1. uzdevums. 2. uzdevums
|
|
- Άρκτοφόνος Βασιλικός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 1. uzdevums Reaktīvā pasažieru lidmašīna 650 km lielu attālumu bez nosēšanās veica 55 minūtēs. Aprēķini lidmašīnas kustības vidējo ātrumu, izteiktu kilometros stundā (km/h)! 1. solis Vispirms pieraksta dotos lielumus, izmantojot fizikālo lielumu apzīmējumus. s = 650 km t = 55 min V vid -? 2. solis Ievēro, ka laiks dots minūtēs. Tā kā uzdevums ir saistīts ar reālu situāciju, labākai situācijas izpratnei minūtes pārvērst stundās, jo tad ir vieglāk uztvert ātrumu, kas izteikts kilometros stundā, nevis metros sekundē. 0,92 h 3 solis Formula vidējā ātruma aprēķināšanai: CD atbalsta materiāli fizikā. Mag.Phys. A.Krons 4. solis Izskaitļojot, iegūstam: V vid Atbilde: Lidmašīnas vidējais ātrums ir 707 km/h. 2. uzdevums Ceturtdaļu ceļa automobilis nobrauca ar ātrumu 60 km/h, bet atlikušo ceļu ar ātrumu 70 km/h. Aprēķini vidējo kustības ātrumu visā ceļā! Kāda formula izmantojama, lai aprēķinātu vidējo kustības ātrumu? Kas jāzina, lai atrisinātu uzdevumu? Ir jāzina laiks t 1 un t 2. Kā to var uzzināt? Izmantojan ātruma aprēķināšanas formulu Attiecīgi Ievērojam. ka Iepriekšējās izteiksmes ņemot vērā, iegūst, ka Pierakstām dotos un aprēķināmos lielumus un vajadzīgās formulas: 1
2 Atbilde: Automobiļa vidējais ātrums visā ceļā ir 67,2 km/h. 3. uzdevums Disks rotē vienmērīgi, pēc tam rotācijas frekvence pieaug tā, kā parādīts grafikā. Aprēķini diska rotācijas periodu novērojuma beigās! Cik liels tad ir diska ārmalas punktu kustības lineārais ātrums, centrtieces paātrinājums? Aprēķini, cik reižu mainās diska rotācijas leņķiskais ātrums!. Diska rādiuss ir 25 cm. Rūpīgi izlasa uzdevuma tekstu un pieraksta dotos un aprēķināmos lielumus. r = 25 cm parējie lielumi ir nolasāmi no grafika: t = 10,5 s ν 1 = 10 Hz ν 2 = 45 Hz T -? 0,25 m Ievēro, ka rotācijas periods un frekvence ir savstarpēji apgriezti lielumi:, t.i. perioda aprēķināšanai frekvence ir zināma Lineārā ātruma aprēķināšanai izmanto formulu Veic aprēķinus: V m/s 2
3 V=2πν 2 V -? Ja ir zināms ārmalas punktu lineārais ātrums, tad var aprēķināt ārmalas punktu centrtieces paātrinājumu: a c -? n -? Lai aprēķinātu, cik reižu mainījies leņķiskais ātrums, izmantosim sakarību Atbilde: Rotācijas periods novērojuma beigās ir 0,022 s, diska ārmalas punktu lineārais ātrums 70,65 m/s, bet centrtieces paātrinājums m/s 2. Novērojuma laikā diska leņķiskais ātrums palielinājās 4,5 reizes. 4. uzdevums Grafikā attēlota ķermeņa kustības ātruma atkarība no laika. Aprēķini novērojuma laikā veiktā ceļa garumu! 1. solis Lai atrisinātu šo uzdevumu, ir jāzina, ka laika ass un grafika ierobežotais laukums skaitliski ir vienāds ar atbilstošajā laikā veikto ceļu. Analizēsim šo risinājuma veidu nedaudz sīkāk. 3
4 Posmos s 1 un s 3 kustība ir vienmērīgi mainīga, tādējādi izveidojusies figūra ir trapece, bet trapeces laukumu aprēķina pēc formulas, kur a un b trapeces pamati, bet h trapeces augstums. Posmos s 2 un s 4 kustība ir vienmērīga, tādējādi figūras ir taisnstūri, kuru laukumus aprēķina kā abu malu garuma un platuma reizinājumu: S = ab. Tā kā ir 4 dažādi posmi, kopējais veiktais ceļš s = s 1 + s 2 + s 2 + s 4. 2.solis Aprēķina visus laukumus, ievērojot, ka trapeces ir taisnleņķa un trapeces augstums sakrīt ar malu uz laika ass, tātad trapeces augstums ir vienāds ar atbilstošā posma garumu. 3. solis Summējot visus iegūtos rezultātus, iegūst: s= =416 m Atbilde: Novērojuma laikā ķermeņa veiktais ceļš ir 416 m. 5. uzdevums Dots ķermeņa taisnlīnijas kustības koordinātas maiņas vienādojums SI mērvienībās: x = 4 + 0,5t 0,25 t 2. Nolasi no vienādojuma vajadzīgos lielumus un uzzīmē ātruma un paātrinājuma grafikus! 1. solis Lai varētu izpildīt uzdevumu, ir jāzina, no kā sastāv ķermeņa koordinātas vienādojums:, kur x koordināta, x 0 sākuma koordināta, V 0 sākuma ātrums, a paātrinājums. Jāievēro, ka koeficients pirms t 2 ir vienāds ar paātrinājuma pusi. 4
5 Tādējādi iegūst šādu informāciju: sākuma koordināta x 0 = 4 m, sākuma ātrums V 0 = 0,5 m/s, bet paātrinājums a = 0,5 m/s solis Dotais vienādojums ir vienmērīgi mainīgas kustības vienādojums ar negatīvu paātrinājumu. Līdz ar to ātrums mainās atbilstoši likumam V = V 0 + at, bet a = const. Tādējādi šajā gadījumā V = 0,5 0,5t, bet a = 0,5 m/s 2. Ātruma grafiks ir lineārās funkcijas grafiks, tā konstruēšanai vajadzīgi divi punkti, bet lielākai drošībai izvēlas trīs punktus. Tad konstruē grafiku: t, s V, m/s 0, solis Paātrinājuma grafika konstruēšana ir vienkāršāka, paātrinājums laikā nemainās, tāpēc uzzīmē konstantas funkcijas grafiku, kas ir paralēls 0t asij un sākas punktā 0,5. 5
