ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
|
|
- Σελήνη Χλόη Βιτάλη
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΣΚΗΣΕΙΣ
2 ΕΝΟΤΗΤΑ : ΟΡΙΑ ΣΥΝΕΧΕΙΑ - ΠΑΡΑΓΩΓΟΣ ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΑΣΚΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΑΣΚΗΣΕΙΣ ) ίνεται η συνάρτηση f: ΙR ΙR με τύπο: 3, 4 a, 4 f ( ) 4 3, 4, όπου αιr. α ) Να βρείτε το : β ) Να βρείτε το : lim 4 lim 4 f () f () Μονάδες 8 Μονάδες 8 γ ) Για ποια τιμή του α ΙR η f() είναι συνεχής στο 0 = 4. Μονάδες 4 ) ίνεται η συνάρτηση f: ΙR ΙR με τύπο: f ( ) 4 3, 3,, όπου αιr. α ) Να βρείτε το : β ) Να βρείτε το : lim f () Μονάδες 8 lim f () Μονάδες 8 γ ) Για ποια τιμή του α ΙR η f() είναι συνεχής στο 0 =. Μονάδες 4 3 ) Δίνεται η συνάρτηση : f() = χ 3 -χ -5χ-, χ. Να βρείτε : 3 α ) την f (), β ) λύστε την εξίσωση : f () = 0
3 γ ) βρείτε τα ακρότατα της f(), δ ) το σημείο της καμπύλης της f() όπου η εφαπτομένη έχει ελάχιστο συντελεστή διεύθυνσης. Ποιος είναι αυτός ; 4 ) Δίνεται η ευθεία : ψ = -χ+4 α ) βρείτε τα σημεία που τέμνει τους άξονες χχ, ψψ, β ) αν Μ( χ,ψ ) σημείο της παραπάνω ευθείας και φέρνουμε τις προβολές Α, Β του Μ στους άξονες χχ, ψψ. Να βρείτε τις συντεταγμένες του Μ ώστε το ΟΑΒΜ να έχει μέγιστο εμβαδόν. 5 ) Δίνεται η συνάρτηση φ(χ)= συνχ + ημχ. α ) Να δειχθεί ότι : φ(χ)+φ (χ)=0 β ) Να βρεθεί η εξίσωση της εφαπτομένης της γραφικής παράστασης της φ(χ) στο σημείο (0,). γ ) Να βρεθεί ο λr ώστε να ισχύει η σχέση λ φ ( ) - φ( ) = α ) Να βρείτε το πεδίο ορισμού της συνάρτησης f. β ) Να υπολογίσετε το όριο lim f ( ) 6 ) Δίνεται η συνάρτηση f() = 3 γ ) Να βρεθεί η πρώτη παράγωγος της f. δ) Να βρεθούν οι εφαπτόμενες της καμπύλης της συνάρτησης f που είναι παράλληλες στην ευθεία y = ) Δίνεται η f() = e, R 3. Να αποδείξετε ότι : α ) f () = f() + e -3 β ) να βρεθεί το όριο : 8 ) Ένα τρένο καταναλώνει για καύσιμα u 4 lim f ( ) e 0 την ώρα, όπου u η ταχύτητα του σε km /h. Αν τα υπόλοιπα έξοδα του είναι 600 την ώρα να βρείτε ποια πρέπει να είναι η ταχύτητα του για να καλύψει 540 χιλιόμετρα με το ελάχιστο δυνατό κόστος. YΠΟΔΕΙΞΗ : Φτιάξτε μια συνάρτηση με άγνωστο το u. 9 ) Το κόστος παραγωγής της μιας μονάδας ενός προϊόντος, όταν παράγονται 00 μονάδες, δίνεται από τον τύπο: Κ()= Η τιμή πώλησης της μιας μονάδας πρέπει να είναι 40% μεγαλύτερη από την τιμή κόστους. Να βρεθούν: α ) η συνάρτηση των εσόδων από την πώληση μονάδων. β ) σε πόσες μονάδες έχουμε μεγιστοποίηση των κερδών. [ ΑΠ. α ) Ε(χ) = 40 7χ +56χ ]
4 0 ) Ένας ασθενής είχε τα μεσάνυχτα πυρετό 39 Ο C και μετά από μισή ώρα πήρε ένα αντιπυρετικό. Από τα μεσάνυχτα έως τις π.μ η θερμοκρασία του δίνεται από τη συνάρτηση: 5 Θ(t) = e t ( t) σε βαθμούς C, t [0,] ώρες. Να βρεθεί πότε άρχισε 5 να πέφτει ο πυρετός και ποια η μέγιστη τιμή του. (e=.7) ) Μια τουριστική επιχείρηση οργανώνει εκδρομές με λεωφορείο. Κάθε τουριστικό λεωφορείο έχει 50 θέσεις. Όταν οι επιβάτες του είναι ακριβώς 30, τότε η εταιρεία ζητά 5 ανά άτομο. Για να αυξήσει τους επιβάτες κάνει την εξής προσφορά: κάθε επιπλέον επιβάτης θα μειώνει κατά 0,3 την χρέωση κάθε άλλου επιβάτη. Να βρεθεί το πλήθος των επιπλέον επιβατών που πρέπει να έχει το λεωφορείο, ώστε η επιχείρηση να μεγιστοποιήσει τα κέρδη της. ) Δίνεται η συνάρτηση : f() =, (0, ). Να βρεθεί : α ) η εξίσωση της εφαπτομένης της στο σημείο Λ(,) β ) από τυχαίο σημείο Μ(χ,ψ) της γραφικής παράστασης της f() φέρνουμε παράλληλες ευθείες στον χχ και ψψ, οι οποίες σχηματίζουν με τους Οχ και Οψ ορθογώνιο παραλληλόγραμμο. Να βρεθούν οι συντεταγμένες του Μ, ώστε η περίμετρος του ορθογωνίου παραλληλογράμμου να είναι ελάχιστη. 3 ) Δίνεται η f() = R,. Να υπολογίσετε : e e f ( ) α ) το όριο lim β ) να αποδείξετε ότι : e f () = -χ γ ) να βρείτε τα ακρότατα της f(). 4 ) Δίνεται η f() = 3-6 +α-7, όπου α πραγματικός, για την οποία ισχύει : f () + f () +5 = 3 α ) να δείξετε ότι α = 9 f ( ) β ) να υπολογιστεί το όριο : lim γ ) να βρείτε την εξίσωση της εφαπτομένης της f(), η οποία είναι παράλληλη στην ψ = -3χ 5 ) Δίνεται η f() = ln - +λ -6λ+, χ >0, όπου λ πραγματικός. α ) να προσδιοριστεί το διάστημα στο οποίο η f() είναι γνησίως αύξουσα και το διάστημα στο οποίο η f() είναι γνησίως φθίνουσα. β ) να μελετηθεί η f() ως προς τα ακρότατα. 3
