice A şi sunt în echilibru termic emperatura este mărimea fizică scalară care caracterizează starea de echilibru termodinamic al unui sistem Sistemele termodinamice aflate în echilibru termic au aceeaşi temperatură Dacă între două sisteme termodinamice aflate în contact termic, există schimb de căldură, atunci temperatura sistemului care cedează căldură este mai mare decât temperatura sistemului care acceptă căldură Principiul zero al termodinamicii Există un parametru termodinamic de stare de tip intensiv, numit temperatură empirică, având aceeaşi valoare pentru toate stările de echilibru termodinamic aflate în relaţie de echilibru termic Scări de temperatură Scara elsius emperatura empirică se notează cu t sau θ ; unitatea de măsură este gradul elsius ( ) Gradul elsius este a suta parte din intervalul de temperatură cuprins între temperatura de topire a gheţii şi temperatura de fierbere a apei la presiune atmosferică normală Scara Kelvin emperatura absolută se notează cu ; unitatea de măsură este Kelvinul ( K ) Această scară de temperatură nu are valori negative Limita inferioară de temperatură ce poate fi atinsă constituie punctul zero al aceste scări (când agitaţia termică a moleculelor ar înceta) Kelvinul reprezintă 7, 6 din temperatura stării triple a apei Definirea celor două scări s-a făcut astfel încât intervalul de temperatură corespunzător unităţii de măsură din scara elsius să fie egal cu intervalul de temperatură corespunzător unităţii de măsură în scara Kelvin deci: ( K) ( ) K F R Re elsius - 7, K ( F ) ( R,67 ) ( Re) temperatură ( F +,67 ) - Kelvin + 7, Fahrenheit + R K, 67 -, 67 ( + 7,) Rankine Reaumur K +, 67 ( K 7, ) ( Re) + 7, R ( Re ) + F - ( Re ) +, 67 ( F ) ( R,67 ) -

5 Dilatarea Fenomenul de modificare a dimensiunilor unui corp datorat contactului termic cu mediul înconjurător, atunci când temperatura se modifică, este cunoscut sub denumirea de dilatare termică Diltarea solidelor Dilatarea solidelor se caracterizează cu ajutorul coeficientului de dilatare liniară l l l este variaţia în lungime; temperaturii oeficientul de dilatare [ ] l lungimea barei la α grad : SI l α unde: l t ; l lungimea barei la t ; t variaţia - este o constantă de material; - depinde de temperatură; pentru intervale relativ mici de temperatură poate fi considerat constant Legea dilatării liniare: l( ) l ( + α ) temperatura unde l lungimea barei la K ; l( ) 7, lungimea barei la Legea dilatării în suprafaţă: A( ) A ( + β ) superficială); A( ) aria unei feţe la ( K ) Legea dilatării în volum: ( ) ( + ) la 7, K ; volumul corpului la ( K ) m ariaţia densităţii cu temperatura: Forţele de dilatare: F S l unde β α este coeficient de dilatare în suprafaţă (sau unde α este coeficient de dilatare în volum; volumul corpului m ( + ) + l E şi l l α va rezulta F S E α unde F este forţa deformatoare; S aria suprafeţei; α coeficientul de dilatare liniară; E modul de eleasticitare longitudinal Young; temperatură interval de Dilatarea lichidelor Dilatarea lichidelor se caracterizează cu ajutorul coeficientului unde reprezintă variaţia reală a volumului de lichid Legea dilatării: ( + ) şi cu, densitatea lichidului la, respectiv + oeficientul de dilatare aparentă: a a unde a reprezintă creşterea aparentă a volumului de lichid; a s cu s coeficient de dilatare termică al vasului

