RECIKLAŽA ODPADNEGA STEKLA TER PRIDOBIVANJE OKOLJSKIH ZNAKOV ZA PROIZVODE. Datum: GZS Ljubljana

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "RECIKLAŽA ODPADNEGA STEKLA TER PRIDOBIVANJE OKOLJSKIH ZNAKOV ZA PROIZVODE. Datum: GZS Ljubljana"

Transcript

1 RECIKLAŽA ODPADNEGA STEKLA TER PRIDOBIVANJE OKOLJSKIH ZNAKOV ZA PROIZVODE Datum: GZS Ljubljana

2 VSEBINA Reciklaža odpadnega stekla ohranjanje naravnih virov EPD okoljski certifikat tipa III Blue Angel okoljski certifikat tipa I

3 UVOD Izolacijski izdelki iz steklene volne spadajo med izdelke, ki se uporabljajo za toplotno izolacijo stavb, prispevajo k nižjim emisijam toplogrednih plinov v ozračje zaradi nižje porabe energije, npr. kwh/m2. Tona izpuščenega CO2 pri proizvodnji steklene volne pomeni 4 tone/leto manjše emisije CO2 zaradi termično izolacijskega učinka stavb, kar nanese v 50-ih letih 200 ton CO2 (Vir: EURIMA) v primeru, da ogrevamo s fosilnimi gorivi. Proizvodnja izolacijskih izdelkov iz steklene volne je energetsko intenziven proces, kjer se iz staljenega stekla naredi steklena vlakna in se jih impregnira z vezivnim sredstvom. Pri proizvodnem procesu se porabi precej energije (zemeljski plin, elektrika). Poraba energije v 2015: 3,25 MWh/tono končnega izdelka (vrednosti iz BREF: 2,5-5,6 MWh/tono končnega izdelka). Proizvodnja taline stekla poteka pri visokih temperaturah ( C) v steklarskih pečeh. Poznamo več vrst steklarskih peči (elektropeč, plinska peč, peč na taljenje s kisikom oxy-fuel). Za taljenje stekla porabimo % celotne energije. Slide 3

4 UVOD Kot osnovna surovina za steklo se uporabljajo določene surovine: Osnovne surovine Kremenčev pesek Dolomit Soda Boraks Glinenec Kalcit Shematski prikaz proizvodnje st.volne Večina teh surovin je naravnih in se jih pridobiva z izkopi. Določene surovine so karbonati (soda, dolomit, kalcit), pri taljenju katerih prihaja do procesnih emisij CO2. Od leta 2005 v URSA Slovenija kot surovino uporabljamo odpadno steklo, ki ga kupujemo na tržišču. Slide 4

5 PROIZVODNI PROCES Priprava zmesi Doziranje zmesi v peč Vlaknjenje in nanos veziva Vhod v trdilno komoro Izdelek pred mehansko obdelavo Modularno pakiran izdelek 5 Slide 5

6 UPORABA ODPADNEGA STEKLA KOT SUROVINE Uporabljamo dva tipa stekla: t.i. SLS odpadno steklo z vsebnostjo cca. 30 % barvnega stekla BS borosilikatno odpadno steklo (vir B 2 O 3 ) Prvega dobavljamo iz Avstrije iz obrata za reciklažno steklo, nekaj iz Hrvaške, drugega pa iz proizvodnje ampul za farmacevtsko industrijo iz Madžarske, Hrvaške in Italije. Za oba tipa imamo določeno specifikacijo kvalitete t.i. RMS, kjer so določene meje za parametre (kemijska sestava, granulacija, nečistoče, količina CSP nečistoč.., itd.) Delež odpadnega stekla v steklarski zmesi smo povečevali, trenutni delež odpadnega stekla predstavlja 75 % masnega deleža v talini stekla, kar je glede na trenutno končno sestavo zgornja meja. Pri tolikšnem deležu odpadnega stekla v proizvodnem postopku je potrebna stalna kontrola kvalitete dobaviteljev (obiski na lokacijah za predelavo) 6 Slide 6

7 UPORABA ODPADNEGA STEKLA KOT SUROVINE o Manjša poraba osnovnih surovin za proizvodnjo stekla znižanje proizvodnega stroška delež v steklu (%) 7 Slide 7