6 1. uzdevums ar risinājumu (2.daļa) Gaisa balons, kura masa kopā ar grozu un virvēm 500 kg, bezvēja laikā lēnām paceļas no Zemes. Uz balonu darbojas 5025 N liels cēlējspēks. Aprēķini, ar cik lielu paātrinājumu balons attālinās no Zemes! 1. solis. Sāk ar situācijai atbilstoša zīmējuma izveidošanu: uz balonu darbojas divi spēki, kas ir pretēji vērsti cēlējspēks un smaguma spēks.(1.zīm. un 2.zīm.) 2. solis. Galvā aprēķinot smaguma spēka vērtību, konstatē, ka cēlējspēks ir mazliet lielāks par smaguma spēku, ko vajadzētu ņemt vērā, attēlojot spēka vektorus. Tādējādi kopspēks ir vērsts augšup, kas nodrošina balona pacelšanos. 3. solis. Pieraksta dotos un prasītos lielumus: 4. solis. Pābauda, vai visi dotie lielumi ir pamatmērvienībās. Šajā situācijā ir, tādējādi pārveidojumi nav nepieciešami. 5. solis. Izvēlas X asi (3.zīm.); tā kā kustība notiek tikai vienā virzienā un arī spēki darbojas pa vienu taisni, tad ir pietiekami izvēlēties vienu asi. Raksta 2. Ņūtona likumu : 6. solis.pārraksta 2. Ņūtona likumu izmantojot projekcijas uz X ass F c - F sm = ma:, no kurienes izsakām paātrinājumu: 7. solis. Ievērojot, ka F sm = mg, iegūstam: 8. solis. Aizpilda uzdevuma risināšanai paredzēto laukumu: 6
7 9. solis. Ievieto atbilstošās skaitliskās vērtības un veic aprēķinus: 10. solis. Pieraksta atbildi. Atbilde:Gaisa balons attālinās no Zemes ar paātrinājumu 0,05 m/s uzdevums Pa slīpu plakni bez sākuma ātruma lejup ripo viegli ratiņi, kuru masa 1,2 kg. Tabulā apkopoti dati par ratiņu ātrumu novērojuma laikā. Aprēķini, cik liels rezultējošais spēks darbojas uz ratiņiem! t, s 0,5 1,0 1,5 2,0 2,5 3,0 V, m/s 0,25 0,50 0,75 1,00 1,25 1,50 7
8 1. solis. Tā kā ratiņi ripo pa plakni uz leju, secina, ka rezultējošais spēks arī ir vērsts gar slīpo plakni kustības virzienā un nav jāveido situāciju raksturojošs zīmējums. Spriedumu veido līdzīgi, kā risinot uzdevumus par horizontālā virzienā kustībā esošiem objektiem. 2. solis. To ievērojot, var rakstīt 2. Ņūtona likumu: F=ma. 3. solis. Lai aprēķinātu paātrinājumu, ņem jebkuras divas ātruma vērtības un atbilstošās laika vērtības: veicot aprēķinus, iegūst 4. solis. Izmantojot iegūto paātrinājuma vērtību, var aprēķināt uz ratiņiem darbojošos spēku kopspēku jeb rezultējošo spēku: F = 1,2 0,5 = 0,6 N 5. solis. Uzdevuma pieraksts: m = 1,2 kg V 1 = 0,5 m/s V 2 = 0,25 m/s t 1 = 0,5 s t 2 = 0,25 s F -? F = 1,2 0,5 = 0,6 N Atbilde. Ratiņi kustas ar paātrinājumu 0,5 m/s 2, uz ratiņiem darbojas 0,6 N liels rezultējošais spēks. 3. uzdevums Stieni, kura masa ir 4 kg no miera stāvokļa, velk pa horizontālu virsmu, horizontālā virzienā pieliekot 16,66 N lielu spēku. Nosaki slīdes berzes koeficientu, ja stieņa kustība ir vienmērīgi paātrināta, un 3 sekunžu laikā veiktais ceļš ir 81 cm! m = 4 kg F V = 16,66 N t = 3 s s = 81 cm? Pārveido pārvietojumu pamatmērvienībās: 0,81 m Pēc zīmējuma uzraksta 2. Ņūtona likumu un tā projekcijas uz asīm: x: ; y: F sm = mg; Izskaitļo: 8
9 F b = F ma un F b = m F r ; Ievērojot F sm = mg, iegūst: Nosaka stieņa paātrinājumu: ; Iegūst galīgo slīdes berzes koeficienta sakarību: Atbilde. Slīdes berzes koeficients starp stieni un virsmu ir 0,4. 4. uzdevums Atsperi ar 2700 N lielu spēku saspiež no sākotnējā garuma 80 mm līdz 42,5 mm garumam. Aprēķini atsperes absolūto un relatīvo pagarinājumu un atsperes stinguma koeficientu! F = 2700 N l 0 = 80 mm l 1 = 42,5 mm? e? k? Pamatmērvienībās: 0,08 m 0,0425 m Atrod atbilstošās sakarības: =l 1 l 0 Veic atbilstošos aprēķinus: = 0,0425 0,08 = 0,0375 m Atbilde. Atsperes absolūtais pagarinājums ir 0,0375 m; relatīvais pagarinājums apmēram 0,47, bet stinguma koeficients 72 kn/m. 5. uzdevums Māsa ar mazo brāli spēlējās rotaļu laukumā. Netālu atradās sviras šūpoles un bērni nolēma pašūpoties. Mazais brālis, kura masa 15 kg, ērti iekārtojās šūpoļu vienā galā. Šūpoļu kopējais garums ir 4 m un atbalsta punkts atrodas vidū. Māsas masa ir 30 kg. Kur un cik tālu no šūpoļu atbalsta centra jāapsēžas māsai, lai šūpoles atrastos līdzsvarā un šūpoties būtu viegli? Kas notiktu, ja māsa apsēstos šūpoļu otrajā galā? 9
10 Lai noteiktu prasītos lielumus, jāzina spēka momenta jēdziens un līdzsvara nosacījumi. No sviras līdzsvara likuma izriet, ka ķermenis atrodas līdzsvarā tad, ja visu spēku momentu summa pret rotācijas asi ir nulle. Lai šūpoles būtu līdzsvarā un arī māsa varētu piedalīties šūpošanās procesā, viņai būtu jāzina sviras līdzsvara nosacījums un jāmēģina apsēsties tuvāk atbalsta punktam. Jāizveido zīmējums, kurā izmanto šādus apzīmējumus: F 1 brāļa smaguma spēks, l 1 brāļa attālums no atbalsta punkta, F 2 māsas smaguma spēks, l 2 māsas attālums no atbalsta punkta. Pieraksta dotos un aprēķināmos lielumus. m 1 = 15 kg m 2 = 30 kg g = 10 m/s 2 l = 4 m l 2-? Tā kā šūpoles ir svira ar vienāda garuma pleciem, tad brālītis tika nosēdināts attālumā, kas vienāds ar pusi šūpoļu garuma: = 2 m. Brālīša smaguma spēks F 1 = m 1g = = 150 N. Māsas smaguma spēks F 2 = m 2g = = 300 N. Lai sistēma būtu līdzsvarā, jābūt spēkā līdzsvara nosacījumam F 1l l = F 2l 2. Tādējādi māsas atrašanās vietu no atbalsta punkta iespējams noteikt šādi: = 1 m. Atbilde. Māsai būtu jāapsēžas 1 m attālumā no atbalsta punkta. Ja māsa apsēdīsies šūpoļu galā, tad viņas radītais spēka moments būs lielāks un brālis is tiks pacelts maksimālajā augstumā. 10
Rīgas Tehniskā universitāte. Inženiermatemātikas katedra. Uzdevumu risinājumu paraugi. 4. nodarbība
Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi 4 nodabība piemēs pēķināt vektoa a gaumu un viziena kosinusus, ja a = 5 i 6 j + 5k Vektoa a koodinātas i dotas: a 5 ; a =
Διαβάστε περισσότεραLielumus, kurus nosaka tikai tā skaitliskā vērtība, sauc par skalāriem lielumiem.
