Linearna algebra 2 prvi kolokvij,
|
|
- Ἐπαφρᾶς Μαλαξός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika A(x 1, x 2 ) = (x 1, ax 1 + 2x 2 ), za neki a R. Odredite jednu vrijednost a za koju je preslikavanje s skalarni produkt te jednu vrijednost a za koju s nije skalarni produkt. Sve tvrdnje detaljno obrazložite. Napomena. S (..) označavamo standardni skalarni produkt na R 2. Rješenje: Očito je s(x, x) = x ax 1 x 2 + 2x 2 2 pa uočavamo da je strogost ispunjena za a = 0, a i ostala svojstva se lako dobiju (analogno kao i kod standarnog sklarnog produkta na R. Za a = 2 2 je S(x, x) = (x 1 + 2x 2 ) 2 pa uočavamo da strogost nije ispunjena u tom slučaju jer je npr. S( 2, 1) = 0, a ( 2, 1) 0. Time smo dobili da s nije skalarni produkt za a = 2 2. M. Erceg, L. Rimanić, L. Žunić, J. Šiftar NAPOMENE: Vrijeme rješavanja je 120 minuta. Raspored bodova je Na svaki list papira čitljivo se potpišite.
2 2. (10 bodova) Neka je A = {(x, y, z, w) C 4 : x y z + w = 0, x + z = 0}. Nađite A te po jednu ortonormiranu bazu za A i A. Rješenje: Najprije odredimo bazu za A što je {(0, 1, 0, 1), (1, 2 1, 0)}, a potom nađemo bazu za A : {(1, 0, 1, 0), (0, 1, 2, 1)}. Gram-Schmidtovim postupkom ortonormiramo obje baza pa dobivamo { 2 (0, 1, 0, 1), 1(1, 1, 1, 1)}, odnosno { 2 (1, 0, 1, 0), 1 ( 1, 1, 1, 1)}
3 3. (15 bodova) Neka je P 3 vektorski prostor polinoma stupnja manjeg ili jednakog 3. Neka je S : P 3 P 3 definiran sa a) Dokažite da je S linearan operator. (Sp)(t) = p (t 1) + (t p(t)). b) Odredite matrični prikaz operatora S u kanonskoj bazi. c) Odredite rang i defekt te po jednu bazu za jezgru i sliku. Rjesenje: a) Uočimo najprije: Raspišimo sada po definiciji: (tp(t)) = (p(t) + tp (t)) = 2p (t) + tp (t) ( tp (t)!!). S(αp 1 + βp 2 )(t) = (αp 1 + βp 2 ) (t 1) + (t(αp 1 + βp 2 )(t)) = (svojstva derivacije) = αp 1(t 1) + βp 2(t 1) + 2(αp 1 + βp 2 ) + t(αp 1 + βp 2 ) (t) = (αp 1(t 1) + (2αp 1(t) + αtp 1(t))) + (αp 2(t 1) + (2αp 2(t) + αtp 2(t))) = αsp 1 (t) + βsp 2 (t). b) Za proizvoljni p(t) = at 3 + bt 2 + ct + d dobivamo pa je matrični prikaz jednak (Sp)(t) = 15at 2 + ( 6a + 8b)t + 3a 2b + 3c, c) Vrijedi (Sp)(t) = 0 ako i samo ako je a = 0 6a + 8b = 0 3a 2b + 3c = 0. Odavde vidimo da je p Ker S ako i samo ako je p(x) = d, za neki d R, tj. baza za Ker S je {1}. Nadalje, vrijedi Stoga je baza slike. (Sp)(t) = a(15t 2 6t + 3) + 2b(4t 1) + 3c 1. {15t 2 6t + 3, 4t 1, 1}. Očito slijedi r(s) = 3, d(s) = 1, što je u skladu s teoremom o rangu i defektu jer je dimp 3 = 4. Napomena. Vrijedi da je baza slike operatora S jednaka {t 2, t, 1}, ali se to mora dodatno obrazložiti.
4 4. (15 bodova) Operator T : V 3 (O) V 3 (O) djeluje tako da vektor najprije ortogonalno projicira na xz-ravninu, a zatim tako dobiveni vektor rotira s obzirom na os z za kut π 3. Odredite: a) djelovanje operatora T na proizvoljan vektor v = x i + y j + z k, b) udaljenost vektora a = 1 3 i j + 3 k i b = 3 i + 3 j k od slike operatora T. Rješenje: a) Neka je A operator ortogonalne projekcije na xz-ravninu, a B rotacije s obzirom na os z za kut π. Tada je A(x i + y j + z k) = x i + z k i B(x i + y j + z k) = ( 1x 3 y) i ( 3 x + 1y) j + z k, a onda T (x i + y j + z k) = B(A(x i + y j + z k)) = 1x i + 3 x j + z k b) Iz a) uočavamo da bazu slike čine vektori v 1 = 1 2 i j i v 2 = k. Vektor a se nalazi u slici pa je udaljenost jednaka nula, a za vektor vektor b standarnim postupkom dobivamo d( b, Im) = 3 2 (1 3).
5 5. (10 bodova) Neka je V unitarni prostor dimenzije 3 i v V jedinični vektor. Može li se zadati linearni operator A : V V tako da vektori v, A(v) i A 2 (v) čine ortonormiranu bazu? Obrazložite odgovor i napišite matricu takvog operatora u primjeru prostora V 3 (O), u ortonormiranoj bazi ( i, j, k), ako se izabere v = i.
6 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika A(x 1, x 2 ) = (2x 1 + ax 2, x 2 ), za neki a R. Odredite jednu vrijednost a za koju je preslikavanje s skalarni produkt te jednu vrijednost a za koju s nije skalarni produkt. Sve tvrdnje detaljno obrazložite. Napomena. S (..) označavamo standardni skalarni produkt na R 2. M. Erceg, L. Rimanić, L. Žunić, J. Šiftar NAPOMENE: Vrijeme rješavanja je 120 minuta. Raspored bodova je Na svaki list papira čitljivo se potpišite.
7 2. (10 bodova) Neka je A = {(x, y, z, w) C 4 : x + y + z w = 0, y z = 0}. Nađite A te po jednu ortonormiranu bazu za A i A.
8 3. (15 bodova) Neka je P 3 vektorski prostor polinoma stupnja manjeg ili jednakog 3. Neka je S : P 3 P 3 definiran sa a) Dokažite da je S linearan operator. (Sp)(t) = p (t) + (t p(t 1)). b) Odredite matrični prikaz operatora S u kanonskoj bazi. c) Odredite rang i defekt te po jednu bazu za jezgru i sliku.
9 4. (15 bodova) Operator T : V 3 (O) V 3 (O) djeluje tako da vektor najprije ortogonalno projicira na yz-ravninu, a zatim tako dobiveni vektor rotira s obzirom na os y za kut π 6. Odredite: a) djelovanje operatora T na proizvoljan vektor v = x i + y j + z k, b) udaljenost vektora a = 2 i j k i b = 3 i j + 3 k od slike operatora T.
10 5. (10 bodova) Neka je P linearni operator na unitarnom prostoru V 3 (O) takav da za vektore i, j iz jedne ortonormirane baze { i, j, k} vrijedi P ( i) = j, P ( j) = i. Napišite opći oblik matrice takvog operatora P u bazi { i, j, k}. Može li se P ( k) zadati tako da za svaki vektor v V 3 (O) bude ispunjeno v P ( v) = 0? Obrazložite.
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Διαβάστε περισσότεραM086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότερα1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότεραDijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Διαβάστε περισσότεραa M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Διαβάστε περισσότεραMatematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότεραSOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
Διαβάστε περισσότεραNumerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Διαβάστε περισσότεραLINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ
LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F
Διαβάστε περισσότεραINTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Διαβάστε περισσότερα7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Διαβάστε περισσότεραMATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Διαβάστε περισσότεραFunkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότεραπ π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Διαβάστε περισσότεραx + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4.
Linearna algebra A, kolokvijum, 1. tok 22. novembar 2014. 1. a) U zavisnosti od realnih parametara a i b Gausovim metodom rexiti sistem linearnih jednaqina nad poljem R ax + (a + b)y + bz = 3a + 5b ax +
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Διαβάστε περισσότερα1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Διαβάστε περισσότεραPoglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi
Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE 1.1 Ortonormirani skupovi Prije nego krenemo na sami algoritam, uvjerimo se koliko je korisno raditi sa ortonormiranim skupovima u unitarnom prostoru.
Διαβάστε περισσότεραKONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
Διαβάστε περισσότεραLinearna algebra za fizičare, zimski semestar Mirko Primc
Linearna algebra za fizičare, zimski semestar 006. Mirko Primc Sadržaj Poglavlje 1. Vektorski prostor R n 5 1. Vektorski prostor R n 6. Geometrijska interpretacija vektorskih prostora R i R 3 11 3. Linearne
Διαβάστε περισσότεραPRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Διαβάστε περισσότερα4 Unitarni prostori. 4.1 Definicija i svojstva unitarnih prostora. K polje R ili C, V je vektorski prostor nad K
4 Unitarni prostori 4.1 Definicija i svojstva unitarnih prostora K polje R ili C, V je vektorski prostor nad K Definicija. Skalarni produkt na V je svaka funkcija p q: V ˆ V Ñ K koja ima sljedeća svojstva:
Διαβάστε περισσότερα- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Διαβάστε περισσότερα(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Διαβάστε περισσότεραRADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότεραStrukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Διαβάστε περισσότεραVektorski prostori. Vektorski prostor
Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu
Διαβάστε περισσότεραRiješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Διαβάστε περισσότεραGauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
Διαβάστε περισσότερα2 Jordanova forma. 2.1 Nilpotentni operatori
2 Jordanova forma 2 Nilpotentni operatori Definicija Neka je V vektorski prostor Operator N P LpV q je nilpotentan indeksa p (p P N) ako vrijedi N p, N p Propozicija Ako je e P V takav da je N p e, onda
Διαβάστε περισσότεραIZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Διαβάστε περισσότερα6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
Διαβάστε περισσότερα16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum
16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni
Διαβάστε περισσότεραLinearna algebra I, zimski semestar 2007/2008
Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni
Διαβάστε περισσότερα1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka
1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje
Διαβάστε περισσότεραMatrice linearnih operatora i množenje matrica. Franka Miriam Brückler
Matrice linearnih operatora i množenje matrica Franka Miriam Brückler Kako je svaki vektorski prostor konačne dimenzije izomorfan nekom R n (odnosno C n ), pri čemu se ta izomorfnost očituje odabirom baze,
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότεραRiješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Διαβάστε περισσότεραKlasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Διαβάστε περισσότεραMJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)
JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (
Διαβάστε περισσότερα1 Diferencijabilnost Motivacija. Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji limes f f(x) f(c) (c) = lim.
1 Diferencijabilnost 11 Motivacija Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji es f f(x) f(c) (c) x c x c Najbolja linearna aproksimacija funkcije f je funkcija l(x) = f(c)
Διαβάστε περισσότεραSustav dvaju qubitova Teorem o nemogućnosti kloniranja. Spregnuta stanja. Kvantna računala (SI) 17. prosinca 2016.
17. prosinca 2016. Stanje qubita A prikazujemo vektorom φ A u Hilbertovom prostoru H A koristeći ortonormiranu bazu { 0 A, 1 A }. Stanje qubita B prikazujemo vektorom φ B u H B... Ako se qubitovi A i B
Διαβάστε περισσότεραGeometrija (I smer) deo 1: Vektori
Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo
Διαβάστε περισσότεραTRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Διαβάστε περισσότεραUvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
Διαβάστε περισσότερα41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Διαβάστε περισσότεραPrincipi kvantne mehanike
4. studenog 2016. Princip 1: stanje sustava Fizikalno stanje u kojem se nalazi neki kvantni sustav prikazujemo normiranim vektorom Φ u N-dimenzionalnom Hilbertovom prostoru H (N). Vektor Φ zovemo vektorom
Διαβάστε περισσότεραTeorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Διαβάστε περισσότεραVektori. 28. studenoga 2017.
Vektori 28. studenoga 2017. 1 / 42 Skalarna veličina: veličina odredena samo jednim (realnim) brojem ili skalarom npr. skalarne veličine su udaljenost, masa, površina, volumen,... Vektorska veličina: veličina
Διαβάστε περισσότεραSISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότεραIskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Διαβάστε περισσότεραSume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
Διαβάστε περισσότεραNeka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
Διαβάστε περισσότεραSveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike. Monika Jović. Skalarni produkt.
Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Monika Jović Skalarni produkt Završni rad Osijek, 2012. Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku
Διαβάστε περισσότεραLinearna algebra
Linearna algebra 2 Siniša Miličić cinik@studentmathhr 2462004 Molim da se sve uočene greške i primjedbe pošalju na mail Ovaj dokument je javno dobro, te se smije neograničeno umnažati, mijenjati i koristiti
Διαβάστε περισσότερα( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότερα2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Διαβάστε περισσότεραVJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.
Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,
Διαβάστε περισσότεραk a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :
4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραMatematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO
Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se
Διαβάστε περισσότεραMJERA I INTEGRAL 1. kolokvij 29. travnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)
MJERA I INTEGRAL 1. kolokvij 29. travnja 2016. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je I kolekcija svih ograničenih jednodimenzionalnih intervala
Διαβάστε περισσότεραOperatori na normiranim prostorima vježbe 2015/2016. Tomislav Berić
Operatori na normiranim prostorima vježbe 2015/2016 Tomislav Berić tberic@math.hr Sadržaj 1 Operatori na Hilbertovim prostorima 1 1.1 Normalni operatori..................................... 3 1.2 Unitarni
Διαβάστε περισσότεραPismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Διαβάστε περισσότεραDvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
Διαβάστε περισσότεραAlgebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske
Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.
Διαβάστε περισσότεραMATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Διαβάστε περισσότεραVJEROJATNOST popravni kolokvij veljače 2017.
Zadatak 1. (20 bodova) (a) (4 boda) Precizno definirajte pojam σ-algebre događaja na nepraznom skupu Ω. (b) (6 bodova) Neka je (Ω, F, P) vjerojatnosni prostor i A, B F događaji. Pomoću aksioma vjerojatnosti
Διαβάστε περισσότεραMATEMATIKA 3. Integrirani preddiplomski i diplomski studij fizike i kemije, smjer nastavnički
Ljiljana Arambašić MATEMATIKA 3 Integrirani preddiplomski i diplomski studij fizike i kemije, smjer nastavnički Integrirani preddiplomski i diplomski studij fizike i tehnike, smjer nastavnički SADRŽAJ
Διαβάστε περισσότεραM086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.
M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/
Διαβάστε περισσότεραMATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότερα18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Διαβάστε περισσότεραAnalitička geometrija i linearna algebra
1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραSEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Διαβάστε περισσότεραSlučajni procesi Prvi kolokvij travnja 2015.
Zadatak Prvi kolokvij - 20. travnja 205. (a) (3 boda) Neka je (Ω,F,P) vjerojatnosni prostor, neka je G σ-podalgebra od F te neka je X slučajna varijabla na (Ω,F,P) takva da je X 0 g.s. s konačnim očekivanjem.
Διαβάστε περισσότεραSustav dvaju qubitova Teorem o nemogućnosti kloniranja Einstein Podolsky Rosenov paradoks. Spregnuta stanja. Kvantna računala (SI) 17. studenog 2017.
17. studenog 2017. Stanje qubita A prikazujemo vektorom φ A u Hilbertovom prostoru H A koristeći ortonormiranu bazu { 0 A, 1 A }. Stanje qubita B prikazujemo vektorom φ B u H B... Ako se qubitovi A i B
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότεραZadaci iz Linearne algebre (2003/4)
Zadaci iz Linearne algebre (2003/4) Srdjan Vukmirović May 22, 2004 1 Matematička indukcija 1.1 Dokazati da za sve prirodne brojeve n važi 3 / (5 n + 2 n+1 ). 1.2 Dokazati da sa svake m Z i n N postoje
Διαβάστε περισσότερα5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
Διαβάστε περισσότερα1. Linearni operatori. Fiksirajmo po volji odabran kut ϕ [0, 2π) i promotrimo preslikavanje R ϕ : V 2 (O) V 2 (O) koje svaki radijvektor rotira za ϕ.
1. Linearni operatori Fiksirajmo po volji odabran kut ϕ [0, 2π) i promotrimo preslikavanje R ϕ : V 2 (O) V 2 (O) koje svaki radijvektor rotira za ϕ. Kako je V 2 (O) vektorski prostor, prirodno je pitanje
Διαβάστε περισσότεραDeterminante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.
Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a
Διαβάστε περισσότεραLINEARNI PROSTORI
7 4 Pokažite da je matrica cos α e iβ sin α e iβ sin α cos α unitarna za sve α, β R Ispitajte ima li linearni sistem samo trivijalno rješenje 3 5 3 4 x x x 3 = 3 Nadite opće rješenje problema y = Ay, gdjejea
Διαβάστε περισσότεραELEMENTARNA MATEMATIKA 1
Na kolokviju nije dozvoljeno koristiti ni²ta osim pribora za pisanje. Zadatak 1. Ispitajte odnos skupova: C \ (A B) i (A C) (C \ B). Rje²enje: Neka je x C \ (A B). Tada imamo x C i x / A B = (A B) \ (A
Διαβάστε περισσότερα2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Διαβάστε περισσότεραDRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
Διαβάστε περισσότεραAnalitička geometrija afinog prostora
Analitička geometrija afinog prostora Linearno zavisan i linearno nezavisan skup točaka U realnom afinom prostoru A n dane točke A i (r i ), i =,,, k, k +, k + pripadaju istoj s ravnini π s, s k, ako i
Διαβάστε περισσότερα( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )
Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija
Διαβάστε περισσότεραTrigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότεραTRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Διαβάστε περισσότερα