8 UPORABA ODPADNEGA STEKLA KOT SUROVINE Nižje procesne emisije CO 2 zaradi manjše porabe karbonatov Emisije CO 2 brez uporabe odpadnega stekla: 173,6 kg/t Stekla Emisije CO 2 z 75 % deležem odpadnega stekla: 44 kg/t Stekla Na letnem nivoju pri proizvodnji ton končnih izdelkov so procesne emisije CO 2 manjše za približno ton! Velja ocena, da vsakih 10 % uporabljenih črepinj zmanjša porabo energije v steklarski peči, greti na zemeljski plin za 2-3 % zmanjša se toplota potrebna za kemijsko pretvorbo (dh chem ) pospešijo se talilne reakcije pri pretvorbi steklarske zmesi v talino poveča se transfer toplote v talino (optični efekt črepinj) OMEJITVE IN TEŽAVE: granulacija in transport, prisotnost nečistoč poslabša proces taljenja, prisotnost CSP skrajša življensko dobo rotorjev in pomeni več zastojev na liniji, sezonsko nihanje vlage v materialu, itd 8 Slide 8

9 EPD okoljska deklaracija tipa III l izdelana Okoljska deklaracija proizvoda (EPD) za izolacijo iz mineralne steklene volne URSA GLASSWOOL v skladu s standardom SIST EN ISO 14025:2010 izdelki iz Ursine tovarne v Novem mestu, deklarirana enota 1m 3, sistemske meje moduli A1-A3 (t.i. cradle-to-gate analiza) za module A4, A5 in C2, C3 uporaba podatkov iz EPD-ja za primerljive nemške izdelke za potrebe razumljive komunikacije izdelan izračun vpliva na okolje, vključno s fazo uporabe izolacije Slide 9

10 EPD - Rezultati LCA analize (Grafični prikaz) Slide 10

11 EPD - Interpretacija rezultatov Slide 11

12 EPD - Zaključki Izolacija iz mineralne steklene volne znatno pripomore k trajnostni gradnji - 1m2 debeline izolacije z λ 0,035 v strehi hiše bo v 50 letih prihranil: Uporaba LCA analiz za zgradbe (in posledično EPD-jev) je pri nas še v povojih; praksa iz tujine kaže, da je to trend Nujni so homogenizacija in standardizacija evalvacijskih orodij ter čim več LCA analiz Trajnostna gradnja je zaenkrat moda, postati mora cenovno bolj dostopna, kot npr. energijsko učinkovita gradnja Slide 12

13 Blue Angel Okoljska deklaracija tipa I Blue Angel RAL UZ 132 za notranje izolacijske proizvode v stavbah Okoljski certifikat tipa I, temelji na deklaracijah o neuporabi nevarnih snovi v proizvodnem postopku ter sproščanju emisiji predvidenih nevarnih snovi iz izdelka. Motiv za pridobivanje tega certifikata so zahteve določenih trgov (Avstrija, Italija), v letu 2016 smo pričeli z aktivnostmi za pridobivanje znaka BA za izdelke. Za steklena vlakna imamo EUCEB/RAL certifikat, ki dokazuje da vlakna niso nevarna za zdravje kriterij biotopnosti, tako je pri certifikatu BA zadeva fokusirana na organski del izdelka (veziva, zaviralci gorenja, ostali dodatki za protiprašnost, itd ) Pridobivanje BA certifikata za notranje izolacijske proizvode lahko razdelimo na dva dela: 13 Slide 13

14 Blue Angel IZJAVE O NEVARNIH SNOVEH a) Izjave o neuporabi nevarnih snovi v proizvodnem postopku Izdelki ne smejo vsebovati ali sproščati snovi z oznakami T+ in T, CMRT snovi, halogenov, zaviralcev ognja z snovmi ki vsebujejo klor ali brom, ftalatov kot plastifikatorjev v vsebnosti < 0,1 % Izdelki morajo biti označeni z piktogrami, ki opozarjajo da lahko mineralna vlakna povzročajo kratkotrajno draženje kože Neuporaba HFC in HCFC snovi, ki so prepovedane zaradi toplogrednega učinka teh plinov Izdelki ne smejo vsebovati biocidov Barve in pigmenti uporabljeni v proizvodnem postopku ne smejo vsebovati svinca, Cr (VI) ali Cd spojin, alkilfenol etoksilatov ter njihova vsebnost ne sme presegati 1g/m2 izdelka. 14 Slide 14