6 eoria cinetico-moleculara Formula fundamentală a teoriei cinetico-moleculare exprimă legătura dintre un parametru macroscopic (presiunea p ) şi mărimi microscopice (numărul n de molecule din unitatea de volum; masa m a unei molecule; media pătratelor vitezelor moleculelor gazului) Formula fundamentală are două forme: p n m v unde: - p presiunea gazului ([ p] SI Pa ); n SI m - [ ] numărul de molecule din unitatea de volum (sau număr volumic): molecule de gaz; volumul ocupat de gaz); - m masa unei molecule; - v valoarea medie a pătratului vitezelor moleculelor gazului N p sau p n tr unde: - tr mv este energia cinetică medie a unei molecule datorată mişcării de translaţie tr N n (cu N numărul de În teoria cinetico-moleculară se demonstrează că energia cinetică medie a unei molecule depinde de temperatură, prin relaţia: tr k unde k,8 J K este constanta lui Boltzmann iar este temperatura gazului iteza termică este definită de relaţia: Alte relaţii ale vitezei termice sunt: iteza termică v v v k sau m R v sau p v unde k este constanta Boltzmann; temperatura; m masa unei molecule; R constanta universală a gazului ideal; masa molară a gazului

7 Gazele ideale Ecuaţia termică de stare a unui gaz ideal Ecuaţia termică de stare este relaţia care stabileşte legătură înter parametrii de stare ai unui gaz ideal aflat în stare de echilibru termodinamic: p υ R unde R N A k 8, J mol K este constanta universală a gazelor ideale; p presiunea gazului; υ numărul de moli; volumul gazului; temperatura Energia internă a gazului ideal În teoria cinetico-moleculară, energia internă a unui sistem termodinamic este definită ca suma dintre energia cinetică de agitaţie termică, energia potenţială datorată interacţiunilor dintre moleculele sistemului şi energia potenţială datorată interacţiunilor dintre molecule şi mediul exterior La gazul ideal se consideră că energia internă este egală doar cu energia de agitaţie termică a moleculelor sale sa: U Ecuaţia calorică de stare a gazului ideal Ecuaţia calorică de stare este relaţia care stabileşte legătura înte energia internă a gazului ideal şi temperatura υr Formula este valabilă numai pentru gazul ideal monoatomic ransformările simple ale gazului ideal ransformarea izotermă Reprezintă orice transformare de stare a unui sistem termodinamic închis ( m const sau υ const ) în care temperatura rămâne constantă Legea Boyle-Mariotte (sau legea transformării izoterme): presiunea unei cantităţi constante de gaz ideal, menţinut la temperatură constantă,variază invers proporţional cu volumul gazului antitativ: p const ransformarea izobară Reprezintă orice transformare de stare a unui sistem termodinamic închis ( m const sau υ const ) în care presiunea rămâne constantă Legea Guy-Lussac (sau legea transformării izobare) are trei formulări: - variaţia relativă a volumului unei cantităţi constante de gaz ideal, menţinut la presiune constantă, este direct proporţională cu temperatura antitativ: αt unde este volumul gazului la temperatura t ; este volumul gazului la temperatura t ; α este coeficientul de dilatare izobară, care are aceeaşi valoare pentru toate gazele α grd 7, - volumul unei cantităţi constante de gaz ideal, menţinut la presiune constantă, creşte liniar cu temperatura ( t) + αt empirică a acestuia antitativ: ( )

8 Gazele ideale - volumul unei cantităţiconstante de gaz ideal, menţinut la presiune constantă, este direct proporţional cu temperatura absolută a gazului antitativ: const ransformarea izocoră Reprezintă orice transformare de stare a unui sistem termodinamic închis ( m const sau υ const ) în care volumul rămâne constant Legea harles (sau legea transformării izocore) are trei formulări: - variaţia relativă a presiunii unei cantităţi constante de gaz ideal, menţinut la volum constant, este direct p p proporţională cu temperatura empirică a gazului antitativ: βt unde p este presiunea gazului la p temperatura t ; peste presiunea gazului la temperatura t ; β este coeficientul termic al presiunii, care are aceeaşi valoare pentru toate gazele β grd, adică α β 7, - presiunea unei cantităţi constante de gaz ideal, menţinut la volum constant, creşte liniar cu temperatura empirică a gazului antitativ: p( t) p ( + βt) - presiunea unei cantităţi constante de gaz ideal, menţinut la volum constant, variază direct proporţional cu temperatura absolută a gazului antitativ: p const Orice gaz care se supune legilor Boyle-Mariotte, Guy-Lussac şi harles în orice condiţii de temperatură şi presiune poartă denumirea de gaz ideal ransformarea generală Reprezintă orice transformare de stare a unui sistem termodinamic închis ( m const sau υ const ) în care se modifică toţi parametrii de stare ai gazului Legea se scrie cantitativ: p p const Dacă este densitatea gazului aflat în condiţii normale de R temperatură şi presiune, atunci densitatea gazului aflat la temperatura şi presiunea p, se exprimă prin relaţia p p