5 ln 6 ) Δίνεται η f() =, 0. α ) να αποδείξετε ότι είναι γνησίως φθίνουσα. β ) έστω Μ(χ, f()), χ > 0, σημείο της f(). Η παράλληλη ευθεία απ το Μ στον ψψ τέμνει τον Οχ στο Κ(χ, 0) και η παράλληλη ευθεία απ το Μ στον χχ τέμνει τον Οψ στο Λ(0, f()). Αν Ο η αρχή των αξόνων, να αποδείξετε ότι το εμβαδόν του ΟΚΜΛ γίνεται ελάχιστο, όταν αυτό γίνει τετράγωνο. 7 ) Θεωρούμε ένα κουτί σχήματος ορθογωνίου παραλληλεπιπέδου με βάση ορθογώνιο και ανοικτό από πάνω. Το ύψος του κουτιού είναι 5 dm. Η βάση του κουτιού έχει σταθερή περίμετρο 0 dm και μία πλευρά της είναι dm με 0 < < 0 α ) Να αποδείξετε ότι η συνολική επιφάνεια του κουτιού ως συνάρτηση του είναι E( ) = , (0, 0) και να βρείτε για ποια τιμή του το κουτί έχει μέγιστη επιφάνεια. [ ΠΑΝΕΛΛΗΝΙΕΣ 04 Δ] 8 ) Θεωρούμε τη συνάρτηση f()= ln+κ, > 0, όπου κ ακέραιος με κ > και την εφαπτομένη ( ε ) της γραφικής παράστασης της f στο σημείο (, f () ), η οποία σχηματίζει με τους άξονες, τρίγωνο εμβαδού E, με E < α ) Να αποδείξετε ότι κ = [ ΠΑΝΕΛΛΗΝΙΕΣ 03 Δ] 9 ) Από ένα φύλλο λαμαρίνας σχήματος τετραγώνου πλευράς 6 μέτρων κατασκευάζεται μια δεξαμενή σχήματος ορθογωνίου παραλληλεπιπέδου, ανοικτή από πάνω. Από τις γωνίες του φύλλου λαμαρίνας κόβονται τέσσερα ίσα τετράγωνα πλευράς μέτρων, 0<<3 και στη συνέχεια οι πλευρές της διπλώνονται προς τα επάνω, όπως φαίνεται στο παρακάτω σχήμα. α ) Να αποδείξετε ότι ο όγκος της δεξαμενής ως συνάρτηση του είναι f()=4(3 ), 0<<3 ( ίνεται ότι ο όγκος ορθογωνίου παραλληλεπιπέδου διαστάσεων α, β, γ είναι V= α β γ ). β ) Να βρείτε για ποια τιμή του η δεξαμενή έχει μέγιστο όγκο. [ ΠΑΝΕΛΛΗΝΙΕΣ 0 Δ,Δ] 0 ) ίνεται η συνάρτηση f ( ) = e ( α + β+9) με α, β IR. Αν η εφαπτομένη της γραφικής παράστασης της συνάρτησης f στο σημείο της Α (,e ) είναι y = e +3e, τότε : α ) Να αποδείξετε ότι α = και β = 6. β ) Να βρείτε τα ακρότατα της συνάρτησης f. [ ΠΑΝΕΛΛΗΝΙΕΣ 006 ΘΕΜΑ ] 4
6 ΕΝΟΤΗΤΑ : ΣΤΑΤΙΣΤΙΚΗ ΠΙΝΑΚΕΣ, ΜΕΤΡΑ ΘΕΣΗΣ, ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ, ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ, ΣΥΝΤΕΛΕΣΤΗΣ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ ΑΣΚΗΣΕΙΣ ) Συμπληρώστε καθέναν από τους παρακάτω πίνακες : χ v Ν i f i % χ v f i % F i % Άθροισμα Άθροισμα ) Το βάρος 0 μαθητών σε κιλά είναι : 5, 50, 57, 5, 6, 50, 50, 5, 57, 50 Να υπολογίσετε : α ) τη μέση τιμή β ) τη διάμεσο γ ) το εύρος 3 ) Ο πίνακας παρουσιάζει τους βαθμούς των μαθητών ενός τμήματος σε ένα διαγώνισμα Φυσικής : Βαθμός i i Να υπολογίσετε : α ) το ποσοστό των μαθητών που πήραν το πολύ 0, β ) το ποσοστό των μαθητών που πήραν τουλάχιστον 6, γ ) τη μέση τιμή των βαθμών, δ ) τη διάμεσο των βαθμών, στ ) το εύρος. 4 ) Ο πίνακας παρουσιάζει των αριθμό των παιδιών που έχουν οι οικογένειες μιας πολυκατοικίας της Θεσσαλονίκης. Αριθμός Παιδιών i Οικογένειες i 7 4 Να υπολογίσετε :α ) τη μέση τιμή β ) τη διάμεσο γ ) το εύρος δ ) την τυπική απόκλιση ε ) τον συντ. μεταβλητότητας ε ) Να βρείτε το πλήθος των αγώνων στους οποίους σημειώθηκαν ακριβώς 3 τέρματα. 5 ) Μια μεταβλητή παίρνει τις τιμές : 5, 3, 3ω, 3, ω, 3, 3ω, ω με ω > 0 α ) αν η μέση τιμή τους είναι 4, να αποδείξετε ότι ω = β ) για ω =, να βρείτε : ι ) το εύρος των τιμών. 5 ιι ) την τυπική απόκλιση. [ ΕΞΕΤΑΣΕΙΣ 003 Τ. Ε. Ε ]
