Învățare automată. 6. Modele bazate pe energie. Florin Leon. Universitatea Tehnică Gheorghe Asachi din Iași Facultatea de Automatică și Calculatoare
|
|
- Τίμω Καραβίας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Învățare automată 6. Modele bazate pe energie Florin Leon Universitatea Tehnică Gheorghe Asachi din Iași Facultatea de Automatică și Calculatoare
2 Modele bazate pe energie 1. Modelul Ising 2. Rețeaua Hopfield 3. Mașina Boltzmann 4. Mașina Boltzmann restricționată 5. Rețele de convingeri profunde 2
3 Modele bazate pe energie 1. Modelul Ising 2. Rețeaua Hopfield 3. Mașina Boltzmann 4. Mașina Boltzmann restricționată 5. Rețele de convingeri profunde 3
4 Modelul Ising Modelul Ising (1D, 1924; 2D, 1944) este un model al feromagnetismului, cu variabile discrete care reprezintă momentele magnetice ale spinurilor atomice 4
5 Modelul Ising Modelul se bazează pe o latice a momentelor magnetice ale atomilor 5
6 Noțiuni de bază Energia unei stări Probabilitatea unei stări J ij : puterea interacțiunii vecinilor (i, j ) H i : câmp magnetic extern M: momentul magnetic T: temperatura 6
7 Evoluția sistemului Sistemul tinde către o stare cu energie minimă Atomii vecini au tendința să își modifice orientarea spinului pentru a se alinia cu vecinii, dacă aceasta scade energia sistemului Un atom își schimbă întotdeauna orientarea spinului când configurația rezultată are o energie mai mică (E next < E crt ) Dar chiar dacă energia e mai mare (E next > E crt ), își poate schimba orientarea cu probabilitatea P = exp( ΔE / T), unde ΔE = E next E crt Mai multe detalii despre călirea simulată se găsesc în cursul 5 de Inteligență artificială 7
8 Simulare: starea inițială 8
9 Temperatură mică 9
10 Temperatură mică: comportament feromagnetic 10
11 Temperatură mare: comportament paramagnetic 11
12 Tranziții de fază Modelul 1D nu are tranziții de fază Modelul 2D are Până la temperatura critică, sistemului poate ajunge ori în starea +1, ori în starea -1 12
13 Modele bazate pe energie 1. Modelul Ising 2. Rețeaua Hopfield 2.1. Procesul de învățare 2.2. Procesul de optimizare 3. Mașina Boltzmann 4. Mașina Boltzmann restricționată 5. Rețele de convingeri profunde 13
14 Asocieri În creierele biologice, memoria lucrează prin asociere Putem recunoaște o față cunoscută într-un mediu necunoscut în ms Putem rememora o întreagă experiență senzorială, vizuală și auditivă, când auzim primele măsuri ale unei melodii Perceptronul multistrat nu lucrează prin asociere Pentru emularea acestei capacități, este nevoie de un alt tip de rețea neuronală: o rețea recurentă O rețea recurentă are bucle de reacție de la ieșiri către intrări Datorită reacției (engl. feedback ), stabilitatea rețelei devine o problemă. Aceasta a fost rezolvată abia în 1982, când Hopfield a formulat principiul de stocare a informațiilor într-o rețea stabilă din punct de vedere dinamic 14
15 Asocieri Rețeaua Hopfield este o memorie auto-asociativă: Își poate aminti modelele stocate Își poate aminti un model dacă primește doar o parte din el Își poate aminti modelele dacă primește versiuni similare, dar nu identice, sau versiuni afectate de zgomot 15
16 Rețea Hopfield cu n neuroni y n nu este conectată la x n 16
17 Funcția de activare Rețeaua Hopfield folosește neuroni cu funcție de activare semn: 17
18 Vectorul de stare Starea curentă a rețelei este determinată de ieșirile tuturor neuronilor: y 1, y 2,..., y n Starea unei rețele cu un singur strat și n neuroni este un vector de stare: 18
19 Ponderile Ponderile se reprezintă de obicei în formă matriceală: unde M este numărul de stări care trebuie memorate, Y m este un vector de antrenare binar n-dimensional și I este matricea identitate de dimensiune n x n 19
20 Stări posibile pentru o rețea cu 3 neuroni 20