9 Gazele ideale ransformarea adiabatică Reprezintă transformarea în care sistemul nu schimbă căldură cu mediul exterior: L U L + U Legea transformării adiabatice are expresiile: p const se numeşte exponent adiabatic, fiind o mărime fizică adimensională: Legea Dalton sau v const p cu > sau p const Presiunea totală a unui amestec de gaze ideale este egală cu suma presiunilor parţiale ale gazelor componente: p p + p + + p n n k mk k R Presiunea parţială a unui component este presiunea pe care o exercită un gaz component dacă ar ocupa singur volumul amestecului, la aceeşi temperatură unde Primul principiu al termodinamicii În orice transformare variaţia energiei interne depinde doar de stările iniţialî şi finală ale sistemului, fiind dependetă de stările intermediare prin care trece sistemul Pentru orice sistem termodinamic închis există o mărime de stare, numită energia internă, a cărei variaţie U în cursul unui procesi f este dată de relţia: U U f U i if Lif ransformarea izotermă Legea transformării p const ν R ln L U f i f ν R ln ± i izobară izocoră adiabatică const ν p p v p const ν v v p const pi i p f f ν v ν p ν v Al doilea principiu al termodinamicii Formularea homson: într-o transformare monotermă reversibilă, sistemul termodinamic nu poate efectua lucru mecanic asupra mediului exterior Dacă transformarea ciclică monotermă este şi ireversibilă, atunci sistemul primeşte lucru mecanic de la mediul exterior Formularea lausius: Nu este posibilă o transformare care să aibă ca rezultat trecerea de la sine a căldurii de la un corp cu temperatură dată la un corp cu temperatură mai ridicată

10 oeficienti calorici apacitatea calorică apacitatea calorică a unui corp este mărimea fizică scalară (notată cu ) definită ca raportul dintre căldură schimbată de corp cu mediul exterioe şi variaţia temperaturii acestuia: J cu [ ] SI K apacitatea calorică este o caracteristică termică a corpului ăldura specifică ăldura specifică este mărimea fizică scalară (notată cu c ) numeric egală cu căldura necesară pentru a avaria temperatura unităţii de masă dintr-un corp cu un grad: c m c SI cu [ ] ăldura specifică este o caracteristică termică a substanţei J kg K ăldura molară ăldura molară este mărimea fizică scalară (notată cu ) numeric egală cu căldura necesară unui mol de substanţă pentru a-şi mosifica temperatura cu un grad: ν cu [ ] J SI mol K ăldura specifică este o caracteristică termică a substanţei om avea următoarele relaţii între coeficienţii calorici: m c ; ν ; c Relaţia Robert-Mayer R sau c p v + c p v + R

11 Randamentul motoarelor termice Motorul termic este un dispozitiv care transformă o parte din energia termică în lucru mecanic Randamentul unei maşini termice care efectuează o transformare ciclică bitermă este egal cu raportul dintre lucrul mecanic util şi căldura acceptată L η acc L acc ced η ced acc iclul arnot iclul arnot este o transformare ciclică reversibilă ideală Este alcătuit din: - destindere izotermă la : ν R ln > (acc); - destindere adiabatică ; - comprimare izotermă la < : ν R ln < (ced); - comprimare adiabatică η c ; - νr ln η c νr ln - Rezultă deci η c ln ln Motorul Otto Motorul Otto este un motor cu aprindere prin scânteie; combustibilul folosit amestec de vapori de benzină şi aer (considerat gaz ideal) Motorul Otto este un motor în patru timpi, iar ciclul de funcţionare este format din două adiabate şi două izocore: aspiraţia este reprezentată prin izobara A-; compresia este reprezentată prin izobara -; aprinderea este reprezentată prin transformarea izocoră - şi detenta transformarea adiabatică -; evacuarea este reprezentată prin transformarea - şi -A; ηc ν v ν v ( ) η ( )