7 6 ) Σε ένα Λύκειο φοιτούν 300 μαθητές και η μέση βαθμολογία τους στα Μαθηματικά το Α Τετράμηνο είναι 5. Στο Β Τετράμηνο ένας ορισμένος αριθμός μαθητών αύξησε την βαθμολογία του κατά 4 μονάδες ο καθένας, ενώ οι υπόλοιποι μείωσαν τη βαθμολογία τους κατά μονάδες ο κάθε μαθητής. Να βρείτε πόσοι μαθητές βελτίωσαν τη βαθμολογία τους και πόσοι την χειροτέρευσαν, αν γνωρίζουμε ότι η μέση βαθμολογία στο Β Τετράμηνο έγινε 7. [ Ένθετο Ο υποψήφιος 003 ] 7 ) Ο παρακάτω πίνακας παρουσιάζει τις πωλήσεις σε χιλιάδες που πραγματοποιήθηκαν από τους πωλητές μιας εταιρείας. Πωλήσεις i Αρ. Πωλητών v f i Ν F i f i % F i % , ,05 α) να συμπληρωθούν τα κενά του πίνακα. β) να βρεθεί ο αριθμός των πωλητών με πωλήσεις από 000 μέχρι και γ ) να βρεθεί το ποσοστό των πωλητών με πωλήσεις αξίας τουλάχιστον δ ) να βρεθεί η μέση τιμή του δείγματος. ε ) αν στην εταιρεία προσληφθούν 40 υπάλληλοι και ο καθένας κάνει πωλήσεις αξίας 4000, να βρεθεί η νέα μέση τιμή του δείγματος. [ Ένθετο «Ο υποψήφιος» 003 ] 8 ) Ένα προϊόν πωλείται σε 0 διαφορετικά καταστήματα στις παρακάτω τιμές, σε Ευρώ: 8, 0, 3, 3, 5, 6, 8, 4, 4, 9. α. Να υπολογίσετε τη μέση τιμή και τη διάμεσο. β. Να υπολογίσετε το εύρος, την τυπική απόκλιση και τον συντελεστή μεταβλητότητας. γ. Αν οι τιμές του προϊόντος σε όλα τα καταστήματα υποστούν έκπτωση 0%, να εξετάσετε αν θα μεταβληθεί ο συντελεστής μεταβολής. [ ΕΞΕΤΑΣΕΙΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ] 9 ) Εξετάσαμε ένα δείγμα μαθητών μιας τάξης ως προς το βάρος τους και διαπιστώθηκε ότι κυμαίνονται από 45 έως 75 κιλά, ενώ η κατανομή των βαρών είναι κανονική. α ) να βρεθεί η μέση τιμή και το εύρος, β ) να εξεταστεί αν το δείγμα είναι ομοιογενές, 6
8 γ ) αν το άθροισμα των βαρών είναι 800 κιλά, να βρεθεί το μέγεθος του δείγματος δ ) τι ποσοστό μαθητών έχει βάρος το οποίο κυμαίνεται από 50 έως 60 κιλά ; 30 ) Σε έρευνα που έγινε στους μαθητές μιας πόλης, για το χρόνο που κάνουν να πάνε από το σπίτι τους στο σχολείο, διαπιστώθηκε ότι το 50% περίπου των μαθητών χρειάζεται περισσότερο από λεπτά, ενώ το 6% περίπου χρειάζεται λιγότερο από 0 λεπτά. Υποθέτουμε ότι η κατανομή του χρόνου της διαδρομής είναι κατά προσέγγιση κανονική.. Να βρεθεί ο μέσος χρόνος διαδρομής των μαθητών και η τυπική απόκλιση του χρόνου διαδρομής τους.. Να εξεταστεί αν το δείγμα είναι ομοιογενές. 3. Αν οι μαθητές της πόλης είναι 4000 πόσοι θα κάνουν τη διαδρομή σε χρόνο από 4 έως 6 λεπτά; 4. Μια μέρα λόγω έργων στον κεντρικό δρόμο της πόλης, κάθε μαθητής καθυστέρησε 5 λεπτά. Να βρεθεί πόσο μεταβάλλεται ο συντελεστής μεταβολής. [ ΕΞΕΤΑΣΕΙΣ 00] 3 ) 3 ) Στην «Αττική οδό» εξυπηρετούνται καθημερινά 00 χιλιάδες οχήματα, τα οποία διανύουν 5 έως 45 χιλιόμετρα. Η διανυόμενη απόσταση σε χιλιόμετρα από τα οχήματα αυτά παρουσιάζεται στην πρώτη στήλη του πίνακα : Κλάσεις σε χλμ Κέντρο κλάσης χι νι σε χιλιάδες οχήματα fi % Ν F i % Σύνολο 00 α ) να μεταφέρετε στο τετράδιο σας το παρακάτω πίνακα συμπληρωμένο β ) να σχεδιάσετε το ιστόγραμμα (χι, fi%) και το πολύγωνο σχετικών συχνοτήτων γ ) να βρείτε τη μέση τιμή δ ) να βρείτε το πλήθος των οχημάτων που διανύουν απόσταση τουλάχιστον 5 χιλιομέτρων. [ ΕΞΕΤΑΣΕΙΣ 004]