21 Exemplu Să presupunem că vrem să memorăm două stări: (1, 1, 1) și (-1,-1,-1) 21
22 Exemplu 22
23 Învățarea hebbiană Legea lui Hebb Dacă doi neuroni conectați sunt activați în același timp, ponderea conexiunii dintre ei crește Dacă doi neuroni sunt activați în contratimp, ponderea conexiunii dintre ei scade Neurons that fire together, wire together Antrenarea rețelei Hopfield este o formă de învățare hebbiană 23
24 Testarea rețelei 24
25 Stări stabile și instabile Aceste 2 stări sunt stabile. Celelalte 6 stări rămase sunt instabile Stările stabile (numite amintiri fundamentale) sunt capabile să atragă stările apropiate Amintirea fundamentală (1, 1, 1) atrage stările instabile ( 1, 1, 1), (1, 1, 1) și (1, 1, 1) Amintirea fundamentală ( 1, 1, 1) atrage stările instabile ( 1, 1, 1), ( 1, 1, 1) și (1, 1, 1) Fiecare din aceste stări are o singură eroare, în comparație cu amintirea fundamentală Deci o rețea Hopfield are capacitatea de a corecta erorile din stările prezentate 25
26 Amintiri false Deoarece X este foarte apropiat de X 1, ne-am aștepta ca rețeaua să-și amintească X 1 când i se prezintă X. Rețeaua produce însă X 3, o amintire falsă. 26
27 Capacitatea de stocare Capacitatea de stocare este cel mai mare număr de amintiri fundamentale care pot fi stocate și regăsite corect Numărul maxim de amintiri fundamentale M max care poate fi stocat într-o rețea de n neuroni este limitat de: M max = 0.15 n Pentru a garanta că toate amintirile fundamentale vor fi regăsite perfect, M max = n / (4 ln n) 27
28 Exemple Modelele stocate Intrări distorsionate pentru modelul 6 28
29 Memorii asociative bidirecționale Rețeaua Hopfield este un tip de memorie autoasociativă: poate regăsi o amintire coruptă sau incompletă, dar nu poate asocia o amintire cu o alta Memoria umană este în mod esențial asociativă Un lucru ne amintește de altul ș.a.m.d. Putem folosi o succesiune de asociații mentale pentru a recupera o amintire pierdută 29
30 Memoria asociativă bidirecțională Pentru a asocia o amintire cu alta, avem nevoie de o rețea recurentă capabilă să primească un vector de intrare într-o mulțime de neuroni și să producă un vector de ieșire înrudit, dar diferit, în altă mulțime de neuroni Memoria asociativă bidirecțională (engl. bidirectional associative memory, BAM) este o rețea hetero-asociativă Poate asocia vectori dintr-o mulțime A cu vectori dintr-o mulțime B și viceversa La fel ca rețeaua Hopfield, BAM poate generaliza și poate produce ieșiri corecte în cazul intrărilor corupte sau incomplete 30
31 Funcționarea BAM 31
32 Funcționarea BAM Când vectorul n-dimensional X este prezentat la intrare, BAM își reamintește vectorul m-dimensional Y, iar când Y este prezentat ca intrare, BAM își reamintește X BAM funcționează pe baza unei matrice de corelație unde M este numărul de vectori care trebuie memorați 32
33 Regăsirea Se prezintă un vector necunoscut X (diferit de amintirile fundamentale X m ) Se inițializează BAM cu X(0) = X Se calculează ieșirea la iterația p: Y(p) = sign ( W T X(p) ) Se actualizează vectorul de intrare: X(p + 1) = sign ( W Y(p) ) Se repetă procesul până la echilibru, când X și Y rămân neschimbați între două iterații succesive BAM converge întotdeauna către o stare stabilă 33
34 Exemple 34
35 Energia rețelei Hopfield În descrierea anterioară a rețelei Hopfield, nu am luat în calcul pragurile neuronilor Dacă includem și pragurile θ, energia rețelei este: 35
36 Procesul de optimizare Exemplu: problema plasării turnurilor pe o tablă de șah, astfel încât să nu se atace reciproc Fie x ij starea neuronului corespunzător celulei de pe poziția (i, j ) x ij este 1 dacă în celulă este un turn și 0 dacă nu Condiția C 1 : pe fiecare linie trebuie să fie doar un turn Condiția C 2 : pe fiecare coloană trebuie să fie doar un turn 36