12 Randamentul motoarelor termice Rezultă deci η Motorul Diesel Motorul Diesel este un motor cu aprindere prin compresie ce foloseşte drept combustibil motorina Motorul Diesel este tot un motor în patru timpi, al cărui ciclu de funcţionare conţine două adiabate (- şi -), o izobară (-) şi o izocoră (-) om nota rapoartele de compresie astfel: respectiv ( ) ( ) p v v p c η ν ν η ( ) ( ) ( ) ( ) η

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Noțiuni termodinamice de bază

Noțiuni termodinamice de bază Noțiuni termodinamice de bază Alexandra Balan Andra Nistor Prof. Costin-Ionuț Dobrotă COLEGIUL NAȚIONAL DIMITRIE CANTEMIR ONEȘTI Septembrie, 2015 http://fizicaliceu.wikispaces.com Noțiuni termodinamice

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii în tehnică

Aplicaţii ale principiului I al termodinamicii în tehnică Aplicaţii ale principiului I al termodinamicii în tehnică Sistem termodinamic Cantitatea de materie sau substanţă supusă oricărui tip de studiu, din punct de vedere termodinamic, poartă denumirea de sistem

Διαβάστε περισσότερα

FIZICĂ. Elemente de termodinamica. ş.l. dr. Marius COSTACHE

FIZICĂ. Elemente de termodinamica. ş.l. dr. Marius COSTACHE FIZICĂ Elemente de termodinamica ş.l. dr. Marius COSTACHE 1 ELEMENTE DE TERMODINAMICĂ 1) Noţiuni introductive sistem fizic = orice porţiune de materie, de la o microparticulă la întreg Universul, porţiune

Διαβάστε περισσότερα

ENUNŢURI ŞI REZOLVĂRI 2013

ENUNŢURI ŞI REZOLVĂRI 2013 ENUNŢURI ŞI REZOLVĂRI 8. Un conductor de cupru ( ρ =,7 Ω m) are lungimea de m şi aria secţiunii transversale de mm. Rezistenţa conductorului este: a), Ω; b), Ω; c), 5Ω; d) 5, Ω; e) 7, 5 Ω; f) 4, 7 Ω. l

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

CURS 5 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ

CURS 5 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ CURS 5 ERMODINAMICĂ ŞI FIZICĂ SAISICĂ 5.. Noţiuni fundamentale. Corpurile macroscopice sunt formate din atomi şi molecule, constituenţi microscopici aflaţi într-o mişcare continuă, numită mişcare de agitaţie

Διαβάστε περισσότερα

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

1. NOŢIUNI TERMODINAMICE DE BAZĂ

1. NOŢIUNI TERMODINAMICE DE BAZĂ . NOŢIUNI TERMODINAMIE DE BAZĂ.. Noţiuni desre structura discretă a substanţei onceţia atomistă desre substanţă enunţată acum 5 ani de către Leuci şi Democrit, a fost confirmată în secolul al XIII-lea

Διαβάστε περισσότερα

1.10. Lucrul maxim. Ciclul Carnot. Randamentul motoarelor

1.10. Lucrul maxim. Ciclul Carnot. Randamentul motoarelor 2a temperatura de inversie este T i =, astfel încât λT i şi Rb λ>0 pentru T

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Continue. Answer: a. Logout. e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1. 1 of 2 4/14/ :27 PM. Marks: 0/1.

Continue. Answer: a. Logout. e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1. 1 of 2 4/14/ :27 PM. Marks: 0/1. Concurs Phi: Setul 1 - Clasa a X-a 1 of 2 4/14/2008 12:27 PM Logout e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1 1 Un termometru cu lichid este gradat intr-o scara de temperatura liniara,

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

ELEMENTE DE DINAMICA GAZELOR INSTALAŢII DE GPL ŞI GNL

ELEMENTE DE DINAMICA GAZELOR INSTALAŢII DE GPL ŞI GNL CAVAROPOL DAN VICTOR ELEMENTE DE DINAMICA GAZELOR INSTALAŢII DE GPL ŞI GNL EDITURA MINISTERULUI INTERNELOR ŞI REFORMEI ADMINISTRATIVE 008-1 - Referent ştiinţific: Prof. dr. ing. TCACENCO VALENTIN Facultatea