9 33 ) Κατά την αρχή της σχολικής χρονιάς οι 50 μαθητές της τρίτης τάξης ενός Λυκείου ρωτήθηκαν σχετικά με τον αριθμό των βιβλίων που διάβασαν την περίοδο των θερινών διακοπών. Σύμφωνα με τις απαντήσεις που δόθηκαν, συντάχθηκε ο πίνακας Αριθμός Βιβλίων χι Αριθμός Μαθητών νι 0 α + 4 5α + 8 4α 3 α - 4 α Σύνολο 50 α ) υπολογίστε την τιμή του α β ) βρείτε τη μέση τιμή των βιβλίων που διάβασαν οι μαθητές γ ) βρείτε τη διάμεσο των βιβλίων που διάβασαν οι μαθητές [ ΕΞΕΤΑΣΕΙΣ 006 ] 34 ) 35 ) Σε δείγμα ν παρατηρήσεων χ, χ,..χν, μιας μεταβλητής Χ είναι 8 s 4,. α ) αν y, y,.yν είναι δείγμα των παρατηρήσεων που προκύπτουν αντιστοίχως από τις χ, χ,..χν, όταν κάθε μια αυξηθεί κατά 0% τότε : ι ) εξετάστε αν το δείγμα y, y,.yν είναι ομοιογενές. ιι ) να συγκριθούν μεταξύ τους τα δυο δείγματα ως προς την ομοιγένεια. β ) αν z i i, για κάθε ι =,,..ν s s z ι ) να βρεθούν z,. ιι ) εξετάστε αν ορίζεται ο συντελεστής μεταβολής του δείγματος των z i, με ι =,,..ν. [ ΕΞΕΤΑΣΕΙΣ ΕΣΠΕΡΙΝΩΝ ΛΥΚΕΙΩΝ 007 ] 8
10 36 ) Στο παρακάτω δείγμα 0 παρατηρήσεων :,, 4,, 6,, 3, 6, α, 6 είναι = 4. α ) βρείτε την τιμή του πραγματικού αριθμού α β ) για α = 9, ι ) βρείτε τη διάμεσο, ιι ) βρείτε τη διακύμανση γ ) αν όλες οι παραπάνω παρατηρήσεις αυξηθούν κατά 008, τότε ποια θα είναι η μέση τιμή των νέων παρατηρήσεων ; [ ΕΞΕΤΑΣΕΙΣ ΕΣΠΕΡΙΝΩΝ ΛΥΚΕΙΩΝ 008 ] 37 ) Έστω δείγμα χ,χ,χ3,..,χ με παρατηρήσεις : 7,5,α,,5,β,8,6,γ,5,3 όπου α,β,γ N και α<β<γ.δίνεται ότι : =6, δ = 6 και R=8. Δ) να βρεθούν τα α,β,γ ώστε να ισχύει : α +β +γ = 7 (μονάδες 8) Δ) δείξτε ότι : 58 s, είναι το δείγμα ομοιογενές; (μονάδες 8) Δ3) αν y,y,y3,..y τιμές μιας μεταβλητής που προκύπτουν αν πολλαπλασιάσω τις τιμές χ,χ,χ3,..,χ με c>0 και μετά προσθέσω c σε κάθε μια απ αυτές. Αν y 9 και s s βρείτε τις σταθερές y c, c. (μονάδες 9) [ ΕΞΕΤΑΣΕΙΣ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ-ΕΠΑΝΑΛΗΠΤΙΚΕΣ 007 ] 38 ) Έστω χ,χ,χ3,χ4 οι τιμές ενός δείγματος μεγέθους ν = 7 με συχνότητες ν,ν,ν3,ν4 και ν4 = 3ν3. Δίνεται ότι τα τόξα του κυκλικού διαγράμματος συχνοτήτων που αντιστοιχούν στις χ,χ είναι 50 0 και 30 0 αντίστοιχα. Γ) Να βρεθούν τα ν,ν,ν3,ν4 (μονάδες 0) Γ) υπολογίστε τις γωνίες των τόξων χ3 και χ4 (μονάδες 8) Γ3) αν χ < -7, χ = -7, χ3 = 3, χ4 >3, να δείξετε ότι : 0R + 7 = 5δ (μονάδες 7) [ ΕΞΕΤΑΣΕΙΣ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ-ΕΠΑΝΑΛΗΠΤΙΚΕΣ 009 ] 9
11 39 ) [ ΕΞΕΤΑΣΕΙΣ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ 04 ] 0
12 ΕΝΟΤΗΤΑ : ΠΙΘΑΝΟΤΗΤΕΣ ΛΟΓΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΩΝ, ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ, ΑΞΙΩΜΑΤΙΚΟΣ ΟΡΙΣΜΟΣ. ΑΣΚΗΣΕΙΣ 40 ) Από 0 μαθητές ενός Λυκείου, 4 μαθητές συμμετέχουν στον διαγωνισμό της Ελληνικής Μαθηματικής Εταιρείας, 0 συμμετέχουν στο διαγωνισμό της Ένωσης Ελλήνων Φυσικών και μαθητές συμμετέχουν και στους δυο διαγωνισμούς. Επιλέγουμε τυχαία έναν μαθητή. Ποια είναι η πιθανότητα ο μαθητής: α ) να συμμετέχει σε έναν τουλάχιστον από τους διαγωνισμούς. β ) να συμμετέχει μόνον σε έναν από τους δυο διαγωνισμούς. γ ) να μην συμμετέχει σε κανέναν από τους δυο διαγωνισμούς. [ 4/5, /6, /5] 4 ) Στο σύλλογο των καθηγητών ενός λυκείου το 55% είναι γυναίκες, το 40 % είναι φιλόλογοι και το 30 % είναι γυναίκες φιλόλογοι. Επιλέγουμε τυχαία έναν καθηγητή, να υπολογίσετε τις πιθανότητες ο καθηγητής να είναι : ι ) γυναίκα ή φιλόλογος ιι ) γυναίκα και όχι φιλόλογος ιιι ) άνδρας ή φιλόλογος ιν ) άνδρας και φιλόλογος [ ΕΞΕΤΑΣΕΙΣ 003 ] 4 ) Δίνεται η συνάρτηση με τύπο : Φ(χ) = χ 3-5 χ + χ + 0. Οι πιθανότητες Ρ(Α), Ρ(Β) δυο ενδεχομένων του Ω είναι ίσες με τις τιμές του χ, στις οποίες η Φ(χ) έχει αντίστοιχα τοπικό μέγιστο και τοπικό ελάχιστο. α ) να δείξετε ότι : Ρ(Α) = και Ρ(Β) = 3 β ) για τις παραπάνω τιμές των Ρ(Α), Ρ(Β) καθώς και για την Ρ(Α Β) = 3 να βρείτε τις πιθανότητες : ι ) Ρ(Α Β) ιι ) Ρ(Α-Β) ιιι ) Ρ[(Α Β) ] ιν ) Ρ{(Α-Β) (Β-Α)} 43 ) Έστω Α, Β ενδεχόμενα ενός δειγματικού χώρου Ω, ώστε να ισχύουν : [ ΕΞΕΤΑΣΕΙΣ 004 ] ι ) η πιθανότητα να πραγματοποιηθεί ένα τουλάχιστον από τα Α, Β είναι 8 7. ιι ) οι πιθανότητες Ρ(Β), Ρ(Α Β) δεν είναι ίσες και ανήκουν στο σύνολο : Χ = { κ,, }, όπου κ = lim α ) να βρεθεί ο αριθμός κ, β ) να βρεθούν τα Ρ(Β), Ρ(Α Β) γ ) να βρεθούν οι πιθανότητες : () να πραγματοποιηθεί το ενδεχόμενο Α () να πραγματοποιηθεί μόνο το ενδεχόμενο Α. [ ΕΞΕΤΑΣΕΙΣ 005 ]