15 Blue Angel UPORABA IZDELKA IN MERITVE b) Uporaba izdelka t.i. Indoor Air Quality ki temelji na meritvah sproščanja značilnih nevarnih snovi iz izdelka Zadevne snovi Skupne organske snovi (TVOC C6 C18) Skupne organske snovi (> C16 C22 TSVOC) Cspojine karcinogene spojine, K1, K2, 1A ali 1B Skupni VOC brez neidentificiranih spojin (LCI) Zahteva po sproščanju po 28 dni iz izdelka <= 100 mg/m3 <= 20 mg/m3 <= 1 mg/m3 za vsako posamezno <= 20 mg/m3 R vrednost <= 1 Formaldehid < 0,05 ppm 15 Slide 15

16 Blue Angel - ZAKLJUČKI Meritve se izvajajo po standardih serije EN ISO do 9, komorna metoda z različnimi faktorji obremenitve (t.i. Loading factor) glede na namen uporabe (izolacija podstrešij, tla, predelne stene, itd...). Deklaracije in informacije za uporabnika: deklarira se samo izdelke, ki se jih predhodno priglasi certifikacijskemu organu RAL ggmbh, vsak izdelek mora imeti tudi jasno sledljivost (ime proizvoda, serija, informacije o odlaganju, itd ). Za meritve na izdelkih se izbere t.i. worst case izdelek ali več njih. Stranke v postopku pridobivanja: RAL ggmbh, ki podeljuje znak Blue Angel, država kjer je proizvodnja izdelkov, okoljska agencija te države, ki prejme vse podatke v posopku pridobivanja znaka Blue Angel. Uporaba znaka Blue Angel : samo za deklarirane proizvode, uporabnik je odgovoren za uporabo znaka (embalaža, katalogi, splet, ), definiran so pojmi proizvajalec, uporabnik znaka Label user, kar omogoča uporabo po posameznih trgih, plačuje se letno pristojbino za uporabo glede na promet, pogodba se podaljšuje vsako leto. 16 Slide 16

17 HVALA ZA POZORNOST

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70 KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

KAKO IZGUBLJAMO TOPLOTO V STANOVANJSKI HIŠI

KAKO IZGUBLJAMO TOPLOTO V STANOVANJSKI HIŠI KAKO IZGUBLJAMO TOPLOTO V STANOVANJSKI HIŠI Toplotne izgube v stanovanjski hiši neposredno vplivajo na višino finančnih sredstev, ki jih porabimo za vzdrževanje ugodne klime v hladnih zimskih mesecih.

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

PREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE

PREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE TOPLOTNO ENERGETSKI SISTEMI TES d.o.o. GREGORČIČEVA 3 2000 MARIBOR IN PREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE Saša Rodošek December 2011, Hotel BETNAVA, Maribor TES d.o.o. Energetika Maribor

Διαβάστε περισσότερα

The Thermal Comfort Properties of Reusable and Disposable Surgical Gown Fabrics Original Scientific Paper

The Thermal Comfort Properties of Reusable and Disposable Surgical Gown Fabrics Original Scientific Paper 24 The Thermal Comfort Properties of Surgical Gown Fabrics 1 1 2 1 2 Termofiziološke lastnosti udobnosti kirurških oblačil za enkratno in večkratno uporabo december 2008 marec 2009 Izvleček Kirurška oblačila

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Izolacija za pravo ugodje doma

Izolacija za pravo ugodje doma RECI STREHI PREPROSTO : Izolacija za pravo ugodje doma Učinkovita toplotna izolacija vaše strehe: Samo streha, pri kateri so bile upoštevane vse zahteve gradbene fizike glede toplotne zaščite ter točke

Διαβάστε περισσότερα

ARHITEKTURA DETAJL 1, 1:10

ARHITEKTURA DETAJL 1, 1:10 0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja

Διαβάστε περισσότερα

Zgodba vaše hiše

Zgodba vaše hiše 1022 1040 Zgodba vaše hiše B-panel strani 8-11 Osnovni enobarvni 3020 3021 3023 paneli 3040 3041 Zasteklitve C-panel strani 12-22 S-panel strani 28-35 1012 1010 1013 2090 2091 1022 1023 1021 1020 1040

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Knauf Insulation Polyfoam Izolacija iz ekstrudiranega polistirena XPS