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Circuite cu diode în conducţie permanentă

Circuite cu diode în conducţie permanentă Circuite cu diode în conducţie permanentă Curentul prin diodă şi tensiunea pe diodă sunt legate prin ecuaţia de funcţionare a diodei o cădere de tensiune pe diodă determină valoarea curentului prin ea

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

FC Termodinamica. November 24, 2013

FC Termodinamica. November 24, 2013 FC Termodinamica November 24, 2013 Cuprins 1 Noţiuni fundamentale (FC.01.) 2 1.1 Sistem termodinamic... 2 1.2 Stări termodinamice... 2 1.3 Procese termodinamice... 3 1.4 Parametri de stare... 3 1.5 Lucrul

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

PROBLEME - CIRCUITE ELECTRICE

PROBLEME - CIRCUITE ELECTRICE LEGEA LU OHM LEGLE LU KCHHOFF POBLEME - CCUTE ELECTCE POBLEMA 0 / Se dau : 0 Ω 0 Ω 0 Ω 0 Ω V V Se cer : ezisten a echivalent ntensitatea curentului Ampermetru ezolvare : Calculez rezisten a, i rezisten

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

2. MĂRIMI ȘI UNITĂȚI CARACTERISTICE STRUCTURII DISCRETE A SUBSTANȚEI

2. MĂRIMI ȘI UNITĂȚI CARACTERISTICE STRUCTURII DISCRETE A SUBSTANȚEI Prin fenomen termic înțelegem, în general, orice fenomen fizic legat de mișcarea haotică, complet dezordonată care se manifestă la nivel molecular. Variația proprietăților fizice ale substanței la încălzirea

Διαβάστε περισσότερα

Aplicatii tehnice ale gazului perfect si ale transformarilor termodinamice

Aplicatii tehnice ale gazului perfect si ale transformarilor termodinamice Aplicatii tehnice ale gazului perfect si ale transformarilor termodinamice 4.. Gaze perfecte 4... Definirea gazului perfect Conform teoriei cinetico-moleculare gazul perfect este definit prin următoarele

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

4.PRINCIPIUL AL II -LEA AL TERMODINAMICII

4.PRINCIPIUL AL II -LEA AL TERMODINAMICII 4.PRINCIPIUL AL II -LEA AL ERMODINAMICII Istoria acestui principiu este una dintre fascinantele aventuri ale ştiinţei, care a generat nenumărate paradoxuri, controverse şi predicţii tulburătoare (moartea

Διαβάστε περισσότερα

2.TEMPERATURA. Fig.2.1 Echilibrul termic între două sisteme A şi B despărţite printr-un perete diaterm.

2.TEMPERATURA. Fig.2.1 Echilibrul termic între două sisteme A şi B despărţite printr-un perete diaterm. 2.TEMPERATURA Multe din mărimile macroscopice (volumul presiunea şi temperatura, de exemplu) sunt legate direct de percepţiile simţurilor noase spre deosebire de proprietăţile microscopice dar penu orice

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Emil Petrescu Viorel Păun

Emil Petrescu Viorel Păun Probleme de fizică Emil Petrescu iorel Păun October 6, 2004 Curins 4 ERMODINAMICĂ 72 72 Caitolul 4 ERMODINAMICĂ PROBLEMA 4.1 a Să se demonstreze că în cazul unui roces adiabatic alicat unui gaz ideal este

Διαβάστε περισσότερα

Termodinamica. UMF Carol Davila Catedra de Biofizica Medicala

Termodinamica. UMF Carol Davila Catedra de Biofizica Medicala Termodinamica Cuprins: Notiuni generale Principiul I al termodinamicii. Aplicatii Principiul II al termodinamicii Potentiale termodinamice Forte si fluxuri termodinamce Echilibru si stare stationara Stari

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

ALGEBRĂ ŞI ELEMENTE DE ANALIZĂ MATEMATICĂ FIZICĂ

ALGEBRĂ ŞI ELEMENTE DE ANALIZĂ MATEMATICĂ FIZICĂ Sesiunea august 07 A ln x. Fie funcţia f : 0, R, f ( x). Aria suprafeţei plane delimitate de graficul funcţiei, x x axa Ox şi dreptele de ecuaţie x e şi x e este egală cu: a) e e b) e e c) d) e e e 5 e.