13 44 ) Το 50% των κατοίκων μιας πόλης διαβάζουν την εφημερίδα α, ενώ το 30% των κατοίκων διαβάζουν την εφημερίδα α και δεν διαβάζουν την εφημερίδα β. α ) Ποια η πιθανότητα ένας κάτοικος της πόλης, που επιλέγεται τυχαία, να μην διαβάζει την εφημερίδα α ή να μην διαβάζει την εφημερίδα β β ) ορίζουμε το ενδεχόμενο, Β : «ένας κάτοικος της πόλης που επιλέγεται τυχαία, 7 διαβάζει την εφημερίδα β». Να αποδείξετε ότι : P(B) 5 0 γ ) Θεωρούμε τη συνάρτηση : f () = P(B), όπου χ πραγματικός και Β το ενδεχόμενο του ερωτήματος (β). Αποδείξτε ότι η συνάρτηση δεν έχει ακρότατα. [ ΕΞΕΤΑΣΕΙΣ 008] 45 ) Έστω Ω = {ω,ω,..,ω5} ο δειγματικός χώρος ενός πειράματος τύχης και Α = {ω,ω,ω3}, Β= {ω3,ω4,ω5} δυο ενδεχόμενα του Ω, με Ρ(Α) =. Αν είναι Ρ(ω)= α και Ρ(ω) = β, με 6 α 0α-αβ+β + = 0, Ρ(ω3) = γ και η συνάρτηση g() = Ρ(ω4) χ 3, χ R, τότε : Γ ) να αποδείξετε ότι α = β = 5 και γ = 0 (μονάδες 9) Γ ) Να βρείτε το Ρ(ω4), αν η εφαπτομένη της γραφικής παράστασης της g(), στο σημείο (, g()) είναι παράλληλη προς την ψ= χ και στη συνέχεια να βρείτε το Ρ(ω5) (μονάδες 6) Γ3 ) Αν είναι Ρ(ω3)= 3 και Ρ(ω5) = 6 τότε να βρείτε την πιθανότητα των ενδεχομένων Κ και Λ όπου Κ: ένα μόνο απ τα Α,Β πραγματοποιείται Λ : να πραγματοποιείται το Α ή να μην πραγματοποιείται το Β. (μονάδες 0) [ ΕΞΕΤΑΣΕΙΣ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ-ΕΠΑΝΑΛΗΠΤΙΚΕΣ 0 ]
14 46 ) [ ΕΞΕΤΑΣΕΙΣ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ 04 ] 47 ) [ ΕΞΕΤΑΣΕΙΣ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ 05 ] 3
15 ΕΝΟΤΗΤΑ : ΕΠΑΝΑΛΗΨΗ ΑΣΚΗΣΕΙΣ 48 ) Η θέση ενός υλικού σημείου, το οποίο εκτελεί ευθύγραμμη κίνηση πάνω σε έναν άξονα τη χρονική στιγμή t δίνεται από τη συνάρτηση : S = (t) = t 4-8t 3 +8t -6t+45 όπου t μετριέται σε δευτερόλεπτα, το σε μέτρα και t [0,5]. Να βρείτε την ταχύτητα και την επιτάχυνση και μετά να απαντήσετε στα ερωτήματα. α ) πότε η ταχύτητα του μηδενίζεται ; β ) πότε κινείται προς την αρνητική και πότε προς τη θετική φορά ; γ ) Να βρείτε το συνολικό διάστημα που το υλικό σημείο έχει διανύσει στη διάρκεια των 5 πρώτων δευτερολέπτων καθώς και τη μέση ταχύτητα στο διάστημα αυτό. δ ) πότε η ταχύτητα του αυξάνεται και πότε μειώνεται ; [ Ευκλείδης Β τ.00 ] 49 ) Έστω Α, Β, Γ ενδεχόμενα ενός δειγματικού χώρου Ω. Οι πιθανότητες των Α, Α Β, Α Β ανήκουν στο σύνολο των λύσεων της εξίσωσης : (-) ( -7+) = 0 ενώ η πιθανότητα του Γ ανήκει στο σύνολο των λύσεων της εξίσωσης : = 0 α ) Να αποδειχθεί ότι : Ρ(Α) = 3, Ρ(Α Β) = 4, Ρ(Α Β) =. β ) Να υπολογιστούν οι πιθανότητες των παρακάτω ενδεχομένων : Δ : «πραγματοποιείται ένα μόνο από τα Α, Β». Ε : «πραγματοποιείται το πολύ ένα από τα Α και Β», καθώς και η πιθανότητα Ρ(Β - Α ). γ ) να αποδείξετε ότι τα Β, Γ δεν είναι ασυμβίβαστα. [ Ευκλείδης Β τ.00 ] 4
16 50 ) Δίνεται ορθογώνιο ΑΒΓΔ με διαστάσεις ΑΒ = 5 και ΒΓ = 3. Θεωρούμε τα εσωτερικά σημεία Κ,Λ, Μ και Ν των πλευρών ΑΒ, ΒΓ, ΓΔ, ΔΑ αντίστοιχα ώστε ΑΚ = ΒΛ = ΓΜ = ΔΝ =. α ) Να αποδειχθεί ότι Ε () = (ΚΛΜΝ) = , (0,3). β ) Να βρεθεί η τιμή του για την οποία το Ε() γίνεται ελάχιστο. γ ) Θεωρούμε τις τιμές y i = E( i ), i (0,3), έτσι ώστε τα i, i =,,, να είναι διαφορετικά ανα δύο μεταξύ τους. Η μέση τιμή των i και η διάμεσος είναι ίσες με. Η μέση τιμή των y i είναι ίση με 7,0. γ ) να βρεθεί η μέση τιμή των i, i =,, γ ) να βρεθεί η τυπική απόκλιση των i, i =,,, και να εξεταστεί αν το δείγμα είναι ομοιογενές. Δίνεται ο τύπος του σχολικού βιβλίου. δ ) Επιλέγουμε τυχαία μία από τις τιμές i, i =,,. Να βρεθούν οι πιθανότητες των ενδεχομένων : Α = { i, i =,,, ώστε i < 4 } Β = { i, i =,,, ώστε Ε(i) 7} Γ = «Δεν πραγματοποιείται κανένα από τα Α και Β». [ Ευκλείδης Β τ.00 ] 5