1. Vektori Skalāri un vektoriāli lielumi Lai raksturotu kādu objektu vai procesu, tā īpašības parasti apraksta, izmantojot dažādus skaitliskus raksturlielumus. Piemēram, laiks, kas nepieciešams, lai izlasītu
Διαβάστε περισσότερα10. klase 1. uzdevuma risinājums A. Dēļa garums l 4,5 m. sin = h/l = 2,25/4,5 = 0,5 = (2 punkti) W k. s = 2,25 m.
0. klase. uzdevuma risinājums A. Dēļa garums l 4,5 m. sin = h/l =,5/4,5 = 0,5 = 0 0. ( punkti) B. v o = 0 m/s. Tādēļ s = at / un a = s/t Ja izvēlas t = s, veiktais ceļš s = 4m. a = 4/ = m/s. ( punkti)
Διαβάστε περισσότεραFIZ 2.un 3.daļas standartizācija 2012.gads
FIZ.un 3.daļas standartizācija 0.gads Uzd. Uzdevums Punkti Kritēriji Uzraksta impulsu attiecību: m Lieto impulsa definīcijas formulu. Uzraksta attiecību. Pareizi izsaka meklējamo kr vkr lielumu. Iegūst
Διαβάστε περισσότεραTēraudbetona konstrukcijas
Tēraudbetona konstrukcijas tēraudbetona kolonnu projektēšana pēc EN 1994-1-1 lektors: Gatis Vilks, SIA «BALTIC INTERNATIONAL CONSTRUCTION PARTNERSHIP» Saturs 1. Vispārīga informācija par kompozītām kolonnām
Διαβάστε περισσότεραLatvijas Skolēnu 62. fizikas olimpiādes III posms
Latvijas Skolēnu 62 fizikas olimpiādes III posms Vērtēšanas kritēriji Teorētiskā kārta 212 gada 12 aprīlī 9 klase Uzdevums Caurplūdums, jeb ūdens tilpums, kas laika vienībā iztek caur šķērsgriezumu S ir
Διαβάστε περισσότεραFIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI
Mikroklimats FIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI P 1 GALVENIE MIKROKLIMATA RĀDĪTĀJI gaisa temperatūra gaisa g relatīvais mitrums
Διαβάστε περισσότεραESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 2009/0196/1DP/
ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 009/0196/1DP/1...1.5/09/IPIA/VIAA/001 ESF projekts Pedagogu konkurētspējas veicināšana izglītības
Διαβάστε περισσότεραĶermeņa inerce un masa. a = 0, ja F rez = 0, kur F visu uz ķermeni darbojošos spēku vektoriālā summa
2.1. Ķereņa inerce un asa Jebkurš ķerenis saglabā iera stāvokli vai turpina vienērīgu taisnlīnijas kustību ar neainīgu ātruu (v = const) tikēr, kaēr uz to neiedarbojas citi ķereņi vai ta pieliktie ārējie
Διαβάστε περισσότεραMehānikas fizikālie pamati
1.5. Viļņi 1.5.1. Viļņu veidošanās Cietā vielā, šķidrumā, gāzē vai plazmā, tātad ikvienā vielā starp daļiņām pastāv mijiedarbība. Ja svārstošo ķermeni (svārstību avotu) ievieto vidē (pieņemsim, ka vide
Διαβάστε περισσότεραM.Jansone, J.Blūms Uzdevumi fizikā sagatavošanas kursiem
DINAMIKA. Dinmik prkst pātrinājum ršnās cēloħus un plūko tā lielum un virzien noteikšns pħēmienus. Spēks (N) ir vektoriāls lielums; ts ir ėermeħu vi to dĝiħu mijiedrbībs mērs. Inerce ir ėermeħu īpšīb sglbāt
Διαβάστε περισσότεραLai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
5.TEMATS FUNKCIJAS Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M UP_5_P Figūras laukuma atkarība no figūras formas Skolēna darba lapa M UP_5_P Funkcijas kā reālu procesu modeļi
Διαβάστε περισσότεραRekurentās virknes. Aritmētiskā progresija. Pieņemsim, ka q ir fiksēts skaitlis, turklāt q 0. Virkni (b n ) n 1, kas visiem n 1 apmierina vienādību
Rekurentās virknes Rekursija ir metode, kā kaut ko definēt visbiežāk virkni), izmantojot jau definētas vērtības. Vienkāršākais šādu sakarību piemērs ir aritmētiskā un ǧeometriskā progresija, kuras mēdz
Διαβάστε περισσότεραLATVIJAS RAJONU 33. OLIMPIĀDE. 4. klase
Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5.-5.).kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 33. OLIMPIĀDE 4. klase 33.. Ievietot
Διαβάστε περισσότεραGRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI
GRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI Kursa Elektrotehnika un elektronika programmā paredzēta patstāvīga grafoanalītisko uzdevumu izpilde. Šajā krājumā ievietoti
Διαβάστε περισσότεραTemperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma
Temperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma Gaisa vertikāla pārvietošanās Zemes atmosfērā nosaka daudzus procesus, kā piemēram, mākoħu veidošanos, nokrišħus un atmosfēras
Διαβάστε περισσότεραGATAVOSIMIES CENTRALIZĒTAJAM EKSĀMENAM MATEMĀTIKĀ
Profesionālās vidējās izglītības programmu Lauksaimniecība un Lauksaimniecības tehnika īstenošanas kvalitātes uzlabošana 1.2.1.1.3. Atbalsts sākotnējās profesionālās izglītības programmu īstenošanas kvalitātes
Διαβάστε περισσότεραKomandu olimpiāde Atvērtā Kopa. 8. klases uzdevumu atrisinājumi