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

J. Neamţu E. Osiac P.G. Anoaica FIZICĂ TESTE GRILĂ PENTRU ADMITEREA ÎN ÎNVĂŢĂMÂNTUL SUPERIOR. Electricitate Termodinamică Optică Atomică Nucleară

J. Neamţu E. Osiac P.G. Anoaica FIZICĂ TESTE GRILĂ PENTRU ADMITEREA ÎN ÎNVĂŢĂMÂNTUL SUPERIOR. Electricitate Termodinamică Optică Atomică Nucleară J. Neamţu E. Osiac P.G. Anoaica FIZICĂ TESTE GRILĂ PENTRU ADMITEREA ÎN ÎNĂŢĂMÂNTUL SUPERIOR Electricitate Termodinamică Optică Atomică Nucleară UMF Craiova 009 Fizică Teste Grilă Fizică Teste Grilă 3 Fizică

Διαβάστε περισσότερα

2. Rezistența electrică (R) Ohm (Ω) 1Ω = 1kg A -2 m 2 s Rezistivitatea (ρ) Ohm metru (Ω m) 1Ω m = 1kg A -2 m 3 s -3

2. Rezistența electrică (R) Ohm (Ω) 1Ω = 1kg A -2 m 2 s Rezistivitatea (ρ) Ohm metru (Ω m) 1Ω m = 1kg A -2 m 3 s -3 SINTEZE DE BACALAUREAT - ELECTRICITATE 1. Lungimea (l) metrul (m) ELECTRICITATEA 2. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ DERIVATE, ÎN SISTEMUL INTERNAȚIONAL NR. DENUMIREA MĂRIMII FIZICE 1. Tensiunea electrică,

Διαβάστε περισσότερα

In cazul sistemelor G-L pentru care nu se aplica legile amintite ale echilibrului de faza, relatia y e = f(x) se determina numai experimental.

In cazul sistemelor G-L pentru care nu se aplica legile amintite ale echilibrului de faza, relatia y e = f(x) se determina numai experimental. ECHILIBRUL FAZELOR Este descris de: Legea repartitiei masice Legea fazelor Legea distributiei masice La echilibru, la temperatura constanta, raportul concentratiilor substantei dizolvate in doua faze aflate

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

BAZELE TERMOENERGETICII

BAZELE TERMOENERGETICII Adrian BADEA Mihaela STAN Roxana PĂTRAŞCU Horia NECULA George DARIE Petre BLAGA Lucian MIHĂESCU Paul ULMEANU BAZELE TERMOENERGETICII Universitatea POLITEHNICA din Bucureşti Facultatea de Energetică Bucureşti,

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Exerciţii şi probleme E.P.2.4. 1. Scrie formulele de structură ale următoarele hidrocarburi şi precizează care dintre ele sunt izomeri: Rezolvare: a) 1,2-butadiena;

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.5.ARENE

Capitolul 2 - HIDROCARBURI 2.5.ARENE Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii în tehnică

Aplicaţii ale principiului I al termodinamicii în tehnică Aplicaţii ale principiului I al termodinamicii în tehnică Sisteme de încălzire a locuinţelor Scopul tuturor acestor sisteme, este de a compensa pierderile de căldură prin pereţii locuinţelor şi prin sistemul

Διαβάστε περισσότερα

Forme de energie. Principiul I al termodinamicii

Forme de energie. Principiul I al termodinamicii Forme de energie. Principiul I al termodinamicii Există mai multe forme de energie, care se pot clasifica după natura modificărilor produse în sistemele termodinamice considerate şi după natura mişcărilor

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

MĂRIMI ELECTRICE Voltul (V)

MĂRIMI ELECTRICE Voltul (V) SINTEZE DE BACALAUREAT ELECTRICITATE www.manualdefizica.ro NR. DENUMIREA MĂRIMII FIZICE UNITATEA DE MĂSURĂ 1. Lungimea (l) metrul (m). Masa (m) kilogramul (kg) ELECTRICITATEA. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ

Διαβάστε περισσότερα

Integrale cu parametru

Integrale cu parametru 1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Motorul turboreactor

Motorul turboreactor Motorul turboreactor Caracteristici functionale: Posibilitatea folosirii unui ajutaj de reactie a interesat proiectantii de avioane mult timp, dar de la început vitezele mici ale avionului si incompatibilitatea

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Unitatea de învăţare nr. 5

Unitatea de învăţare nr. 5 Unitatea de învăţare nr. 5 NOTIUNI DE BAZA IN TERMODINAMICA Cuprins Pagina Obiectivele unităţii de învăţare nr. 5 82 3.1 Agitatia termica 82 3.2 Temperatura si principiul zero al trmodinamicii 83 3.3 Termometre

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

CAPITOL 2. NOIUNI DE TERMODINAMIC

CAPITOL 2. NOIUNI DE TERMODINAMIC aitol. Noiuni de termodinamic APIOL. NOIUNI DE ERMODINAMI ermodinamica studiaz rorietile termice ale corurilor în condiii de echilibru energetic, recum i rocesele care conduc la stabilirea strilor de echilibru.

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului (15 puncte)

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului (15 puncte) A. MECANICĂ e consideră accelerația gravitațională g = 0 m/s. I. Pentru itemii -5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect.. Un automobil se deplasează în lungul axei Ox. Dependența

Διαβάστε περισσότερα

Lucrul mecanic şi energia mecanică.

Lucrul mecanic şi energia mecanică. ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al

Διαβάστε περισσότερα

I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare.

I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Capitolul 3 COMPUŞI ORGANICI MONOFUNCŢIONALI 3.2.ACIZI CARBOXILICI TEST 3.2.3. I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Reacţia dintre

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

2CP Electropompe centrifugale cu turbina dubla

2CP Electropompe centrifugale cu turbina dubla 2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

CAP. 1.1 MOTORUL PAS CU PAS. CARACTERISTICI GENERALE.

CAP. 1.1 MOTORUL PAS CU PAS. CARACTERISTICI GENERALE. CAP. 1.1 MOTORUL PAS CU PAS. CARACTERISTICI GENERALE. O definiţie simplă a motorului pas cu pas este: un dispozitiv electromecanic care converteşte impulsurile electrice în mişcări mecanice discrete. [3,17,22]

Διαβάστε περισσότερα

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE MMIC Monolithic Microwave Integrated Circuit CUPRINS 1. Avantajele si limitarile MMIC 2. Modelarea dispozitivelor active 3. Calculul timpului de viata al MMIC

Διαβάστε περισσότερα

a. P = b. P = c. P = d. P = (2p)

a. P = b. P = c. P = d. P = (2p) A. MECANICA Se considera acceleratia gravitationala g= 10 m/s 2. (15puncte) Pentru itemii 1-5 scrieţi pe foaia de concurs litera corespunzătoare răspunsului considerat corect. 1. Asupra unui corp de masă

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

UNITĂŢI Ţ DE MĂSURĂ. Măsurarea mărimilor fizice. Exprimare în unităţile de măsură potrivite (mărimi adimensionale)

UNITĂŢI Ţ DE MĂSURĂ. Măsurarea mărimilor fizice. Exprimare în unităţile de măsură potrivite (mărimi adimensionale) PARTEA I BIOFIZICA MOLECULARĂ 2 CURSUL 1 Sisteme de unităţiţ de măsură. Atomi şi molecule. UNITĂŢI Ţ DE MĂSURĂ Măsurarea mărimilor fizice Exprimare în unităţile de măsură potrivite (mărimi adimensionale)

Διαβάστε περισσότερα

Tranzistoare bipolare şi cu efect de câmp

Tranzistoare bipolare şi cu efect de câmp apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

3.6. Formule de calcul pentru medie şi dispersie

3.6. Formule de calcul pentru medie şi dispersie Dragomirescu L., Drane J. W.,, Biostatisticã pentru începãtori. Vol I. Biostatisticã descriptivã. Editia a 6 revãzutã, Editura CREDIS, Bucureşti, 7p. ISB 78-7-74-46-8..6. Formule de calcul pentru medie

Διαβάστε περισσότερα