37 Rezolvare Pentru condiția C 1, trebuie minimizată funcția: Pentru condiția C 2, trebuie minimizată funcția: Trebuie găsite ponderile și pragurile care minimizează energia E = E 1 + E 2 37
38 Soluție pentru 4 turnuri Nu s-au reprezentat toate conexiunile pentru a nu aglomera figura Ponderile conexiunilor între neuronii de pe aceeași linie sau coloană sunt -2. Celelalte ponderi sunt 0 Un neuron aprins pe o linie sau coloană îi inhibă pe ceilalți Toate pragurile sunt -1 Dacă niciun alt neuron nu e aprins pe linie sau coloană, se aprinde neuronul curent 38
39 Rularea rețelei Se pornește cu un vector de intrare x generat aleatoriu, cu elemente de 0 și 1 (nu -1 și 1) așa este definită aici problema Problema are mai multe soluții Rețeaua converge la o soluție, care poate fi diferită la fiecare rulare 39
40 40
41 Modele bazate pe energie 1. Modelul Ising 2. Rețeaua Hopfield 3. Mașina Boltzmann 4. Mașina Boltzmann restricționată 5. Rețele de convingeri profunde 41
42 Ipoteza creierului anticipativ Creierul realizează un model generativ probabilistic al lumii, care este folosit pentru a anticipa sau prezice stările mediului Inversul modelului poate fi folosit pentru a recunoaște cauzele unor evenimente externe prin evocarea conceptelor interne Conceptele interne sunt învățate prin potrivirea ipotezelor generate de creier cu intrările senzoriale din mediu Învățarea apare prin testarea activă a ipotezelor prin acțiuni Creierul încearcă să potrivească intrările senzoriale externe cu stările generate intern 42
43 Mașina Boltzmann Asemănătoare cu rețeaua Hopfield, dar: Distinge între noduri vizibile (~ intrările senzoriale) și ascunse (~ stările generate de creier) Activările neuronilor sunt stohastice, nu deterministe 43
44 Antrenarea Energia rețelei are aceeași expresie ca la rețeaua Hopfield Probabilitatea unei stări este aceeași ca la modelul Ising Antrenarea presupune minimizarea energiei, ceea ce conduce la minimizarea diferenței dintre distribuția datelor de intrare și distribuția datelor generate de model pentru acele date de intrare Dacă T = 0, o mașină Boltzmann este echivalentă cu o rețea Hopfield 44
45 Modele bazate pe energie 1. Modelul Ising 2. Rețeaua Hopfield 3. Mașina Boltzmann 4. Mașina Boltzmann restricționată (Restricted Boltzmann Machine, RBM) 5. Rețele de convingeri profunde 45
46 BM vs. RBM Mașina Boltzmann restricționată (RBM) este un graf bipartit: nu există conexiuni laterale între neuronii din același strat (vizibil sau ascuns) 46
47 RBM Stratul vizibil: v {0,1} N, stratul ascuns: h {0,1} M Pragurile neuronilor din stratul vizibil: a R N Pragurile neuronilor din stratul ascuns: b R M Ponderile conexiunilor dintre neuroni: W R N M 47
48 Caracteristici Energia unei stări (v, h) este: Probabilitatea unei stări (v, h) este: 48
49 Probabilitățile de activare Pornind de la aceste relații, se deduc probabilitățile de activare ale neuronilor, bazate pe funcția sigmoidă: Pentru RBM, funcția sigmoidă nu se dă, ci este un rezultat al calculelor de probabilități! 49
50 Antrenarea RBM Se bazează tot pe ideea MLE: <x> d : valoarea așteptată a lui x după distribuția d ε: rata de învățare 50
51 Antrenarea RBM Primul termen, cu distribuția data, este ușor de obținut: Al doilea termen, cu distribuția model, este mai greu de obținut și necesită metode statistice 51
52 Metode de eșantionare Metodele de eșantionare Monte Carlo pentru lanțuri Markov (engl. Markov Chain Monte Carlo, MCMC) rezolvă problem eșantionării dintr-o distribuție de probabilitate prin construirea unui lanț Markov care are distribuția dorită ca distribuție de echilibru Una din metodele MCMC este eșantionarea Gibbs (engl. Gibbs sampling ), pentru probabilități condiționate 52
53 Exemplu Să presupunem că starea vremii poate avea una din următoarele valori: (Rain, Sunny, Cloudy) Probabilitățile de tranziție sunt de forma: Matricea completă de tranziții: prima linie 53
54 Exemplu Dacă astăzi este soare, cum va fi vremea peste 2 zile? Dar peste 7 zile? 54
55 Distribuția staționară Pentru n mare: Oricare ar fi starea inițială π(0), peste un număr mare de zile, probabilitățile vor fi: Se spune că lanțul Markov a ajuns la o distribuție staționară, în care probabilitățile sunt independente de valorile de start 55
56 Antrenarea RBM Se folosește eșantionarea Gibbs pentru a estima <v i h j > model În distribuția staționară, aici nu mai este vectorul de intrare, ci ce crede rețeaua că e vectorul de intrare! 56
57 Antrenarea RBM j i i t = 0 t = 1 j Faza pozitivă Propagarea vizibil ascuns Învățarea datelor (~ rețeaua este trează) Faza negativă Propagarea ascuns vizibil Reconstrucția datelor (~ rețeaua visează) 57
58 Antrenarea RBM j j i i t = 0 t = 1 Autorul metodei, Hinton, recomandă folosirea probabilităților în loc de activările propriu-zise v i și h j (cu valori 0 sau 1) 58
59 Divergența contrastivă engl. Contrastive Divergence, CD Este algoritmul de antrenare cel mai cunoscut pentru RBM Presupune aplicarea formulelor prezentate anterior pentru actualizarea ponderilor și pragurilor, pentru un număr specificat de epoci Eșantionarea Gibbs se face în k pași, dar de cele mai multe ori se consideră k = 1 CD nu urmează gradientul verosimilității maxime decât dacă k =. CD minimizează în mod aproximativ divergența Kullback- Leibler (KL) care măsoara distanța între două distribuții de probabilitate (aici, între date și model): 59
60 Tipuri de RBM RBM Bernoulli-Bernoulli RBM Gaussian-Bernoulli 60
61 Exemplu Trăsături vizibile : Filme: Harry Potter, Avatar, LOTR 3, Gladiator, Titanic, Glitter Trăsături ascunse : Oscar winners: LOTR 3, Gladiator, Titanic SF/fantasy: Harry Potter, Avatar, LOTR 3 Instanțe de antrenare: Alice: (Harry Potter = 1, Avatar = 1, LOTR 3 = 1, Gladiator = 0, Titanic = 0, Glitter = 0). Fan SF/fantasy Bob: (Harry Potter = 1, Avatar = 0, LOTR 3 = 1, Gladiator = 0, Titanic = 0, Glitter = 0). Fan SF/fantasy, dar nu-i place Avatar Carol: (Harry Potter = 1, Avatar = 1, LOTR 3 = 1, Gladiator = 0, Titanic = 0, Glitter = 0). Fan SF/fantasy David: (Harry Potter = 0, Avatar = 0, LOTR 3 = 1, Gladiator = 1, Titanic = 1, Glitter = 0). Fan filme Oscar Eric: (Harry Potter = 0, Avatar = 0, LOTR 3 = 1, Gladiator = 1, Titanic = 1, Glitter = 0). Fan filme Oscar, cu excepția Titanic Fred: (Harry Potter = 0, Avatar = 0, LOTR 3 = 1, Gladiator = 1, Titanic = 1, Glitter = 0). Fan filme Oscar 61
62 Exemplu Unitatea ascunsă 1 se activează la filmele câștigătoare ale Oscarului Unitatea ascunsă 2 se activează la filmele SF/fantasy Pe baza preferințelor pentru cele 6 filme, se poate spune dacă o persoană este fan SF/fantasy și/sau fan filme Oscar Dacă se activează una din cele 2 unități ascunse, se generează o persoană cu anumite preferințe. De fiecare dată, preferințele generate sunt ușor diferite 62
63 Exemplu Descriere exemplu: Implementare RBM: 63
64 Modele bazate pe energie 1. Modelul Ising 2. Rețeaua Hopfield 3. Mașina Boltzmann 4. Mașina Boltzmann restricționată 5. Rețele de convingeri profunde (Deep Belief Networks, DBN) 64
65 Rețele de convingeri profunde engl. Deep Belief Networks, DBN RBM-urile sunt de obicei agregate în stivă Antrenarea se face strat cu strat, folosind de exemplu algoritmul divergenței contrastive (CD) Odată ce un RBM este antrenat, alt RBM se pune în stivă deasupra sa Unitățile ascunse devin unități vizibile pentru stratul imediat superior Ponderile RBM-urilor antrenate anterior rămân fixe 65
66 Arhitectura DBN 66
67 Antrenarea DBN Ponderile se ajustează strat cu strat prin învățare nesupervizată Dacă scopul final este clasificarea, se antrenează un clasificator clasic pe nivelul cel mai de sus prin învățare supervizată În final, toate ponderile sunt rafinate ( fine tuned ) cu algoritmul backpropagation {C 1, C 2,..., C n } 67