Komandu olimpiāde Atvērtā Kopa 8. klases uzdevumu atrisinājumi 1. ΔBPC ir vienādmalu trijstūris, tādēļ visi tā leņķi ir 60. ABC = 90 (ABCDkvadrāts), tādēļ ABP = 90 - PBC = 30. Pēc dotā BP = BC un, tā kā
Διαβάστε περισσότεραLaboratorijas darbu apraksts (I semestris)
Laboratorijas darbu apraksts (I semestris) un mērījumu rezultātu matemātiskās apstrādes pamati 1. Fizikālo lielumu mērīšana Lai kvantitatīvi raksturotu kādu fizikālu lielumu X, to salīdzina ar tādas pašas
Διαβάστε περισσότεραTaisnzobu cilindrisko zobratu pārvada sintēze
LATVIJAS LAUKSAIMNIECĪBAS UNIVERSITĀTE Tehniskā fakultāte Mehānikas institūts J. SvētiĦš, Ē. Kronbergs Taisnzobu cilindrisko zobratu pārvada sintēze Jelgava 009 Ievads Vienkāršs zobratu pārvads ir trīslocekĝu
Διαβάστε περισσότεραRīgas Tehniskā universitāte Materiālu un Konstrukciju institūts. Uzdevums: 3D- sijas elements Beam 189. Programma: ANSYS 9
Rīgas Tehniskā universitāte Materiālu un Konstrukciju institūts Uzdevums: 3D- sijas elements Beam 189 Programma: ANSYS 9 Autori: E. Skuķis 1 ANSYS elements: Beam 189, 3-D Quadratic Finite Strain Beam Beam
Διαβάστε περισσότεραKontroldarba varianti. (II semestris)
Kontroldarba varianti (II semestris) Variants Nr.... attēlā redzami divu bezgalīgi garu taisnu vadu šķērsgriezumi, pa kuriem plūst strāva. Attālums AB starp vadiem ir 0 cm, I = 0 A, I = 0 A. Aprēķināt
Διαβάστε περισσότεραLai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
1.TEMATS EKSPONENTVIENĀDOJUMI UN NEVIENĀDĪBAS Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M_12_SP_01_P1 Eksponentvienādojumu atrisināšana Skolēna darba lapa M_12_SP_01_P2 Eksponentvienādojumu
Διαβάστε περισσότεραBŪVJU TEORIJAS PAMATI
BŪVJU TEORIJAS PAMATI Pamatjēdzieni: (atkārtojumam, turpmākam plānam)) nedeformējami ķermeņi, to mehānika (teorētiskā mehānika), cieti deformējami ķermeņi, to mehānika: pieņēmumi (hipotētiski) - materiāla
Διαβάστε περισσότεραCompress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
Ι 55 C 35 C A A B C D E F G 47 17 21 18 19 19 18 db kw kw db 2015 811/2013 Ι A A B C D E F G 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst ES regulu 811/2013,
Διαβάστε περισσότεραĪsi atrisinājumi Jā, piemēram, 1, 1, 1, 1, 1, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi Skat., piemēram, 1. zīm.
Īsi atrisinājumi 5.. Jā, piemēram,,,,,, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi. 5.. Skat., piemēram,. zīm. 6 55 3 5 35. zīm. 4. zīm. 33 5.3. tbilde: piemēram, 4835. Ievērosim, ka 4 dalās
Διαβάστε περισσότερα5. un 6.lekcija. diferenciālvienādojumiem Emdena - Faulera tipa vienādojumi. ir atkarīgas tikai no to attāluma r līdz lodes centram.
Parasto diferenciālvienādojumu nelineāras robežproblēmas 5. un 6.lekcija 1. Robežproblēmas diferenciālvienādojumiem ar neintegrējamām singularitātēm 1.1. Emdena - Faulera tipa vienādojumi Piemērs 5.1.
Διαβάστε περισσότεραLogatherm WPS 10K A ++ A + A B C D E F G A B C D E F G. kw kw /2013
51 d 11 11 10 kw kw kw d 2015 811/2013 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst S regulu 811/2013, 812/2013, 813/2013 un 814/2013 prasībām, ar ko papildina
Διαβάστε περισσότεραP A atgrūšanās spēks. P A = P P r P S. P P pievilkšanās spēks
3.2.2. SAITES STARP ATOMIEM SAIŠU VISPĀRĪGS RAKSTUROJUMS Lai izprastu materiālu fizikālo īpašību būtību jābūt priekšstatam par spēkiem, kas darbojas starp atomiem. Aplūkosim mijiedarbību starp diviem izolētiem
Διαβάστε περισσότερα1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G
1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G 3. Īss raksturojums Imunoglobulīnu G veido 2 vieglās κ vai λ ķēdes un 2 smagās γ ķēdes. IgG iedalās 4 subklasēs: IgG1, IgG2, IgG3,
Διαβάστε περισσότερα3.2. Līdzstrāva Strāvas stiprums un blīvums
3.. Līdzstrāva Šajā nodaļā aplūkosim elektrisko strāvu raksturojošos pamatlielumus un pamatlikumus. Nodaļas sākumā formulēsim šos likumus, balstoties uz elektriskās strāvas parādības novērojumiem. Nodaļas
Διαβάστε περισσότεραATRISINĀJUMI LATVIJAS REPUBLIKAS 32. OLIMPIĀDE
Materiāls ņemts no grāmatas: Andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas Republikas 6.-5. matemātikas olimpiādes" LATVIJAS REPUBLIKAS. OLIMPIĀDE ATRISINĀJUMI.. Pirmā apskatāmā skaitļa ciparu
Διαβάστε περισσότεραGaismas difrakcija šaurā spraugā B C
6..5. Gaismas difrakcija šaurā spraugā Ja plakans gaismas vilnis (paralēlu staru kūlis) krīt uz šauru bezgalīgi garu spraugu, un krītošās gaismas viļņa virsma paralēla spraugas plaknei, tad difrakciju
Διαβάστε περισσότεραBioloģisko materiālu un audu mehāniskās īpašības. PhD J. Lanka
Bioloģisko materiālu un audu mehāniskās īpašības PhD J. Lanka Mehāniskās slodzes veidi: a stiepe, b spiede, c liece, d - bīde Traumatisms skriešanā 1 gada laikā iegūto traumu skaits (dažādu autoru dati):
Διαβάστε περισσότεραTROKSNIS UN VIBRĀCIJA
TROKSNIS UN VIBRĀCIJA Kas ir skaņa? a? Vienkārša skaņas definīcija: skaņa ir ar dzirdes orgāniem uztveramās gaisa vides svārstības Fizikā: skaņa ir elastiskas vides (šķidras, cietas, gāzveida) svārstības,
Διαβάστε περισσότεραAgnis Andžāns, Julita Kluša /95. m.g. matemātikas olimpiāžu uzdevumi ar atrisinājumiem
Agnis Andžāns, Julita Kluša 994./95. m.g. matemātikas olimpiāžu uzdevumi ar atrisinājumiem Rīga, 997 Anotācija Šajā izstrādnē apkopoti 994./95. mācību gadā notikušo Latvijas mēroga matemātikas sacensību
Διαβάστε περισσότερα6. TEMATS MEHĀNISKĀS SVĀRSTĪBAS UN VIĻŅI. Temata apraksts. Skolēnam sasniedzamo rezultātu ceļvedis. Uzdevumu piemēri
6. TEMATS MEHĀNISKĀS SVĀRSTĪBAS UN VIĻŅI Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri F_10_SP_06_P1 Uzdevums grupai Skolēna darba lapa F_10_UP_06_P1 Seismogrāfa darbības shēma
Διαβάστε περισσότεραFizikas valsts 66. olimpiāde Otrā posma uzdevumi 12. klasei
Fizikas valsts 66. olimpiāde Otrā posma uzdevumi 12. klasei 12-1 Pseido hologramma Ievēro mērvienības, kādās jāizsaka atbildes. Dažus uzdevuma apakšpunktus var risināt neatkarīgi no pārējiem. Mūsdienās
Διαβάστε περισσότεραLabojums MOVITRAC LTE-B * _1114*
Dzinēju tehnika \ Dzinēju automatizācija \ Sistēmas integrācija \ Pakalpojumi *135347_1114* Labojums SEW-EURODRIVE GmbH & Co KG P.O. Box 303 7664 Bruchsal/Germany Phone +49 751 75-0 Fax +49 751-1970 sew@sew-eurodrive.com
Διαβάστε περισσότερα12. klase. Fizikas 64. valsts olimpiādes III posms gada 10. aprīlī
Fizikas 64. valsts olimpiādes III posms 2014. gada 10. aprīlī 12. klase Jums tiek piedāvāti trīs uzdevumi. Par katru uzdevumu maksimāli iespējams iegūt 10 punktus. Katra uzdevuma risinājumu vēlams veikt
Διαβάστε περισσότεραLai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
3.TEMTS PIRMĪD Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri M_12_SP_03_P1 Dažādas piramīdas Skolēna darba lapa M_12_SP_03_P2 Dažādas piramīdas Skolēna darba lapa M_12_SP_03_P2
Διαβάστε περισσότεραKā radās Saules sistēma?
9. VISUMS UN DAĻIŅAS Kā radās Saules sistēma? Planētas un zvaigznes Galaktikas un Visums Visuma evolūcija. Habla likums Zvaigžņu evolūcija Visuma apgūšanas perspektīvas Lielu ātrumu un enerģiju fizika
Διαβάστε περισσότεραLai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
6. MEHĀNISKĀS SVĀRSTĪBAS UN VIĻŅI Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri Stundas piemērs F_10_SP_06_P1 Uzdevums grupai Skolēna darba lapa F_10_UP_06_P1 Seismogrāfa darbības
Διαβάστε περισσότεραLai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
7.TEMATS Trigonometriskie vienādojumi un nevienādības Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri Stundas piemērs M SP_07_0_P Trigonometrisko izteiksmju pārveidojumi Skolēna
Διαβάστε περισσότεραAtlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī
Atlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī Atrisināt dotos sešus uzdevumus, laiks 3 stundas. Uzdevumu tēmas: 1) tests vispārīgajā ķīmijā; 2) ķīmisko reakciju kinētika;
Διαβάστε περισσότερα4. TEMATS ELEKTRISKIE LĀDIŅI UN ELEKTRISKAIS LAUKS. Temata apraksts. Skolēnam sasniedzamo rezultātu ceļvedis. Uzdevumu piemēri
4. TEMATS ELEKTRISKIE LĀDIŅI UN ELEKTRISKAIS LAUKS Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri F_11_SP_04_01_P1 Elektriskais lādiņš un lādētu ķermeņu mijiedarbība Skolēna darba
Διαβάστε περισσότεραfizikā Mācību satura un valodas apguve Mācību līdzeklis skolēnam Ata Krūmiņa Raisa Stunžāne
7.-9. Mācību satura un valodas apguve Ata Krūmiņa Raisa Stunžāne fizikā Mācību līdzeklis skolēnam Projekts «Atbalsts valsts valodas apguvei un bilingvālajai izglītībai» Nr. 2008/0003/1DP/1.2.1.2.1/08/IPIA/VIAA/002
Διαβάστε περισσότεραRīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts
Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts www.videszinatne.lv Saules enerģijas izmantošanas iespējas Latvijā / Seminārs "Atjaunojamo
Διαβάστε περισσότερα4. APGAISMOJUMS UN ATTĒLI
4. APGAISMJUMS UN ATTĒLI ptisko mikroskopu vēsture un nākotne Gaismas avota stiprums. Gaismas plūsma Apgaismojums Elektriskie gaismas avoti. Apgaismojums darba vietā Ēnas. Aptumsumi Attēla veidošanās.
Διαβάστε περισσότερα2. PLAKANU STIEŅU SISTĒMU STRUKTŪRAS ANALĪZE
Ekspluatācijas gaitā jebkura reāla būve ārējo iedarbību rezultātā kaut nedaudz maina sākotnējo formu un izmērus. Sistēmas, kurās to elementu savstarpējā izvietojuma un izmēru maiņa iespējama tikai sistēmas
Διαβάστε περισσότερα1. MAIŅSTRĀVA. Fiz12_01.indd 5 07/08/ :13:03
1. MAIŅSRĀVA Ķeguma spēkstacija Maiņstrāvas iegūšana Maiņstrāvas raksturlielumumomentānās vērtības Maiņstrāvas raksturlielumu efektīvās vērtības Enerģijas pārvērtības maiņstrāvas ķēdē Aktīvā pretestība
Διαβάστε περισσότεραElektromagnētiskās svārstības un viļņi
Elekromagnēiskās svārsības un viļņi Par brīvām svārsībām sauc svārsības, kas norisinās svārsību sisēmā, ja ā nav pakļaua periodiskai ārējai iedarbībai. Tāad svārsības noiek ikai uz ās enerģijas rēķina,
Διαβάστε περισσότεραVispārīgā bioloģija ; Dzīvības ķīmija Biologi-2017 Laboratorijas darbs 2
Vispārīgā bioloģija ; Dzīvības ķīmija Biologi-2017 Laboratorijas darbs 2 Spektrofotometrija. Gaisma, gaismas spektrs, spektrofotometrijas pielietojums bioloģijā, spektrometrijā lietotās iekārtas (FEK,
Διαβάστε περισσότεραFizikas 63. valsts olimpiādes. III posms
Fizikas 63. valsts olimpiādes III posms 2013. gada 14. martā Fizikas 63. valsts olimpiādes III posms Uzdevumi Eksperimentālā kārta 2013. gada 14. martā 9. klase Jums tiek piedāvāti divi uzdevumi: eksperiments
Διαβάστε περισσότεραSKICE. VĪTNE SATURS. Ievads Tēmas mērķi Skice Skices izpildīšanas secība Mērinstrumenti un detaļu mērīšana...
1 SKICE. VĪTNE SATURS Ievads... 2 Tēmas mērķi... 2 1. Skice...2 1.1. Skices izpildīšanas secība...2 1.2. Mērinstrumenti un detaļu mērīšana...5 2. Vītne...7 2.1. Vītņu veidi un to apzīmējumi...10 2.1.1.
Διαβάστε περισσότεραLaboratorijas darbu apraksts (II semestris)
Laboratorijas darbu apraksts (II semestris).5. Zemes magnētiskā lauka horizontālās komponentes noteikšana ar tangensgalvanometru. Katrā zemeslodes vietā Zemes magnētiskā lauka indukcijas vektors attiecībā
Διαβάστε περισσότεραMATEMĀTIKA klase MĀCĪBU PRIEKŠMETA PROGRAMMA
MATEMĀTIKA 7. 9. klase MĀCĪBU PRIEKŠMETA PROGRAMMA Mācību priekšmeta programmu matemātikā veidoja Programmu izstrādāja Aira Kumerdanka, Indra Muceniece, Inga Riemere, Jānis Vilciņš, Aivars Ančupāns, Jeļena
Διαβάστε περισσότεραTIEŠĀ UN NETIEŠĀ GRADIENTA ANALĪZE
TIEŠĀ UN NETIEŠĀ GRADIENTA ANALĪZE Botānikas un ekoloăijas katedra Iluta Dauškane Vides gradients Tiešā un netiešā gradienta analīze Ordinācijas pamatideja Ordinācijas metodes Gradientu analīze Sugu skaits
Διαβάστε περισσότεραInterferometri
6..6. Interferometri Interferometri ir optiskie aparāti, ar kuriem mēra dažādus fizikālus lielumus, izmantojot gaismas interferences parādības. Plānās kārtiņās koherentie interferējošie stari atrodas relatīvi
Διαβάστε περισσότεραAtrisinājumi Latvijas 64. matemātikas olimpiāde 3. posms x 1. risinājums. Pārveidojam doto izteiksmi, atdalot pilno kvadrātu:
trisiājumi Latvijas 6 matemātikas olimpiāde posms 9 Kādu mazāko vērtību var pieņemt izteiksme 0, ja > 0? risiājums Pārveidojam doto izteiksmi, atdalot pilo kvadrātu: 0 ( ) 0 0 0 0 0 Tā kā kvadrāts viemēr
Διαβάστε περισσότεραSkolēna darba lapa. Skolēna darba lapa
1. ELEKTROMAGNĒTISKĀS SVĀRSTĪBAS UN V IĻŅI Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri F_12_SP_01_P1 Radioviļņu izmantošana Skolēna darba lapa F_12_UP_01_P2 Elektromagnētisko
Διαβάστε περισσότεραLielais dānis Nilss Bors
Lielais dānis Nilss Bors No kā sastāv atoms? Atoma kodola atklāšana Atoma planetārais modelis. Bora teorija Orbitālais kvantu skaitlis Magnētiskais kvantu skaitlis. Magnētiskā mijiedarbība atomā Elektrona
Διαβάστε περισσότεραLai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
6. VIRKNES Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri Stundas piemērs M_10_UP_06_P1 Iracionāla skaitļa π aptuvenās vērtības noteikšana Skolēna darba lapa M_10_LD_06 Virknes
Διαβάστε περισσότεραLU A.Liepas Neklātienes matemātikas skola /2011.m.g. sagatavošanās olimpiāde matemātikā
2010.26.11. LU A.Liepas Neklātienes matemātikas skola 2010./2011.m.g. sagatavošanās olimpiāde matemātikā Katra metodiskā apvienība pati nolemj, vai un kad tā rīkos vai nerīkos šādu olimpiādi un, ja rīkos,
Διαβάστε περισσότερα6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMU ATBILDES 8.-9.klases uzdevumi
6. LATVIJAS UNIVERSITĀTES ĶĪMIJAS FAKULTĀTES JAUNO ĶĪMIĶU KONKURSA 2.KĀRTAS UZDEVUMU ATBILDES 8.-9.klases uzdevumi 1. uzdevums Vai tu to vari? Gāzes Ķīmisko reakciju vienādojumi Ūdeņradis, oglekļa dioksīds,
Διαβάστε περισσότεραATTĒLOJUMI UN FUNKCIJAS. Kopas parasti tiek uzskatītas par fiksētiem, statiskiem objektiem.
2005, Pēteris Daugulis 1 TTĒLOJUMI UN FUNKCIJS Kopas parasti tiek uzskatītas par iksētiem, statiskiem objektiem Lai atļautu kopu un to elementu pārveidojumus, ievieš attēlojuma jēdzienu ttēlojums ir kāda
Διαβάστε περισσότερα6. Pasaules uzbūve. Jēdzieni, kurus apgūsi
6. Pasaules uzbūve Jēdzieni, kurus apgūsi Habla likums Lielā Sprādziena modelis Reliktstarojums Elementārdaļiņas Fermioni Bozoni Antiviela Standartmodelis Hadroni Kvarki Leptoni Protozvaigzne Baltie punduri
Διαβάστε περισσότεραElektromagnētisms (elektromagnētiskās indukcijas parādības)
atvijas Uiversitāte Fizikas u matemātikas fakutāte Fizikas oaļa Papiiājums ekciju kospektam kursam vispārīgajā fizikā ektromagētisms (eektromagētiskās iukcijas parāības) Asoc prof Aris Muižieks Noformējums
Διαβάστε περισσότεραRīgas Tehniskās universitātes Būvniecības fakultāte. Metāla konstrukcijas
Rīgas Tehniskās universitātes Būvniecības fakultāte Metāla konstrukcijas Studiju darbs Ēkas starpstāvu pārseguma nesošo tērauda konstrukciju projekts Izpildīja: Kristaps Kuzņecovs Stud. apl. Nr. 081RBC049
Διαβάστε περισσότεραKlasificēšanas kritēriji, ņemot vērā fizikāli ķīmiskās īpašības
, ņemot vērā fizikāli ķīmiskās īpašības Mg.sc.ing. Līga Rubene VSIA "Latvijas Vides, ģeoloģijas un meteoroloģijas centrs" Informācijas analīzes daļa Ķīmisko vielu un bīstamo atkritumu nodaļa 20.04.2017.
Διαβάστε περισσότεραIevads Optometrija ir neatkarīga redzes aprūpes profesija primārās veselības aprūpes sfērā. Šī profesija vairumā attīstīto valstu tiek regulēta ar
Ievads Optometrija ir neatkarīga redzes aprūpes profesija primārās veselības aprūpes sfērā. Šī profesija vairumā attīstīto valstu tiek regulēta ar likumu (tās piekopšanai nepieciešama licence un reģistrēšanās).
Διαβάστε περισσότεραUzlabotas litija tehnoloģijas izstrāde plazmas attīrīšanas iekārtu (divertoru) aktīvo virsmu aizsardzībai
EIROPAS REĢIONĀLĀS ATTĪSTĪBAS FONDS Uzlabotas litija tehnoloģijas izstrāde plazmas attīrīšanas iekārtu (divertoru) aktīvo virsmu aizsardzībai Projekts Nr. 2DP/2.1.1.0/10/APIA/VIAA/176 ( Progresa ziņojums
Διαβάστε περισσότερα6.2. Gaismas difrakcija Gaismas difrakcijas veidi
6.. Gaismas difrakcija Ļoti pierasts un katram pilnīgi saprotams liekas priekšstats par gaismas taisnvirziena izplatīšanos homogēnā vidē. Tomēr, daudzos gadījumos gaismas intensitātes sadalījums uz robežas,
Διαβάστε περισσότεραAndrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA. Eksperimentāla mācību grāmata. Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija
Andrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA Eksperimentāla mācību grāmata Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija Rīga Zinātne 1996 UDK p 54(07) Ra 827 Recenzenti: Dr. chem. J. SKRĪVELIS
Διαβάστε περισσότεραSaules starojuma enerģijas izmantošana
Saules starojuma enerģijas izmantošana Galvenais enerģijas avots Saules sistēmā, arī uz Zemes, ir Saules elektromagnētiskais starojums. Saule ir gāzu-plazmas ķermenis, tās iekšienē notiek kodolu sintēzes
Διαβάστε περισσότεραINSTRUKCIJA ERNEST BLUETOOTH IMMOBILIZER
APRAKSTS: INSTRUKCIJA ERNEST BLUETOOTH IMMOBILIZER BLUETOOTH IMOBILAIZERS ir transporta līdzekļa papildus drošibas sistēma. IERĪCES DARBĪBA 1. Ja iekārta netiek aktivizēta 1 minūtes laikā, dzinējs izslēdzas.
Διαβάστε περισσότεραMAZĀ UNIVERSITĀTE. 5. nodarbība, gada 31. marts. Mazā matemātikas universitāte
MAZĀ MATEMĀTIKAS UNIVERSITĀTE Mazā matemātikas universitāte 5. nodarbība, 2012. gada 31. marts Statistiskais eksperiments varbūtību teorijā. Kā vēl var aprēėināt notikumu varbūtības? Mazā matemātikas universitāte
Διαβάστε περισσότεραLATVIJAS RAJONU 39. OLIMPIĀDE
Materiāls ņemts o grāmatas:adžās Agis, Bērziņa Aa, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (-) kārtas (rajou) uzdevumi u atrisiājumi" LATVIJAS RAJONU 9 OLIMPIĀDE ATRISINĀJUMI 9 Ir jāaprēķia 00-ais
Διαβάστε περισσότεραATTIECĪBAS. Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme).
004, Pēteris Daugulis ATTIECĪBAS Attiecības - īpašība, kas piemīt vai nepiemīt sakārtotai vienas vai vairāku kopu elementu virknei (var lietot arī terminu attieksme). Bināra attiecība - īpašība, kas piemīt
Διαβάστε περισσότερα2. ELEKTROMAGNĒTISKIE
2. LKTROMAGNĒTISKI VIĻŅI Radio izgudrošana Svārstību kontūrs Nerimstošas elektriskās svārstības lektromagnētisko viļņu iegūšana lektromagnētiskais šķērsvilnis lektromagnētisko viļņu ātrums lektromagnētisko
Διαβάστε περισσότεραLATVIJAS RAJONU 43. OLIMPIĀDE
Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5-5) kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 43 OLIMPIĀDE ATRISINĀJUMI 43 Pārlokot
Διαβάστε περισσότεραPADOMES 1985.gada 20.decembra REGULA (EEK) Nr. 3821/85 par reģistrācijas kontrolierīcēm, ko izmanto autotransportā
PADOMES 1985.gada 20.decembra REGULA (EEK) Nr. 3821/85 par reģistrācijas kontrolierīcēm, ko izmanto autotransportā EIROPAS KOPIENU PADOME, ņemot vērā Eiropas Ekonomikas kopienas dibināšanas līgumu un jo
Διαβάστε περισσότεραBezpilota lidaparātu izmantošana kartogrāfijā Latvijas Universitātes 75. zinātniskā konference
Bezpilota lidaparātu izmantošana kartogrāfijā Latvijas Universitātes 75. zinātniskā konference Ģeomātika 03.02.2017 LĢIA Fotogrammetrijas daļas vadītājs Pēteris Pētersons Motivācija Izpētīt bezpilota lidaparāta
Διαβάστε περισσότεραLATVIJAS REPUBLIKAS 45. OLIMPIĀDE
Materiāls ņemts no grāmatas: Andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas Republikas 6.-. matemātikas olimpiādes" LATVIJAS REPUBLIKAS 4. OLIMPIĀDE ATRISINĀJUMI 4.. Dotās nevienādības > abas puses
Διαβάστε περισσότεραCeļu un ielu apgaismes sistēmu ierīkošanas pamatjautājumi un standartizācija. RTU EEF EI EK Dr.sc.ing. Kristīna Bērziņa
Ceļu un ielu apgaismes sistēmu ierīkošanas pamatjautājumi un standartizācija RTU EEF EI EK Dr.sc.ing. Kristīna Bērziņa Kristina.Berzina@rtu.lv 2016 LVS EN 13201 IELU APGAISMOJUMS ir: stacionāro apgaismes
Διαβάστε περισσότεραLATVIJAS 48. NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE (2007)
LATVIJAS 48. NACIONĀLĀ ĶĪMIJAS OLIMPIĀDE (007) Rajona (pilsētas) posma olimpiādes uzdevumi 9. klasei Atrisināt tālāk dotos 6 uzdevumus! Darba izpildes laiks 4 astronomiskās stundas. Risinājumā parādīt
Διαβάστε περισσότεραKomandu olimpiāde Atvērtā Kopa Atrisinājumi 7. klasei
01 Komandu olimpiāde Atvērtā Kopa Atrisinājumi 7. klasei 1. Varam pieņemt, ka visos darbos Kristiāna strāda piecu darba dienu nedēļu, tātad 40 stundas nedēļā (drīkst arī pieņemt, ka Kristiāna strādā nedēļas
Διαβάστε περισσότερα6. TEMATS GĀZU LIKUMI. Temata apraksts. Skolēnam sasniedzamo rezultātu ceļvedis. Uzdevumu piemēri. Elektrodrošība izmantojot aizsargzemējumu (PE)
6. TEMATS GĀZU LIKUMI Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri F_11_UP_06_P1 Noplūdes strāvu automātu izmantošana Skolēna darba lapa F_11_UP_06_P2 Elektrodrošība izmantojot
Διαβάστε περισσότεραMĀCĪBU PRIEKŠMETA MĒRĶIS
FIZIKA 10. 12. KLASEI MĀCĪBU PRIEKŠMETA PROGRAMMAS PARAUGS IEVADS Mācību priekšmeta programma ir vispārējās izglītības programmas sastāvdaļa, kuru veido mācību priekšmeta: 1) mērķis un uzdevumi; 2) mācību
Διαβάστε περισσότεραMe 803 ISBN
RĪGAS TEHNISKĀ UNIVERSITĀTE Būvkonstrukciju katera METODISKIE NORĀDĪJUMI SAPLĀKŠŅA PANEĻU PROJEKTĒŠANAI (LVS EN 1995-1-1). izevums RTU Būvniecības specialitāšu stuentiem stuiju procesā izstrāājot uz koka
Διαβάστε περισσότεραFIZIKAS MEDICĪNISKIE ASPEKTI 2. temats BIOREOLOĂIJAS PAMATI
RTU un LU starpaugstskolu maăistrantūras studiju modulis Medicīnas fizika Līgums 2006/0250/VPD1/ESF/PIAA/06/APK/3.2.3.2./0079/0007 FIZIKAS MEDICĪNISKIE ASPEKTI 2. temats BIOREOLOĂIJAS PAMATI Uldis Teibe
Διαβάστε περισσότεραLatvijas Universitāte Fizikas un matemātikas fakultāte datorzinātņu nodaļa
Latvijas Univesitāte Fizikas un matemātikas fakultāte datozinātņu nodaļa Eksāmena biļešu atbildes Fizikā (Teoētiskā mehānika, elektomagnētisms, optika) NEPABEIGTS Rīga,. Šis dabs i nācis no http://datzb.intelctuals.net/
Διαβάστε περισσότεραSKRŪVPĀĻI Speciālais kurss
RĪGAS TEHNISKĀ UNIVERSITĀTE Būvniecības fakultāte Būvkonstrukciju katedra Andīna SPRINCE, Leonīds PAKRASTIŅŠ SKRŪVPĀĻI Speciālais kurss Rīga 2010 UDK 624.154-428(075.8) Sp 920 s Sprince A., Pakrastiņš
Διαβάστε περισσότεραLatvijas 53. Nacionālā ķīmijas olimpiāde
9. klases teorētiskie uzdevumi Latvijas 53. Nacionālā ķīmijas olimpiāde 2012. gada 28. martā 9. klases Teorētisko uzdevumu atrisinājumi 1. uzdevums 7 punkti Molekulu skaitīšana Cik molekulu skābekļa rodas,
Διαβάστε περισσότεραfx-82es PLUS fx-85es PLUS fx-95es PLUS fx-350es PLUS
LV fx-82es PLUS fx-85es PLUS fx-95es PLUS fx-350es PLUS Lietotāja pamācība CASIO Worldwide Education vietne: http://edu.casio.com CASIO IZGLĪTĪBAS FORUMS http://edu.casio.com/forum/ Išversta vertimų biure
Διαβάστε περισσότεραVIDSPRIEGUMA /6, 10, 20 kv/ GAISVADU ELEKTROLĪNIJAS GALVENĀS TEHNISKĀS PRASĪBAS
LATVIJAS ENERGOSTANDARTS LEK 015 IZMAIŅAS 2 2016 VIDSPRIEGUMA /6, 10, 20 kv/ GAISVADU ELEKTROLĪNIJAS GALVENĀS TEHNISKĀS PRASĪBAS AS Latvenergo, teksts, 2016 LEEA Standartizācijas centrs Latvijas Elektrotehnikas
Διαβάστε περισσότεραMK noteikumi Nr.273 "Mērvienību noteikumi" ("LV", 49 (4241), ) [spēkā ar ]
Lapa 1 no 10 VSIA "Latvijas Vēstnesis", 2005-2010 23.03.2010. MK noteikumi Nr.273 "Mērvienību noteikumi" ("LV", 49 (4241), 26.03.2010.) [spēkā ar 27.03.2010.] Redakcija uz 27.03.2010. Mērvienību noteikumi
Διαβάστε περισσότεραAnswers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
Διαβάστε περισσότεραIsover tehniskā izolācija
Isover tehniskā izolācija 2 Isover tehniskās izolācijas veidi Isover Latvijas tirgū piedāvā visplašāko tehniskās izolācijas (Isotec) produktu klāstu. Mēs nodrošinām efektīvus risinājumus iekārtām un konstrukcijām,
Διαβάστε περισσότεραKOMBINATORIKAS UN VARBŪTĪBU TEORIJAS ELEMENTI. matemātikas profīlkursam vidusskolā
Jānis Cīrulis KOMBINATORIKAS UN VARBŪTĪBU TEORIJAS ELEMENTI matemātikas profīlkursam vidusskolā ANOTĀCIJA Šī izstrādne ir mācību līdzeklis (tā pirmā puse) nosaukumā minēto tēmu apguvei, ko varētu gan vairāk
Διαβάστε περισσότερα