Knauf Insulation Polyfoam Izolacija iz ekstrudiranega polistirena XPS www.knaufinsulation.si 2/2013 Knauf Insulation Polyfoam Izolacija iz ekstrudiranega polistirena XPS Knauf Insulation Polyfoam XPS Izdelke iz ekstrudiranega polistirena Polyfoam odlikuje poleg izjemne toplotne

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

1. člen (vsebina) 2. člen (pomen izrazov)

1. člen (vsebina) 2. člen (pomen izrazov) Na podlagi 64.e člena Energetskega zakona (Uradni list RS, št. 27/07 uradno prečiščeno besedilo in 70/08) in za izvrševanje četrte alinee tretjega odstavka 42. člena Zakona o spremembah in dopolnitvah

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

STANDARD1 EN EN EN

STANDARD1 EN EN EN PRILOGA RADIJSKE 9,000-20,05 khz naprave kratkega dosega: induktivne aplikacije 315 600 khz naprave kratkega dosega: aktivni medicinski vsadki ultra nizkih moči 4516 khz naprave kratkega dosega: železniške

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

SPTE V OBRATU PRIPRAVE LESA

SPTE V OBRATU PRIPRAVE LESA Laboratorij za termoenergetiko SPTE V OBRATU PRIPRAVE LESA Avditorna demonstracijska vaja Ekonomska in energijska analiza kotla in SPTE v sušilnici lesa Cilj vaje analiza proizvodnje toplote za potrebe

Διαβάστε περισσότερα

CENIK IZDELKOV YTONG IN SILKA 2018 veljavnost cenika: do nadaljnjega

CENIK IZDELKOV YTONG IN SILKA 2018 veljavnost cenika: do nadaljnjega CENIK IZDELKOV YTONG IN SILKA 2018 veljavnost cenika: 11. 05. 2018 do nadaljnjega m2 /pal / 3831013476653 01194200 YTONG plošča P 5 625 50 200 3/0,45 0,108 150 18,75 591 / 1,36 YTONG večnamenske plošče

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Laboratorij za termoenergetiko. Vodikove tehnologije in PEM gorivne celice

Laboratorij za termoenergetiko. Vodikove tehnologije in PEM gorivne celice Laboratorij za termoenergetiko Vodikove tehnologije in PEM gorivne celice Pokrivanje svetovnih potreb po energiji premog 27% plin 22% biomasa 10% voda 2% sonce 0,4% veter 0,3% nafta 32% jedrska 6% geoterm.

Διαβάστε περισσότερα

Obračun stroškov za toploto po dejanski porabi

Obračun stroškov za toploto po dejanski porabi REPUBLIKA SLOVENIJA MINISTRSTVO ZA GOSPODARSTVO DIREKTORAT ZA ENERGIJO Sektor za učinkovito rabo in obnovljive vire energije Obračun stroškov za toploto po dejanski porabi mag. Hinko Šolinc posvet Poslovanje

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Modul 1: Zakaj trajnostna gradnja?

Modul 1: Zakaj trajnostna gradnja? Trajnostna gradnja in prenova v Alpah Modul 1: Zakaj trajnostna gradnja? climalp, informacijska kampanja CIPRE kazalo 1 2 2.1 2.2 2.3 3 4 5 5.1 5.2 5.3 5.4 6 7 8 Uvod 3 CIPRA, njen projekt climalp in njene

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Energije in okolje 1. vaja. Entalpija pri kemijskih reakcijah

Energije in okolje 1. vaja. Entalpija pri kemijskih reakcijah Entalpija pri kemijskih reakcijah Pri obravnavi energijskih pretvorb pri kemijskih reakcijah uvedemo pojem entalpije, ki popisuje spreminjanje energije sistema pri konstantnem tlaku. Sistemu lahko povečamo

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

MOTORJI Z NOTRANJIM ZGOREVANJEM

MOTORJI Z NOTRANJIM ZGOREVANJEM MOTORJI Z NOTRANJIM ZGOREVANJEM Dvotaktni Štititaktni Motorji z notranjim zgorevanjem Motorji z zunanjim zgorevanjem izohora: Otto motor izohora in izoterma: Stirling motor izobara: Diesel motor izohora

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

Novi Transporter furgon.

Novi Transporter furgon. MAJ 2010 LETO III ŠTEVILKA 10 Poštnina plačana pri pošti 2102 Maribor Tiskovina / ISSN 1855-6108 www.instalater.si Brezplaãna energija iz narave: Kompakten energetski center 242-G s toplotno ãrpalko Kompaktna

Διαβάστε περισσότερα

Zagotavljanje ugodnega bivanja v nizkoenergijski in pasivni hiši

Zagotavljanje ugodnega bivanja v nizkoenergijski in pasivni hiši Zagotavljanje ugodnega bivanja v nizkoenergijski in pasivni hiši Toplotno ugodje določa termično ravnotežje med človekovim telesom in njegovim okoljem. Določimo ga kot stanje v prostoru, ko za večino uporabnikov

Διαβάστε περισσότερα

15236/17 ADD 1 dbb/hm/dk 1 DG E 2B

15236/17 ADD 1 dbb/hm/dk 1 DG E 2B Svet Evropske unije Bruselj, 13. december 2017 (OR. en) Medinstitucionalna zadeva: 2016/0382 (COD) 15236/17 ADD 1 DOPIS Pošiljatelj: Prejemnik: Odbor stalnih predstavnikov (1. del) Svet ENER 486 CLIMA

Διαβάστε περισσότερα

Metode za določanje prihrankov energije, porabe obnovljivih virov energije in zmanjševanja emisij CO 2

Metode za določanje prihrankov energije, porabe obnovljivih virov energije in zmanjševanja emisij CO 2 PRILOGA I Metode za določanje prihrankov energije, porabe obnovljivih virov energije in zmanjševanja emisij CO 2 1. Celovita obnova stavb Prihranek energije je razlika med potrebno toploto [kwh/m 2 leto]

Διαβάστε περισσότερα

KAKO HITRO IN USPEŠNO SKOZI POTREBNE ADMINISTRATIVNE POSTOPKE ZA PRIDOBITEV PODPORE

KAKO HITRO IN USPEŠNO SKOZI POTREBNE ADMINISTRATIVNE POSTOPKE ZA PRIDOBITEV PODPORE Dr. Matej Toman Javna agencija RS za energijo KAKO HITRO IN USPEŠNO SKOZI POTREBNE ADMINISTRATIVNE POSTOPKE ZA PRIDOBITEV PODPORE Soproizvodnja in podpore 3. Delavnica CODE in 2. Dan soproizvodnje, 25.1.2011,

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Osnove sklepne statistike

Osnove sklepne statistike Univerza v Ljubljani Fakulteta za farmacijo Osnove sklepne statistike doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo e-pošta: mitja.kos@ffa.uni-lj.si Intervalna ocena oz. interval zaupanja

Διαβάστε περισσότερα

ENERGETSKA PRENOVA HIŠE

ENERGETSKA PRENOVA HIŠE ŠOLSKI CENTER CELJE Srednja šola za gradbeništvo in varovanje okolja Pot na Lavo 22, 3000 Celje ENERGETSKA PRENOVA HIŠE (RAZISKOVALNA NALOGA) Mentor: Arnold LEDL, univ. dip. inţ. arh. Avtorji: Boštjan

Διαβάστε περισσότερα

Žepni priroènik VSE O IZOLACIJI

Žepni priroènik VSE O IZOLACIJI Žepni priroènik VSE O IZOLACIJI URSA Insulation, S.A. Madrid (Spain) 2009 Vse intelektualne in materialne pravice pridržane. Kakršnokoli elektronsko ali fizično kopiranje, ponatis, spreminjanje ali distribucija

Διαβάστε περισσότερα

DIREKTIVA 2009/28/ES EVROPSKEGA PARLAMENTA IN SVETA

DIREKTIVA 2009/28/ES EVROPSKEGA PARLAMENTA IN SVETA L 140/16 SL Uradni list Evropske unije 5.6.2009 DIREKTIVE DIREKTIVA 2009/28/ES EVROPSKEGA PARLAMENTA IN SVETA z dne 23. aprila 2009 o spodbujanju uporabe energije iz obnovljivih virov, spremembi in poznejši

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Primerjava konstrukcij masivne in montažne pasivne hiše

Primerjava konstrukcij masivne in montažne pasivne hiše Primerjava konstrukcij masivne in montažne pasivne hiše Bojan Grobovšek, univ. dipl. inž. str. Povzetek Pasivna hiša mora zagotavljati nizko rabo energije in visoko stopnjo bivalnega ugodja. Za dosego

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

PRILOGA VI POTRDILO O SKLADNOSTI. (Vzorci vsebine) POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA

PRILOGA VI POTRDILO O SKLADNOSTI. (Vzorci vsebine) POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA PRILOGA VI POTRDILA O SKLADNOSTI (Vzorci vsebine) A POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA Stran 1 POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA (1) (številka potrdila o skladnosti:)

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom

Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom D. Beg, študijsko gradivo za JK, april 006 KK FGG UL Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom Nosilnost na bočno zvrnitev () Elemente, ki niso bočno podprti in so upogibno

Διαβάστε περισσότερα

Mineralna izolacija za vpihovanje NOVO CELOVITE IZOLACIJSKE REŠITVE. Ecose naravna mineralna izolacija. izolacija ostrešja

Mineralna izolacija za vpihovanje NOVO CELOVITE IZOLACIJSKE REŠITVE.  Ecose naravna mineralna izolacija. izolacija ostrešja revija za trajnostno in energetsko učinkovito gradnjo številka 5, 2015 - BREZPLAČNI IZVOD Požarni preizkus Termotop zunanja izolacija ostrešja Ecose naravna mineralna izolacija CELOVITE IZOLACIJSKE REŠITVE

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

B-panel. C-panel. S-panel. Osnovni enobarvni paneli. Zasteklitve. strani strani strani

B-panel. C-panel. S-panel. Osnovni enobarvni paneli. Zasteklitve. strani strani strani Zgodba vaše hiše B-panel strani 8-11 Osnovni enobarvni 3020 3021 3023 paneli 3040 3041 Zasteklitve C-panel strani 12-20 S-panel strani 28-35 1012 1010 1013 2090 2091 1022 1023 1021 1020 1040 1041 1042

Διαβάστε περισσότερα

POPIS DEL IN PREDIZMERE

POPIS DEL IN PREDIZMERE POPIS DEL IN PREDIZMERE ZEMELJSKI USAD v P 31 - P 32 ( l=18 m ) I. PREDDELA 1.1 Zakoličba, postavitev in zavarovanje prečnih profilov m 18,0 Preddela skupaj EUR II. ZEMELJSKA DELA 2.1 Izkop zemlje II.

Διαβάστε περισσότερα

4. DEL. Določbe za pakiranje in cisterne

4. DEL. Določbe za pakiranje in cisterne 4. DEL Določbe za pakiranje in cisterne POGLAVJE 4.1 UPORABA EMBALAŽE, TUDI VSEBNIKOV IBC IN VELIKE EMBALAŽE Uvodni opombi OPOMBA 1: Embalažne skupine Zaradi pakiranja so nevarne snovi vseh razredov,

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Baumit Duplex Dodatna toplotna izolacija

Baumit Duplex Dodatna toplotna izolacija Baumit Duplex Dodatna toplotna izolacija Dvojna izolacija z Baumit Duplex tehnologijo nižji stroški ogrevanja prijetna bivalna klima hiša v novem sijaju Ideje prihodnosti. Baumit CreativTop Baumit Duplex

Διαβάστε περισσότερα

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki

Διαβάστε περισσότερα

SVET EVROPSKE UNIJE. Bruselj, 30. september 2010 (01.10) (OR. en) 14262/10 DENLEG 97 SPREMNI DOPIS

SVET EVROPSKE UNIJE. Bruselj, 30. september 2010 (01.10) (OR. en) 14262/10 DENLEG 97 SPREMNI DOPIS SVET EVROPSKE UNIJE Bruselj, 30. september 2010 (01.10) (OR. en) 14262/10 DENLEG 97 SPREMNI DOPIS Pošiljatelj: Evropska komisija Datum prejema: 27. september 2010 Prejemnik: generalni sekretariat Sveta

Διαβάστε περισσότερα

Varjenje polimerov s polprevodniškim laserjem

Varjenje polimerov s polprevodniškim laserjem Laboratorijska vaja št. 5: Varjenje polimerov s polprevodniškim laserjem Laserski sistemi - Laboratorijske vaje 1 Namen vaje Spoznati polprevodniške laserje visokih moči Osvojiti osnove laserskega varjenja

Διαβάστε περισσότερα