68 Transformarea în AE 68
69 Generarea din model Se obține un eșantion de echilibru din RBM-ul de la nivelul cel mai de sus efectuând eșantionarea Gibbs pentru un număr mare de pași Se face traversarea top-down cu activarea unităților de pe celelalte straturi Conexiunile bottom-up de pe nivelurile inferioare (marcate cu roșu) NU sunt folosite pentru generare, ci doar pentru inferență 69
70 Exemplu: Recunoașterea cifrelor scrise de mână (MNIST) Ultimele două niveluri superioare formează o memorie asociativă între reprezentările de nivel superior ale imaginilor cifrelor și etichetele (clasele) acestora Pentru recunoaștere, se pleacă de la imagini, se propagă activările în sus și se fac câteva iterații în memoria asociativă de la nivelul superior Pentru a genera imagini, se activează o unitate care corespunde unei etichete (clase) 70
71 Exemplu: rezultatele DBN 71
72 Exemplu: MNIST Rate de eroare pe mulțimea de test Deep Belief Network: 1.25% Support Vector Machine: 1.4% Perceptron multistrat antrenat cu backpropagation, cu 1000 neuroni într-un strat ascuns: ~1.6% Perceptron multistrat antrenat cu backpropagation, cu 500, respectiv 300 de neuroni în două straturi ascunse: ~1.6% k-nearest Neighbor: 3.3% 72
73 Discuție Autoencoderele simple sau DAE nu sunt modele generative Se pot activa unitățile de pe nivelurile superioare ale ierarhiei pentru a produce rezultate pe nivelul cel mai de jos (corespunzător intrării), dar rezultatele sunt deterministe DBN și VAE sunt modele generative: rezultatele generate sunt de fiecare dată altele, deși asemănătoare 73
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER
2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
prin egalizarea histogramei
Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o
Curs 6 Rețele Neuronale Artificiale
SISTEME INTELIGENTE DE SUPORT DECIZIONAL Ș.l.dr.ing. Laura-Nicoleta IVANCIU Curs 6 Rețele Neuronale Artificiale Cuprins Principii Bazele biologice Arhitectura RNA Instruire Tipuri de probleme rezolvabile
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Examen AG. Student:... Grupa:... ianuarie 2011
Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă
Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare
METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare
METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare Titulari curs: Florin Pop, George-Pantelimon Popescu Responsabil Laborator: Mădălina-Andreea
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Examen AG. Student:... Grupa: ianuarie 2016
16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex
CIRCUITE LOGICE CU TB
CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune
Codificatorul SN74148 este un codificator zecimal-bcd de trei biţi (fig ). Figura Codificatorul integrat SN74148
5.2. CODIFICATOAE Codificatoarele (CD) sunt circuite logice combinaţionale cu n intrări şi m ieşiri care furnizează la ieşire un cod de m biţi atunci când numai una din cele n intrări este activă. De regulă
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
Modelare şi simulare Seminar 4 SEMINAR NR. 4. Figura 4.1 Reprezentarea evoluţiei sistemului prin graful de tranziţii 1 A A =
SEMIR R. 4. Sistemul M/M// Caracteristici: = - intensitatea traficului - + unde Figura 4. Rerezentarea evoluţiei sistemului rin graful de tranziţii = rata medie de sosire a clienţilor în sistem (clienţi
FLUXURI MAXIME ÎN REŢELE DE TRANSPORT. x 4
FLUXURI MAXIME ÎN REŢELE DE TRANSPORT Se numeşte reţea de transport un graf în care fiecărui arc îi este asociat capacitatea arcului şi în care eistă un singur punct de intrare şi un singur punct de ieşire.
Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu
INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:
4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice
4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.
Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili
Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru
Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,
vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se
Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
Statisticǎ - curs 3. 1 Seria de distribuţie a statisticilor de eşantioane 2. 2 Teorema limitǎ centralǎ 5. 3 O aplicaţie a teoremei limitǎ centralǎ 7
Statisticǎ - curs 3 Cuprins 1 Seria de distribuţie a statisticilor de eşantioane 2 2 Teorema limitǎ centralǎ 5 3 O aplicaţie a teoremei limitǎ centralǎ 7 4 Estimarea punctualǎ a unui parametru; intervalul
Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy
Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,
Tranzistoare bipolare şi cu efect de câmp
apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine
2 Transformări liniare între spaţii finit dimensionale
Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
III. Reprezentarea informaţiei în sistemele de calcul
Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
9 Testarea ipotezelor statistice
9 Testarea ipotezelor statistice Un test statistic constă în obţinerea unei deducţii bazată pe o selecţie din populaţie prin testarea unei anumite ipoteze (rezultată din experienţa anterioară, din observaţii,
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1
FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de
EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă
Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a
Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane
Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii
Teme de implementare in Matlab pentru Laboratorul de Metode Numerice
Teme de implementare in Matlab pentru Laboratorul de Metode Numerice As. Ruxandra Barbulescu Septembrie 2017 Orice nelamurire asupra enunturilor/implementarilor se rezolva in cadrul laboratorului de MN,
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey
Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey Mihai Suciu Facultatea de Matematică și Informatică (UBB) Departamentul de Informatică Mai, 16, 2018 Mihai Suciu (UBB) Algoritmica
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.
Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,
Transformări de frecvenţă
Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.
Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15
MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()
Sisteme liniare - metode directe
Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 21.2 - Sistemul de criptare ElGamal Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Scurt istoric
Geometrie computationala 2. Preliminarii geometrice
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,
Capitolul 2 - HIDROCARBURI 2.5.ARENE
Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/
a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)
Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
Laborator 6. Integrarea ecuaţiilor diferenţiale
Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul
7 Distribuţia normală
7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba
Câmp de probabilitate II
1 Sistem complet de evenimente 2 Schema lui Poisson Schema lui Bernoulli (a bilei revenite) Schema hipergeometrică (a bilei neîntoarsă) 3 4 Sistem complet de evenimente Definiţia 1.1 O familie de evenimente
Metode iterative pentru rezolvarea sistemelor de ecuatii liniare
Metode iterative pentru rezolvarea sistemelor de ecuatii liniare 1 Metode iterative clasice Metodele iterative sunt intens folosite, in special pentru rezolvarea de probleme mari, cum sunt cele de discretizare