17 ΕΝΟΤΗΤΑ : ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΚΑNONIKH KATATOMH ΠΑΡΑΤΗΡΗΣΕΙΣ Στην κανονική κατανομή ισχύουν : R 6 s, = δ Στο διάστημα (, + s) βρίσκεται το.. % Στο διάστημα ( -s, ) βρίσκεται το.. % Στο διάστημα ( +s, + s) βρίσκεται το.. % Στο διάστημα ( -3s, - s) βρίσκεται το.. % ΑΣΚΗΣΗ ΦΥΛΛΑΔΙΟΥ Εξετάσαμε ένα δείγμα μαθητών μιας τάξης ως προς το βάρος τους και διαπιστώθηκε ότι κυμαίνονται από 45 έως 75 κιλά, ενώ η κατανομή των βαρών είναι κανονική. α ) να βρεθεί η μέση τιμή και το εύρος, β ) να εξεταστεί αν το δείγμα είναι ομοιογενές, γ ) αν το άθροισμα των βαρών είναι 800 κιλά, να βρεθεί το μέγεθος του δείγματος, δ ) τι ποσοστό μαθητών έχει βάρος το οποίο κυμαίνεται από 50 έως 60 κιλά ; ΛΥΣΗ 6
18 ΑΣΚΗΣΗ ΦΥΛΛΑΔΙΟΥ Σε έρευνα που έγινε στους μαθητές μιας πόλης, για το χρόνο που κάνουν να πάνε από το σπίτι τους στο σχολείο, διαπιστώθηκε ότι το 50% περίπου των μαθητών χρειάζεται περισσότερο από λεπτά, ενώ το 6% περίπου χρειάζεται λιγότερο από 0 λεπτά. Υποθέτουμε ότι η κατανομή του χρόνου της διαδρομής είναι κατά προσέγγιση κανονική. Να βρεθεί ο μέσος χρόνος διαδρομής των μαθητών και η τυπική απόκλιση του χρόνου διαδρομής τους. Να εξεταστεί αν το δείγμα είναι ομοιογενές. Αν οι μαθητές της πόλης είναι 4000 πόσοι θα κάνουν τη διαδρομή σε χρόνο από 4 έως 6 λεπτά; Μια μέρα λόγω έργων στον κεντρικό δρόμο της πόλης, κάθε μαθητής καθυστέρησε 5 λεπτά. Να βρεθεί πόσο μεταβάλλεται ο συντελεστής μεταβολής. ΛΥΣΗ 7
19 ΠΙΘΑΝΟΤΗΤΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΑΠΟ Α ΛΥΚΕΙΟΥ ΔΡΑΣΤΗΡΙΟΤΗΤΑ : Έστω Ω = {,,3,.,0} ένα βασικό σύνολο και τρία υποσύνολα αυτού Α = {,,4,7,8}, Β = {3,4,8,0} και Γ = {,4,5,0}. α ) να παραστήσετε τα σύνολα Ω, Α, Β, Γ με διάγραμμα Venn. β ) να παραστήσετε με αναγραφή των στοιχείων τους καθώς και με Venn τα σύνολα : ι ) Α Β ιι) Β Γ ιιι) Α (Β Γ) ιν) Α Β Γ ΛΥΣΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ : Στο παρακάτω σχήμα παριστάνονται με διάγραμμα Venn ένα βασικό σύνολο και τρία υποσύνολα αυτού. α ) ποιο είναι το πλήθος των στοιχείων των συνόλων Α, Β, Γ ; β ) να παραστήσετε με αναγραφή των στοιχείων τους τα σύνολα : ι ) Α Β ιι) Β Γ ιιι) Α (Β Γ) ιν) Α Β Γ ν ) Α ΛΥΣΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ 3 Δυο φίλοι παίζουν το γνωστό παιχνίδι «πέτρα, ψαλίδι, μολύβι, χαρτί». Με χρήση δεντροδιαγράμματος να προσδιορίσετε όλα τα δυνατά αποτελέσματα 8
20 του πειράματος και να δημιουργήσετε το δειγματικό του χώρο. Να προσδιορίσετε το ενδεχόμενο «ισοπαλία». ΛΥΣΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ 4 Σε μια ομάδα 0 ατόμων, 4 από τις 7 γυναίκες και από τους 3 άνδρες φορούν γυαλιά. Επιλέγουμε τυχαία ένα από τα άτομα αυτά. Να παραστήσετε με διάγραμμα Venn και με χρήση της γλώσσας των συνόλων το ενδεχόμενο το άτομο που επιλέχθηκε : α ) να είναι γυναίκα ή να φοράει γυαλιά. β ) να μην είναι γυναίκα και να φοράει γυαλιά. ΛΥΣΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ 5 Από τους μαθητές ενός Λυκείου κάποιοι μιλούν πολύ καλά τη γαλλική γλώσσα. Επιλέγουμε τυχαία έναν μαθητή για να εκπροσωπήσει το σχολείο σε μια εκδήλωση του τμήματος της Γαλλικής Φιλολογίας. Αν ονομάσουμε τα ενδεχόμενα Α : «ο μαθητής να είναι κορίτσι» Β : «ο μαθητής μιλά καλά την γαλλική γλώσσα» Να εκφράσετε λεκτικά τα ενδεχόμενα : ι ) Α Β ιι )Α Β ιιι ) Β-Α ιν ) Α-Β ν ) Α νι ) Α Β ΛΥΣΗ ΑΣΚΗΣΗ ΛΥΣΗ 9
21 .. ΚΑΛΗ ΔΥΝΑΜΗ ΚΑΙ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΙΣ ΕΞΕΤΑΣΕΙΣ ΚΑΙ ΣΕ ΟΠΟΙΟ ΔΡΟΜΟ ΔΙΑΛΕΞΕΤΕ 0
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.
ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0
Συνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1
Κεφ ο : Διαφορικός Λογισμός Συνοπτική θεωρία - Τι να προσέχουμε Θέματα από Πανελλαδικές Α Πεδίο ορισμού συνάρτησης (Περιορισμούς για το χ ) Όταν έχουμε κλάσμα πρέπει : παρονομαστής 0 Όταν έχουμε ρίζα πρέπει
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α.1. Να αποδείξετε
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 12 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
Χρόνια υπηρεσίας [ - )
Το 4 ο Θέμα (Πανελλαδικές 000-03) ) 000 Στα σ χολεί α ενός Δή μου υπη ρετούν συνολικά 00 εκπ αιδευτικοί. Ο συνολικός χρόνος υ- πηρεσίας των εκπαιδευτικών δίνεται από τον παρακάτω πίνακα: Χρόνια υπηρεσίας
Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος του Μανώλη Ψαρρά Άσκηση 1 η
1 Ο ΓΕΝΙΚΟ ΛΤΚΕΙΟ ΓΕΡΑΚΑ Απρίλης 014 Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος 013-14 του Μανώλη Ψαρρά Άσκηση 1 η Όπως γνωρίζουμε, ο στίβος του κλασσικού αθλητισμού σε ένα
ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ
ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη
ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ
ΘΕΜΑΤΑ 000-014 ΘΕΜΑ 4 ο 00 Έστω Α,Β δύο ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α) + Ρ(Β) Ρ(Α Β). Δίνεται ακόμα η συνάρτηση: f(x) = (x - P(AB)) 3 - (x - P(AB)) 3, x R. α. Να δείξετε ότι P(AB) P(AB). Μονάδες
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης
ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3
Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 η εκάδα
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η εκάδα. Στην αρχή της σχολικής χρονιάς, οι 50 µαθητές της τρίτης τάξης ενός λυκείου ρωτήθηκαν σχετικά µε τον αριθµό των βιβλίων που διάβασαν την περίοδο των διακοπών τους. Τα δεδοµένα
ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.
Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα
Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn.
Άσκηση 1 Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn. B) Αν ( ), ( ), ( ), να εκφράσετε τις πιθανότητες
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. 1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1
ο Αχαρνών 97 Αγ Νικόλαος 086596 ο Αγγ Σικελιανού Περισσός 078688 Ε ΛΙΑΤΣΟΣ Μαθηµατικός 7 t t 5 Ο πληθυσµός µιας κοινωνίας βακτηριδίων δίνεται από τον τύπο P(t) = e e σε δεκάδες µικρόβια και t 0 Α Να αποδειχθεί
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 96) Άσκηση ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Έστω οι παρατηρήσεις δυο δειγμάτων αντίστοιχα των μεταβλητών Χ και Ψ Δίνεται ότι η μέση τιμή
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα
ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 004 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α. Να αποδείξετε ότι η παράγωγος της σταθερής συνάρτησης fxc είναι ίση µε 0. Μονάδες 8 Β. Να δώσετε τον ορισµό της συνέχειας
ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
ΜΑΘΗΜΑΤΙΚΑ Β ΚΥΚΛΟΥ Τ.Ε.Ε - ΟΜΑΔΑ Α ΕΠΑ.Λ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού
ΜΑΘΗΜΑΤΙΚΑ Β ΚΥΚΛΟΥ Τ.Ε.Ε ΟΜΑΔΑ Α ΕΠΑ.Λ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού ΑΣΚΗΣΗ Το βάρος μαθητών σε κιλά είναι : 5, 5, 57, 5, 6, 5, 5, 5, 57, 5 Να υπολογίσετε : α ) τη μέση τιμή
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν
ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)
ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.
ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ / ΣΤΑΤΙΣΤΙΚΗ 03 06 000... ΜΑΘΗΜΑΤΙΚΑ
Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια
f , Σύνολο 40 4) Να συμπληρώστε τον παρακάτω πίνακα f , , Σύνολο 5) Να συμπληρώστε τον παρακάτω πίνακα
1 ΣΤΑΤΙΣΤΙΚΗ 1) Οι παρακάτω αριθμοί παρουσιάζουν τα ύψη σε cm, των φυτών ενός θερμοκηπίου 4 3 6 5 3 1 4 5 4 6 6 3 3 1 4 3 α) Να κάνετε τον πίνακα όλων των συχνοτήτων β) Από τον προηγούμενο πίνακα να βρείτε,
ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 18 MAΪΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ
Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001
Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες
Γ. Ε. ΛΥΚΕΙΟ 2008 ΜΑΘ. ΚΑΙ ΣΤ. ΣΤΑΤ. ΤΑΞΗ Γ
Γ. Ε. ΛΥΚΕΙΟ 008 43 Γ. Ε. ΛΥΚΕΙΟ 008 44 Α. Έστω f συνάρτηση με πεδίο ορισμού Α παραγωγίσιμη σε κάθε Α και c πραγματική σταθερά. Να αποδείξετε ότι: (cf ()) = cf () Μονάδες 5 Β. Να χαρακτηρίσετε με Σ (σωστό)
Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου
Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Θέµα Α A1. Για δυο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ( Α Β) = Ρ(Α) + Ρ(Β) Ρ( Α Β) Α. Πότε µια συνάρτηση f µε
Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ
Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 Ζήτηµα 1ο Α.1. Α.2. Β.1. Β.2. Β.3. Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α)
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,
ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις:
ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Γ ΛΥΚΕΙΟΥ... ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ... ΝΟΕΜΒΡΙΟΣ 013 ΘΕΜΑ 1 Ο 1Α. α). Πότε λέμε ότι μια συνάρτηση f
Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 04 ΘΕΜΑ ο Α. Πότε δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ονομάζονται ασυμβίβαστα;
ΘΕΜΑΤΑ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 000 0 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞETΑΣΕΙΣ 000 ΘΕΜΑ ο Α. α) Δίνεται η συνάρτηση F() = f()+g(). Αν οι συναρτήσεις f,g είναι παραγωγίσιμες, να αποδείξετε ότι F () f () g (). Μονάδες 8 β) Να γράψετε
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014
ΘΕΜΑ Α A1. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του ορισμού της παραγώγου ότι (c f (x)) = c f (x), για κάθε x R Μονάδες 7 A2. Πότε μια
P(A ) = 1 P(A). Μονάδες 7
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ
1 1) Δίνεται ο διπλανός πίνακας 43 παρατηρήσεων της μεταβλητής Χ και οι αντίστοιχες συχνότητές τους ν i. Αν 116 η μέση τιμή των παρατηρήσεων είναι x =, η διάμε- 43 σος είναι δ=3 και ισχύει κ>10, να υπολογιστούν
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε
P A B P(A) P(B) P(A. , όπου l 1
ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ, ΜΑΡΤΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο ενδεχόμενα
Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).
Νίκος Σούρµπης - - Γιώργος Βαρβαδούκας ΘΕΜΑ ο Α. α) ίνεται η συνάρτηση F()=f()+g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F ()=f ()+g (). β)να γράψετε στο τετράδιό σας τις παραγώγους
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ
www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες
Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου
Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα
1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4
ΘΕΜΑ ο Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) Ρ (Α) Ρ (Α Β). Μονάδες 8, Α.. Να µεταφέρετε στο τετράδιό σας τις παρακάτω σχέσεις και να συµπληρώσετε
3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ
ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με
ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ
ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f 1 ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ Ι. Το πεδίο ορισμού της f είναι:, 1 υ -1, B. 1, Γ. -1,., 1. 1, f 1 ΙΙ. Το όριο lm είναι ίσο με: 0 Α. 0 Β. 1 Γ. -1 Δ. 1/ Ε. Τίποτε
A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 7 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
1% = 100% 25 = 100. v 400. v = 6v v = 6 40 v = 240. = = 360 v v v + v + v + v = v v = 400
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 7 ΣΕΠΤΕΜΒΡΙΟΥ 000 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ ο A.. Σχολικό βιβλίο σελίδα 5 A.. α.
Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη
ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m
Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;
Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος
(f(x)+g(x)) =f (x)+g (x), x R
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιµες στο IR, να αποδείξετε ότι (()+g()) ()+g (), R Μονάδες 7 Α.
ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.
ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 Ο : ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 Ο : ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Usus est magister optimus (η χρήση είναι ο καλύτερο δάσκαλο ) y M(,f()) C f A( 0,f( 0 )) M ε O 0 (α) ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ
Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ
Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε
Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του
1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.
Μαθηματικά Γενικής Παιδείας Ανάλυση o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου
f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΤΕΤΑΡΤΗ ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ
Ζήτηµα ο Α.. Α.. Β.. Β.. Β.. Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) Ρ (Α) Ρ
x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 23 ΜΑΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ
παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α.1. Να αποδείξετε
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Να αποδειχθεί ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B) Τα απλά ενδεχόµενα
i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,
1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές
ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Παρασκευή, 30 Μα ου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k
ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.
Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι
Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ
Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) o ΘΕΜΑ A. Aν n
i μιας μεταβλητής Χ είναι αρνητικός αριθμός
ΕΡΩΤΗΣΕΙΣ Σ Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακoλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β) ΠΑΡΑΣΚΕΥΗ 10 ΙΟΥΝΙΟΥ 01 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α είναι f 1, για κάθε. Μονάδες
ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΛ ΜΑΘ. ΣΤΑΤΙΣΤΙΚΗ Γ 369 Α. Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) = x είναι f (x) = Β. Να γράψετε τις παραγώγους των παρακάτω συναρτήσεων: Μονάδες
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής 2000-2015
Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής 000-015 Περιεχόμενα Θέματα Επαναληπτικών 015.................................................. 3 Θέματα 015............................................................
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΘΕΜΑ 1o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f()) =c f (), ΙR. B.α. Πότε δύο ενδεχόμενα
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014
ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 6/6/2014 Αριθμητικά.. ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες Ολογράφως: ΥΠ. ΚΑΘΗΓΗΤΗ:......
Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 017 Λύσεις των θεμάτων Έκδοση η (0/06/017, 1:00) ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.
ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΜΑΪΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
( ) ( ) ( ) ( ) Α2. Έστω μια συνάρτηση f με πεδίο ορισμού A. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό μέγιστο στο x1 Μονάδες 4.
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ σελ. 1 από 124. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 20 ΙΟΥΝΙΟΥ 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ
Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις
01 Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 31 σχολικού βιβλίου Α. Θεωρία (ορισμός), σελίδα 18-19 σχολικού βιβλίου Α3. Θεωρία, (ορισμός), σελίδα 96 σχολικού βιβλίου Α. α) Λάθος β) Σωστό γ) Λάθος δ) Σωστό ε)
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ
F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.
Επαναληπτικά Θέµατα ΟΕΦΕ 0 Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Α. Για δύο συµπληρωµατικά ενδεχόµενα Α και A ενός δειγµατικού χώρου Ω να P A = P A.
ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 7 MAΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα