10. klase 1. uzdevuma risinājums A. Dēļa garums l 4,5 m. sin = h/l = 2,25/4,5 = 0,5 = (2 punkti) W k. s = 2,25 m.
|
|
- Κλήμεντος Καψής
- 6 χρόνια πριν
- Προβολές:
Transcript
1 0. klase. uzdevuma risinājums A. Dēļa garums l 4,5 m. sin = h/l =,5/4,5 = 0,5 = 0 0. ( punkti) B. v o = 0 m/s. Tādēļ s = at / un a = s/t Ja izvēlas t = s, veiktais ceļš s = 4m. a = 4/ = m/s. ( punkti) C. t = l/a =.4,5/ =, s. Kastes ātrums v = at =, = 4,4 m/s. ( punkti) D. Kustības sākumā kastītei ir potenciālā enerģija W p = mgh = 0.,5 = 45 J. Noslīdot no dēļa kastītei paliek kinētiskā enerģija W k = ( punkti) W k E. Kaste apstājas, ja v = 0 m/s. Attālums horizontālā virzienā (punkti) m v 4, 4 =8 J. v 4, 4 s =,5 m. a 4. uzdevuma risinājums A. Slēgums simetrisks. Punktiem A un C potenciāli ir vienādi, tāpēc diagonālē AC strāva neplūst un slēgumu var pārzīmēt: A R R A D R 5 B R R 4 C 6 l, 0, 0 Pretestības R = R = R = R 4 = =,0. Pretestība R 6 5 =,6. Kopējā S, 0 slēguma pretestība R = 0,65. Strāvas stiprums I = U/R = 5, A (6 punkti) B. I = I = I = I 4 =,6 A, I 5 = A. ( punkti) C. Visvairāk sasilst romba posms DB (R 5 ) caur kuru plūst vislielākā strāva. ( punkti)
2 .uzdevuma risinājums A. Uz ūdenī iegremdētu ķermeni darbojas spēki: mg smaguma spēks, F A Arhimēda spēks un F spēks, kuru uzrāda dinamometrs. ( punkts) B. Ja ķermenis nav iegremdēts ūdenī (h=0) dinamometrs rāda smaguma spēku F = mg =,4 N un m = 0,4 kg. ( punkti) C. F A = mg - F. ( punkti) D. F A = ūd Vg V=,.0-4 m. =m/v; 8 kg/m. ( punkts) E. A=F vid h; F vid =,8 N; A=0,8 J. ( punkti) 4. uzdevuma atrisinājums. Saskaņā ar Arhimēda likumu, peldošs ķermenis izspiež tik daudz ūdens, cik pats sver, tātad, konkrētajā gadījumā m 0 =,0 kg, jeb V= m 0 /ρ =,0 litrs. (p) Ūdens līmeņa augstums h = (V 0 +V)/S=0 cm. (p) Ja lodītes masu apzīmē ar m, tad ledus masa būs m 0 -m, m 0 =.0 kg, ūdens masa - m ū =.0 kg. Var uzrakstīt siltuma bilances vienādojumus. Q piev =cm ū (T -T ) (p) Q atd =λ(m 0 -m)+c(m 0 -m)(t -T )+c sv m(t -T ) (p) Pielīdzinot Q piev =Q atd, var izteikt m. m = 0,00 kg (p) Ūdens tilpums, kas atrodas traukā, tagad ir V ū =V 0 +(m 0 -m)/ρ=,9 l (p) Svina lodītes tilpums ir V sv =m/ρ sv = 0,0088 l (p) Tilpuma izmaiņa ΔV = V o + V V ū V sv = 0,09 litri Ūdens līmenis būs izmainījies par h= V/S=(V 0 +V-V 0 -(m 0 -m)/ρ- m/ρ sv )/S = 0,6 cm (p) (Tas ir samazinājies)
3 Fb, N p, atm. klase. uzdevuma risinājums A. Dēļa garums l 4,5 m. sin = h/l =,5/4,5 = 0,5 = 0 0. ( punkts) B. s = at / a = s/t Ja izvēlas t=s, veiktais ceļš s=4m. a = 4/ = m/s. ( punkti) C. t = l/a =.4,5/ =, s. Kastes ātrums v = at =, = 4,4 m/s. ( punkti) D. Kustības sākumā kastītei ir potenciālā enerģija W p = mgh = 0.,5 = 45 J. m v 4, 4 Noslīdot no dēļa kastītei paliek kinētiskā enerģija W k = W k =8 J. ( punkts) E. mg x - mg y = ma (otrais Ņūtona likums). mgsin - mgcos = ma, no kurienes = (gsin -a)/(gcos ) = (0.0,5-)/(0.0,866) = 0,46. ( punkti) F. Uz horizontālās virsmas. Berzes spēks F b = F r = mg piešķir bremzējošo paātrinājumu a = g = 0, 0 = m/s. Kastes veiktais attālums horizontālā virzienā v 4, 4 s 4,5 m ( punkti) a. uzdevuma risinājums A. Mendeļejeva Klapeirona vienādojums pv = mrt/m. Gaisa tilpums cilindrā V = S L = = 0,040 m = 40 litri. Spiediens cilindrā p = mrt/(mv) = 9, Pa. P p o. Atmosfēra spiež virzuli ar lielāku spēku nekā gaiss. Berzes spēks F b = (p o p )S = 7 N vērsts x ass virzienā.(p) B. Lai virzulis sāktu slīdēt, spiedienam cilindrā jākļūst p = p o + F b S =, Pa. Tas ir izohorisks process p /T = p /T. Izsakot T = p T /p = 6 K. (p) C. (p) D. (p) T, K,08,06,04,0 0,98 0,96 0, V, l
4 Sildot no 6 K līdz 400 K izobārisks process V /T = V /T. Tilpums V = 47,6 litri. E. A = A + A. A = 0 J izohorisks process. A = p (V V ) = mr(t T )/M = 807 J. (p) 5 m F. Pirmais termodinamikas likums Q = U +A. U = R(T T ) =,5 kj. Pievadītais M siltuma daudzums Q =,5 + 0,8 =,96 kj. (p). uzdevuma risinājums A. Pēc impulsa saglabāšanas likuma mv 0 = (m+m)v v = m/s. (p) B. Q = mv 0 / - (m+m)v / Q =, J. (p) C. Pēc otrā Ņūtona likuma F = (M+m)a, kur F = (M+m)g, no šejienes kastītes paātrinājums a = g. a= m/s. v = v-at un l = v t-at /. t = 0,5 s un v =,7 m/s. (p) D. s = v t un H = gt / t = 0,4 s un s = 0,69 m. (p) E. Pēc enerģijas saglabāšanas likuma Mv / = Mv /+MgH v = 4,6 m/s. v /v = cos cos =,7/4,6 = (p) 4. uzdevuma risinājums A. Uz ūdenī iegremdētu ķermeni darbojas spēki: mg smaguma spēks, F A Arhimēda spēks un F spēks, kuru uzrāda dinamometrs. Ja ķermenis nav iegremdēts ūdenī (h=0) dinamometrs rāda smaguma spēku F = mg =,4 N un m = 0,4 kg. ( punkti) B. F A =mg-f. ( punkti) C. F A = ūd Vg V=,.0-4 m. =m/v; 8 kg/m. ( punkti) D. A=F vid h; F vid =,8 N; A=0,8 J. ( punkti) E. a=f/m = (mg-f A )/m; a 6,5 m/s. ( punkti) 4
5 . klase. uzdevuma atrisinājums. gadījums slēdzi ciet. Pēc kondensatora uzlādēšanās jāaplūko šāda ķēde: Ķēdes ārējā pretestība R a = (R R Pēc Oma likuma E I = 0, A R r 60 0 a I I I I, 5I Tādēļ I = 0, A R R 4 ) R R 4 = 60 un U 4 = I R 4 = V. U C = U 4. Kondensatora lādiņš q = CU 4 = 0 - = mc..gadījums slēdzis vaļā. Pēc kondensatora uzlādēšanās aplūkojama šāda ķēde: Ķēdes ārējā pretestība R v = R + R 4 = 50, bet ķēdē plūstošās strāvas stiprums: E I 0, A. Spriegums U C = U = I R = 0, 50 = 6,5 V. R v r 50 0 Kondensatora lādiņš: q = C U = 0-6,5 = 6,5 mc. Jāievēro, ka kondensatora polaritāte ir mainījusies. q = q + q = + 6,5 = 8,5 mc. 5
6 . uzdevuma risinājums A. Dēļa garums l 4,5 m. sin = h/l =,5/4,5 = 0,5 = 0 0. ( punkts) B. s = at / a = s/t Ja izvēlas t=s, veiktais ceļš s=4m. A = 4/ = m/s. ( punkti) C. t = l/a =.4,5/ =, s. Kastes ātrums v = at =, = 4,4 m/s. ( punkti) D. Kustības sākumā kastītei ir potenciālā enerģija W p = mgh = 0.,5 = 45 J. Noslīdot no dēļa kastītei paliek kinētiskā enerģija W k = ( punkts) E. mg x - mg y =ma (otrais Ņūtona likums). mgsin - mgcos =ma, no kurienes =(gsin -a)/(gcos ) =(0.0,5-)/(0.0,866)=0,46. ( punkti) W k m v 4, 4 =8 J. F. Uz horizontālās virsmas. Berzes spēks F b = F r = mg piešķir bremzējošo paātrinājumu a = g = 0, 0 = m/s. Kastes veiktais attālums horizontālā virzienā v 4, 4 s 4,5 m ( punkti) a. uzdevuma risinājums A. Elektriskais lauks veic darbu A = q U un piešķir lādētai daļiņai kinētisko enerģiju Potenciālu starpība, kas paātrina lādēto daļiņu U = protonu - U p = 5, kv. mv q mv W k.. Elektronu paātrina U e =,8 V, bet B. Magnētiskajā laukā daļiņa ielido ar ātrumu v. Lorenca spēka F L = qvb iedarbībā daļiņa sāk kustēties pa riņķa līniju, kuras rādiuss R. Tā kā Lorenca spēks piešķir centrtieces paātrinājumu, tad qvb = mv / R, no kurienes Protona trajektorijas liekuma rādiuss R p =,04 m. mv R. Elektrona trajektorijas liekuma rādiuss R e = 5,7 0-4 m. qb 6
7 a) R e L, tāpēc elektrons veiks pusriņķi magnētiskajā laukā laikā t = R e /v = s = =,8 ns. Elektriskā lauka spēks F = qe iedarbībā elektrons iegūst paātrinājumu a = qe / m =,76 0 m/s. Elektriskajā laukā elektrons kustās palēnināti laika intervālā t = a v = 5,7 0-7 s, apstājas un sāk paātrinātu kustību magnētiskā lauka virzienā un sasniedz magnētisko lauku ar sākotnējo ātrumu Mm/s. Pēc tam aplūkotais process atkārtojas. Šī procesa ilgums t o = t + t =,4 s. b) R p L, tādēļ protons veiks loku magnētiskajā laukā un izlidos. sin = L/R p = 0,6. Protona nolieces leņķis = 7 o = 0,64 rad. Protons nolidos loku, kura garums l = R = 0,64 m. Protona kustības laiks magnētiskajā laukā t = l/v = 0,64 s. C. a) Elektrons b) Protons 4. uzdevuma atrisinājums. Svārstības ir harmoniskas, ja atgriezējspēks ir proporcionāls novirzei. (p) Parādīsim, ka šajā gadījumā tas tiešām tā ir. Kamēr pludiņš atrodas līdzsvarā, tā smaguma spēku kompensē Arhimēda spēks. Pludiņam novirzoties vertikāli par attālumu x, Arhimēda spēks izmainās par lielumu F = ρg V = ρgsx, (p) kas arī mēģina atgriezt pludiņu stacionārajā stāvoklī un no. Ņutona likuma ma + gsh = 0. Viegli redzēt, ka spēks patiešām ir proporcionāls novirzei ar proporcionalitātes koeficientu k = ρgs (S pludiņa šķērsgriezuma laukums). (p) Pludiņa svārstību periodu viegli aprēķināt pēc formulas m m psh ph T 0, s. Lai pludiņš būtu stabils, tā smaguma k S g Sg g centram jāatrodas zem ūdens līnijas. p 0,5 u. u Viļņu izplatīšanās ātrums ūdenī: (p) Ja pludiņš būtu lodveida, tad svārstības nebūtu harmoniskas, jo atgriezējspēks nebūtu u (p) proporcionāls novirzei: (p) 7
Latvijas Skolēnu 62. fizikas olimpiādes III posms
Latvijas Skolēnu 62 fizikas olimpiādes III posms Vērtēšanas kritēriji Teorētiskā kārta 212 gada 12 aprīlī 9 klase Uzdevums Caurplūdums, jeb ūdens tilpums, kas laika vienībā iztek caur šķērsgriezumu S ir
Διαβάστε περισσότεραRīgas Tehniskā universitāte. Inženiermatemātikas katedra. Uzdevumu risinājumu paraugi. 4. nodarbība
Rīgas Tehniskā univesitāte Inženiematemātikas kateda Uzdevumu isinājumu paaugi 4 nodabība piemēs pēķināt vektoa a gaumu un viziena kosinusus, ja a = 5 i 6 j + 5k Vektoa a koodinātas i dotas: a 5 ; a =
Διαβάστε περισσότερα3.2. Līdzstrāva Strāvas stiprums un blīvums
3.. Līdzstrāva Šajā nodaļā aplūkosim elektrisko strāvu raksturojošos pamatlielumus un pamatlikumus. Nodaļas sākumā formulēsim šos likumus, balstoties uz elektriskās strāvas parādības novērojumiem. Nodaļas
Διαβάστε περισσότερα1. uzdevums. 2. uzdevums
1. uzdevums Reaktīvā pasažieru lidmašīna 650 km lielu attālumu bez nosēšanās veica 55 minūtēs. Aprēķini lidmašīnas kustības vidējo ātrumu, izteiktu kilometros stundā (km/h)! 1. solis Vispirms pieraksta
Διαβάστε περισσότεραKontroldarba varianti. (II semestris)
Kontroldarba varianti (II semestris) Variants Nr.... attēlā redzami divu bezgalīgi garu taisnu vadu šķērsgriezumi, pa kuriem plūst strāva. Attālums AB starp vadiem ir 0 cm, I = 0 A, I = 0 A. Aprēķināt
Διαβάστε περισσότεραFIZ 2.un 3.daļas standartizācija 2012.gads
FIZ.un 3.daļas standartizācija 0.gads Uzd. Uzdevums Punkti Kritēriji Uzraksta impulsu attiecību: m Lieto impulsa definīcijas formulu. Uzraksta attiecību. Pareizi izsaka meklējamo kr vkr lielumu. Iegūst
Διαβάστε περισσότεραĶermeņa inerce un masa. a = 0, ja F rez = 0, kur F visu uz ķermeni darbojošos spēku vektoriālā summa
2.1. Ķereņa inerce un asa Jebkurš ķerenis saglabā iera stāvokli vai turpina vienērīgu taisnlīnijas kustību ar neainīgu ātruu (v = const) tikēr, kaēr uz to neiedarbojas citi ķereņi vai ta pieliktie ārējie
Διαβάστε περισσότεραMehānikas fizikālie pamati
1.5. Viļņi 1.5.1. Viļņu veidošanās Cietā vielā, šķidrumā, gāzē vai plazmā, tātad ikvienā vielā starp daļiņām pastāv mijiedarbība. Ja svārstošo ķermeni (svārstību avotu) ievieto vidē (pieņemsim, ka vide
Διαβάστε περισσότεραM.Jansone, J.Blūms Uzdevumi fizikā sagatavošanas kursiem
DINAMIKA. Dinmik prkst pātrinājum ršnās cēloħus un plūko tā lielum un virzien noteikšns pħēmienus. Spēks (N) ir vektoriāls lielums; ts ir ėermeħu vi to dĝiħu mijiedrbībs mērs. Inerce ir ėermeħu īpšīb sglbāt
Διαβάστε περισσότεραCompress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
Ι 55 C 35 C A A B C D E F G 47 17 21 18 19 19 18 db kw kw db 2015 811/2013 Ι A A B C D E F G 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst ES regulu 811/2013,
Διαβάστε περισσότεραFizikas valsts 66. olimpiāde Otrā posma uzdevumi 12. klasei
Fizikas valsts 66. olimpiāde Otrā posma uzdevumi 12. klasei 12-1 Pseido hologramma Ievēro mērvienības, kādās jāizsaka atbildes. Dažus uzdevuma apakšpunktus var risināt neatkarīgi no pārējiem. Mūsdienās
Διαβάστε περισσότεραLabojums MOVITRAC LTE-B * _1114*
Dzinēju tehnika \ Dzinēju automatizācija \ Sistēmas integrācija \ Pakalpojumi *135347_1114* Labojums SEW-EURODRIVE GmbH & Co KG P.O. Box 303 7664 Bruchsal/Germany Phone +49 751 75-0 Fax +49 751-1970 sew@sew-eurodrive.com
Διαβάστε περισσότεραLogatherm WPS 10K A ++ A + A B C D E F G A B C D E F G. kw kw /2013
51 d 11 11 10 kw kw kw d 2015 811/2013 2015 811/2013 Izstrādājuma datu lapa par energopatēriņu Turpmākie izstrādājuma dati atbilst S regulu 811/2013, 812/2013, 813/2013 un 814/2013 prasībām, ar ko papildina
Διαβάστε περισσότεραTestu krājums elektrotehnikā
iļānu 41.arodvidusskola Sergejs Jermakovs ntons Skudra Testu krājums elektrotehnikā iļāni 2007 EOPS SOCĀLS FONDS zdots ar ESF finansiālu atbalstu projekta Profesionālās izglītības programmas Elektromontāža
Διαβάστε περισσότερα➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
Διαβάστε περισσότερα5. un 6.lekcija. diferenciālvienādojumiem Emdena - Faulera tipa vienādojumi. ir atkarīgas tikai no to attāluma r līdz lodes centram.
Parasto diferenciālvienādojumu nelineāras robežproblēmas 5. un 6.lekcija 1. Robežproblēmas diferenciālvienādojumiem ar neintegrējamām singularitātēm 1.1. Emdena - Faulera tipa vienādojumi Piemērs 5.1.
Διαβάστε περισσότεραESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 2009/0196/1DP/
ESF projekts Pedagogu konkurētspējas veicināšana izglītības sistēmas optimizācijas apstākļos Vienošanās Nr. 009/0196/1DP/1...1.5/09/IPIA/VIAA/001 ESF projekts Pedagogu konkurētspējas veicināšana izglītības
Διαβάστε περισσότεραGRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI
GRAFOANALITISKO DARBU UZDEVUMI ELEKTROTEHNIKĀ UN ELEKTRONIKĀ VISPĀRĪGI NORĀDĪJUMI Kursa Elektrotehnika un elektronika programmā paredzēta patstāvīga grafoanalītisko uzdevumu izpilde. Šajā krājumā ievietoti
Διαβάστε περισσότερα6. TEMATS GĀZU LIKUMI. Temata apraksts. Skolēnam sasniedzamo rezultātu ceļvedis. Uzdevumu piemēri. Elektrodrošība izmantojot aizsargzemējumu (PE)
6. TEMATS GĀZU LIKUMI Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri F_11_UP_06_P1 Noplūdes strāvu automātu izmantošana Skolēna darba lapa F_11_UP_06_P2 Elektrodrošība izmantojot
Διαβάστε περισσότερα1. MAIŅSTRĀVA. Fiz12_01.indd 5 07/08/ :13:03
1. MAIŅSRĀVA Ķeguma spēkstacija Maiņstrāvas iegūšana Maiņstrāvas raksturlielumumomentānās vērtības Maiņstrāvas raksturlielumu efektīvās vērtības Enerģijas pārvērtības maiņstrāvas ķēdē Aktīvā pretestība
Διαβάστε περισσότεραTēraudbetona konstrukcijas
Tēraudbetona konstrukcijas tēraudbetona kolonnu projektēšana pēc EN 1994-1-1 lektors: Gatis Vilks, SIA «BALTIC INTERNATIONAL CONSTRUCTION PARTNERSHIP» Saturs 1. Vispārīga informācija par kompozītām kolonnām
Διαβάστε περισσότεραELEKTROTEHNIKA UN ELEKTRĪBAS IZMANTOŠANA
Ieguldījums tavā nākotnē Ieguldījums tavā nākotnē Profesionālās vidējās izglītības programmu Lauksaimniecība un Lauksaimniecības tehnika īstenošanas kvalitātes uzlabošana 1.2.1.1.3. Atbalsts sākotnējās
Διαβάστε περισσότεραLaboratorijas darbu apraksts (II semestris)
Laboratorijas darbu apraksts (II semestris).5. Zemes magnētiskā lauka horizontālās komponentes noteikšana ar tangensgalvanometru. Katrā zemeslodes vietā Zemes magnētiskā lauka indukcijas vektors attiecībā
Διαβάστε περισσότεραLielumus, kurus nosaka tikai tā skaitliskā vērtība, sauc par skalāriem lielumiem.
1. Vektori Skalāri un vektoriāli lielumi Lai raksturotu kādu objektu vai procesu, tā īpašības parasti apraksta, izmantojot dažādus skaitliskus raksturlielumus. Piemēram, laiks, kas nepieciešams, lai izlasītu
Διαβάστε περισσότεραΝόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Διαβάστε περισσότεραBioloģisko materiālu un audu mehāniskās īpašības. PhD J. Lanka
Bioloģisko materiālu un audu mehāniskās īpašības PhD J. Lanka Mehāniskās slodzes veidi: a stiepe, b spiede, c liece, d - bīde Traumatisms skriešanā 1 gada laikā iegūto traumu skaits (dažādu autoru dati):
Διαβάστε περισσότερα2. ELEKTROMAGNĒTISKIE
2. LKTROMAGNĒTISKI VIĻŅI Radio izgudrošana Svārstību kontūrs Nerimstošas elektriskās svārstības lektromagnētisko viļņu iegūšana lektromagnētiskais šķērsvilnis lektromagnētisko viļņu ātrums lektromagnētisko
Διαβάστε περισσότεραElektromagnētiskās svārstības un viļņi
Elekromagnēiskās svārsības un viļņi Par brīvām svārsībām sauc svārsības, kas norisinās svārsību sisēmā, ja ā nav pakļaua periodiskai ārējai iedarbībai. Tāad svārsības noiek ikai uz ās enerģijas rēķina,
Διαβάστε περισσότερα12. klase. Fizikas 64. valsts olimpiādes III posms gada 10. aprīlī
Fizikas 64. valsts olimpiādes III posms 2014. gada 10. aprīlī 12. klase Jums tiek piedāvāti trīs uzdevumi. Par katru uzdevumu maksimāli iespējams iegūt 10 punktus. Katra uzdevuma risinājumu vēlams veikt
Διαβάστε περισσότεραΤο άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Διαβάστε περισσότεραd dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Διαβάστε περισσότεραAndris Fedotovs Silta fizika aukstā laikā
Andris Fedotovs Silta fizika aukstā laikā Kas ir «siltums»? Siltums ir enerģijas pārneses veids Nepareizi: Viela/materiāls/Objekts satur siltumu Pareizi: Viela/materiāls/Objekts satur enerģiju Šī enerģija
Διαβάστε περισσότερα"BHFC8I7H=CB HC &CH=CB 5B8 &CA9BHIA
ω θ ω = Δθ Δt, θ ω v v = rω ω = v r, r ω α α = Δω Δt, Δω Δt (rad/s)/s rad/s 2 ω α ω α rad/s 2 87.3 rad/s 2 α = Δω Δt Δω Δt α = Δω Δt = 250 rpm 5.00 s. Δω rad/s 2 Δω α Δω = 250 min rev 2π rad rev 60 1 min
Διαβάστε περισσότεραΈνωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου
Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ B Λυκείου Μαρτίου Θεωρητικό Μέρος Θέμα ο A. Στα δύο όμοια δοχεία του σχήματος υπάρχουν ίσες ποσότητες νερού, με την ίδια αρχική θερμοκρασία θ =4 ο
Διαβάστε περισσότεραLielais dānis Nilss Bors
Lielais dānis Nilss Bors No kā sastāv atoms? Atoma kodola atklāšana Atoma planetārais modelis. Bora teorija Orbitālais kvantu skaitlis Magnētiskais kvantu skaitlis. Magnētiskā mijiedarbība atomā Elektrona
Διαβάστε περισσότεραTemperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma
Temperatūras izmaiħas atkarībā no augstuma, atmosfēras stabilitātes un piesārħojuma Gaisa vertikāla pārvietošanās Zemes atmosfērā nosaka daudzus procesus, kā piemēram, mākoħu veidošanos, nokrišħus un atmosfēras
Διαβάστε περισσότεραGATAVOSIMIES CENTRALIZĒTAJAM EKSĀMENAM MATEMĀTIKĀ
Profesionālās vidējās izglītības programmu Lauksaimniecība un Lauksaimniecības tehnika īstenošanas kvalitātes uzlabošana 1.2.1.1.3. Atbalsts sākotnējās profesionālās izglītības programmu īstenošanas kvalitātes
Διαβάστε περισσότερα6. Pasaules uzbūve. Jēdzieni, kurus apgūsi
6. Pasaules uzbūve Jēdzieni, kurus apgūsi Habla likums Lielā Sprādziena modelis Reliktstarojums Elementārdaļiņas Fermioni Bozoni Antiviela Standartmodelis Hadroni Kvarki Leptoni Protozvaigzne Baltie punduri
Διαβάστε περισσότεραAnswers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
Διαβάστε περισσότεραLai atvēru dokumentu aktivējiet saiti. Lai atgrieztos uz šo satura rādītāju, lietojiet taustiņu kombināciju CTRL+Home.
6. MEHĀNISKĀS SVĀRSTĪBAS UN VIĻŅI Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri Stundas piemērs F_10_SP_06_P1 Uzdevums grupai Skolēna darba lapa F_10_UP_06_P1 Seismogrāfa darbības
Διαβάστε περισσότεραKā radās Saules sistēma?
9. VISUMS UN DAĻIŅAS Kā radās Saules sistēma? Planētas un zvaigznes Galaktikas un Visums Visuma evolūcija. Habla likums Zvaigžņu evolūcija Visuma apgūšanas perspektīvas Lielu ātrumu un enerģiju fizika
Διαβάστε περισσότεραLaboratorijas darbu apraksts (I semestris)
Laboratorijas darbu apraksts (I semestris) un mērījumu rezultātu matemātiskās apstrādes pamati 1. Fizikālo lielumu mērīšana Lai kvantitatīvi raksturotu kādu fizikālu lielumu X, to salīdzina ar tādas pašas
Διαβάστε περισσότερα1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G
1. Testa nosaukums IMUnOGLOBULĪnS G (IgG) 2. Angļu val. Immunoglobulin G 3. Īss raksturojums Imunoglobulīnu G veido 2 vieglās κ vai λ ķēdes un 2 smagās γ ķēdes. IgG iedalās 4 subklasēs: IgG1, IgG2, IgG3,
Διαβάστε περισσότεραSērijas apraksts: Wilo-Stratos PICO-Z
Sērijas apraksts:, /-, /- Modelis Slapjā rotora cirkulācijas sūknis ar skrūsaienojumu, bloķējošās strāas pārbaudes EC motors un integrēta elektroniskā jaudas regulēšana. Modeļa koda atšifrējums Piemērs:
Διαβάστε περισσότεραElektronikas pamati 1. daļa
Egmonts Pavlovskis Elektronikas pamati 1. daļa Mācību līdzeklis interešu izglītības elektronikas pulciņu audzēkņiem un citiem interesentiem Mācību līdzeklis tapis Eiropas reģionālās attīstības fonda projekta
Διαβάστε περισσότερα2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s
( ) 03/0 - o l P z o M l =.P S. ( ) m' Z l=m m=kg m =,5Kg g=0/kg : : : : Q. (A) : V= (B) : V= () : V= (D) : V= (): : V :Q. (A) :4m/s (B) :0,4 m/s () :5m/s (D) :0,5m/s (): : M T : Q.3 (A) : T=(-z).g (B)
Διαβάστε περισσότεραAlterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
Διαβάστε περισσότεραKomandu olimpiāde Atvērtā Kopa. 8. klases uzdevumu atrisinājumi
Komandu olimpiāde Atvērtā Kopa 8. klases uzdevumu atrisinājumi 1. ΔBPC ir vienādmalu trijstūris, tādēļ visi tā leņķi ir 60. ABC = 90 (ABCDkvadrāts), tādēļ ABP = 90 - PBC = 30. Pēc dotā BP = BC un, tā kā
Διαβάστε περισσότεραAndrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA. Eksperimentāla mācību grāmata. Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija
Andrejs Rauhvargers VISPĀRĪGĀ ĶĪMIJA Eksperimentāla mācību grāmata Atļāvusi lietot Latvijas Republikas Izglītības un zinātnes ministrija Rīga Zinātne 1996 UDK p 54(07) Ra 827 Recenzenti: Dr. chem. J. SKRĪVELIS
Διαβάστε περισσότεραLatvijas Universitāte Fizikas un matemātikas fakultāte datorzinātņu nodaļa
Latvijas Univesitāte Fizikas un matemātikas fakultāte datozinātņu nodaļa Eksāmena biļešu atbildes Fizikā (Teoētiskā mehānika, elektomagnētisms, optika) NEPABEIGTS Rīga,. Šis dabs i nācis no http://datzb.intelctuals.net/
Διαβάστε περισσότεραĪsi atrisinājumi Jā, piemēram, 1, 1, 1, 1, 1, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi Skat., piemēram, 1. zīm.
Īsi atrisinājumi 5.. Jā, piemēram,,,,,, 3, 4. Piezīme. Uzdevumam ir arī vairāki citi atrisinājumi. 5.. Skat., piemēram,. zīm. 6 55 3 5 35. zīm. 4. zīm. 33 5.3. tbilde: piemēram, 4835. Ievērosim, ka 4 dalās
Διαβάστε περισσότεραfizikā Mācību satura un valodas apguve Mācību līdzeklis skolēnam Ata Krūmiņa Raisa Stunžāne
7.-9. Mācību satura un valodas apguve Ata Krūmiņa Raisa Stunžāne fizikā Mācību līdzeklis skolēnam Projekts «Atbalsts valsts valodas apguvei un bilingvālajai izglītībai» Nr. 2008/0003/1DP/1.2.1.2.1/08/IPIA/VIAA/002
Διαβάστε περισσότεραΙ ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
Διαβάστε περισσότεραRīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts
Rīgas Tehniskā universitāte Enerģētikas un elektrotehnikas fakultāte Vides aizsardzības un siltuma sistēmu institūts www.videszinatne.lv Saules enerģijas izmantošanas iespējas Latvijā / Seminārs "Atjaunojamo
Διαβάστε περισσότεραΠοια πρέπει να είναι η ελάχιστη ταχύτητα που θα πρέπει να έχει το τρενάκι ώστε να µη χάσει επαφή µε τη τροχιά στο υψηλότερο σηµείο της κίνησης; F N
Παράδειγµα roller coaster ΦΥΣ 131 - Διαλ.13 1 Ποια πρέπει να είναι η ελάχιστη ταχύτητα που θα πρέπει να έχει το τρενάκι ώστε να µη χάσει επαφή µε τη τροχιά στο υψηλότερο σηµείο της κίνησης; y-διεύθυνση:
Διαβάστε περισσότεραI dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI
008 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO VERTINIMO INSTRUKCIJA Pagrindinė sesija Kiekvieno I dalies klausimo teisingas atsakymas vertinamas tašku. I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI
Διαβάστε περισσότεραΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Διαβάστε περισσότεραElektriskais lauks dielektriķos Brīvie un saistītie lādiņi
3... Elktrskas lauks dlktrķos 3... Brīv un sastīt lādņ 79. gadā angļu znātnks S. Grjs (666 736) kurš konstatēja, ka lktrskas lādņš var pārt no vna ķrmņa uz otru, pmēram, pa mtāla stpl. Līdz ar to, var
Διαβάστε περισσότερα,
... 7 1.,... 8 1.1... 8 1.2... 10 1.3-4... 12 1.4,... 13 1.5,... 14 1.6... 14 2... 16 2.1... 16 2.2... 18 2.3... 23 2.4... 24 2.5... 24 2.6... 27 2.7... 29 2.8... 32 2.9... 34 2.10... 40 2.11... 40 2.12...
Διαβάστε περισσότεραMK noteikumi Nr.273 "Mērvienību noteikumi" ("LV", 49 (4241), ) [spēkā ar ]
Lapa 1 no 10 VSIA "Latvijas Vēstnesis", 2005-2010 23.03.2010. MK noteikumi Nr.273 "Mērvienību noteikumi" ("LV", 49 (4241), 26.03.2010.) [spēkā ar 27.03.2010.] Redakcija uz 27.03.2010. Mērvienību noteikumi
Διαβάστε περισσότεραΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
Διαβάστε περισσότερα1 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέτασης
1 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέτασης Ο Ένα υλικό σημείο κινείται επάνω σε μια ευθεία έτσι ώστε η απομάκρυνση του να δίνεται
Διαβάστε περισσότεραELEKTROĶĪMIJA. Metāls (cietā fāze) Trauks. Elektrolīts (šķidrā fāze) 1. att. Pirmā veida elektroda shēma
1 ELEKTROĶĪMIJA Elektroķīmija ir zinātnes nozare, kura pēta ķīmisko un elektrisko procesu savstarpējo sakaru ķīmiskās enerģijas pārvēršanu elektriskajā un otrādi. Šie procesi ir saistīti ar katra cilvēka
Διαβάστε περισσότεραDefects in Hard-Sphere Colloidal Crystals
Defects in Hard-Sphere Colloidal Crystals The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable Link Terms
Διαβάστε περισσότεραFIZIKAS MEDICĪNISKIE ASPEKTI 2. temats BIOREOLOĂIJAS PAMATI
RTU un LU starpaugstskolu maăistrantūras studiju modulis Medicīnas fizika Līgums 2006/0250/VPD1/ESF/PIAA/06/APK/3.2.3.2./0079/0007 FIZIKAS MEDICĪNISKIE ASPEKTI 2. temats BIOREOLOĂIJAS PAMATI Uldis Teibe
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2013
ΕΠΝΛΗΠΤΙΚΟ ΙΓΩΝΙΣΜ ΦΥΣΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ 0 ΘΕΜ ο Να γράψετε στο φύλλο απαντήσεών σας τον αριµό καεµιάς από τις ακόλοες ηµιτελείς προτάσεις και δίπλα της το γράµµα πο αντιστοιχεί στο σωστό σµπλήρωµά της..
Διαβάστε περισσότεραrs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Διαβάστε περισσότερα). = + U = -U U= mgy (y= H) =0 = mgh. y=0 = U=0
3761 5226 9585 ). = + U = -U U= mgy (y= H) =0 = mgh. y=0 = U=0 y = mgh mgy, 3761 5226 ) ) =mg 2 F=ma F-B=ma Fmg=m.2g F=3mg F=3B B = F/3 3763 5208 ) ) W 1 = -mgh W 2 =mgh W = W 1 + W 2 = -mgh + mgh=0 3763
Διαβάστε περισσότεραDatu lapa: Wilo-Yonos PICO 25/1-6
Datu lapa: Wilo-Yonos PICO 25/1-6 Raksturlīknes Δp-c (konstants),4,8 1,2 1,6 Rp 1¼ H/m Wilo-Yonos PICO p/kpa 6 15/1-6, 25/1-6, 3/1-6 1~23 V - Rp ½, Rp 1, Rp 1¼ 6 5 v 1 2 3 4 5 6 7 Rp ½,5 1, p-c 1,5 2,
Διαβάστε περισσότεραDatu lapa: Wilo-Yonos PICO 25/1-4
Datu lapa: Wilo-Yonos PICO 25/1-4 Raksturlīknes Δp-c (konstants) v 1 2 3 4,4,8 1,2 Rp ½ Rp 1,2,4,6,8 1, Rp 1¼ H/m Wilo-Yonos PICO p/kpa 15/1-4, 25/1-4, 3/1-4 4 1~23 V - Rp ½, Rp 1, Rp 1¼ 4 m/s Atļautie
Διαβάστε περισσότεραA 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
Διαβάστε περισσότεραΈργο Κινητική Ενέργεια. ΦΥΣ 131 - Διαλ.16 1
Έργο Κινητική Ενέργεια ΦΥΣ 131 - Διαλ.16 1 Είδη δυνάµεων q Δύο είδη δυνάμεων: Ø Συντηρητικές ή διατηρητικές δυνάμεις και μή συντηρητικές ü Μια δύναμη είναι συντηρητική όταν το έργο που παράγει ασκούμενη
Διαβάστε περισσότεραUzlabotas litija tehnoloģijas izstrāde plazmas attīrīšanas iekārtu (divertoru) aktīvo virsmu aizsardzībai
EIROPAS REĢIONĀLĀS ATTĪSTĪBAS FONDS Uzlabotas litija tehnoloģijas izstrāde plazmas attīrīšanas iekārtu (divertoru) aktīvo virsmu aizsardzībai Projekts Nr. 2DP/2.1.1.0/10/APIA/VIAA/176 ( Progresa ziņojums
Διαβάστε περισσότεραDonāts Erts LU Ķīmiskās fizikas institūts
Donāts Erts LU Ķīmiskās fizikas institūts Nanovadu struktūras ir parādījušas sevi kā efektīvi (Nat. Mater, 2005, 4, 455) fotošūnu elektrodu materiāli 1.katrs nanovads nodrošina tiešu elektronu ceļu uz
Διαβάστε περισσότεραΕπειδή η χορδή ταλαντώνεται µε την θεµελιώδη συχνότητα θα ισχύει. Όπου L είναι το µήκος της χορδής. Εποµένως, =2 0,635 m 245 Hz =311 m/s
1. Μία χορδή κιθάρας µήκους 636 cm ρυθµίζεται ώστε να παράγει νότα συχνότητας 245 Hz, όταν ταλαντώνεται µε την θεµελιώδη συχνότητα. (a) Βρείτε την ταχύτητα των εγκαρσίων κυµάτων στην χορδή. (b) Αν η τάση
Διαβάστε περισσότεραAtlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī
Atlases kontroldarbs uz Baltijas valstu ķīmijas olimpiādi 2013.gada 07.aprīlī Atrisināt dotos sešus uzdevumus, laiks 3 stundas. Uzdevumu tēmas: 1) tests vispārīgajā ķīmijā; 2) ķīmisko reakciju kinētika;
Διαβάστε περισσότεραLATVIJAS UNIVERSITĀTE LATVIJAS 28. ATKLĀTĀ FIZIKAS OLIMPIĀDE gada 13. aprīlī. Uzdevumi un atrisinājumi klase
Latvijas 8. atklātā fizikas olipiāde LATVIJAS UNIVERSITĀTE LATVIJAS 8. ATKLĀTĀ FIZIKAS OLIMPIĀDE. ada. aprīlī V. Fļorovs, D. Docenko, V. Kaščejevs, D. Bočarovs Uzdevi n atrisināji 9.. klase. zdevs. Eksperients
Διαβάστε περισσότερα6.4. Gaismas dispersija un absorbcija Normālā un anomālā gaismas dispersija. v = f(λ). (6.4.1) n = f(λ). (6.4.2)
6.4. Gaismas dispersija un absorbcija 6.4.1. Normālā un anomālā gaismas dispersija Gaismas izplatīšanās ātrums vakuumā (c = 299 792,5 ±,3 km/s) ir nemainīgs lielums, kas nav atkarīgs no viļņa garuma. Vakuumā
Διαβάστε περισσότεραFIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI
Mikroklimats FIZIKĀLO FAKTORU KOPUMS, KAS VEIDO ORGANISMA SILTUMAREAKCIJU AR APKĀRTĒJO VIDI UN NOSAKA ORGANISMA SILTUMSTĀVOKLI P 1 GALVENIE MIKROKLIMATA RĀDĪTĀJI gaisa temperatūra gaisa g relatīvais mitrums
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΛΥΣΕΙΣ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΕΤΑΡΗ 1 ΙΟΥΝΙΟΥ 019 ΛΥΣΕΙΣ ΘΕΜΑ Α A1. β Α. γ Α3. α Α. γ Α5. α) Λάθος β) Σωστό γ) Λάθος δ) Σωστό ε) Σωστό ΘΕΜΑ Β Β1. Σωστή απάντηση η ii. Μονάδες Εφαρμόζουμε ΑΔΟ για την κρούση των
Διαβάστε περισσότεραMinisterul EducaŃiei, Cercetării, Tineretului şi Sportului Centrul NaŃional de Evaluare şi Examinare
Eamenul de bacalaueat 0 Poba E. d) Poba scisă la FIZICĂ BAREM DE EVALUARE ŞI DE NOTARE Vaianta 9 Se punctează oicae alte modalităńi de ezolvae coectă a ceinńelo. Nu se acodă facńiuni de punct. Se acodă
Διαβάστε περισσότεραm i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
Διαβάστε περισσότεραSpektrālaparā un spektrālie mērījumi Lekciju konspekts. Linards Kalvāns LU FMF gada 7. janvārī
Spektrālaparā un spektrālie mērījumi Lekciju konspekts Linards Kalvāns LU FMF 014. gada 7. janvārī Saturs I. Vispārīga informācija 4 I.1. Literatūras saraksts..........................................
Διαβάστε περισσότεραElektromagnētisms (elektromagnētiskās indukcijas parādības)
atvijas Uiversitāte Fizikas u matemātikas fakutāte Fizikas oaļa Papiiājums ekciju kospektam kursam vispārīgajā fizikā ektromagētisms (eektromagētiskās iukcijas parāības) Asoc prof Aris Muižieks Noformējums
Διαβάστε περισσότεραMAZĀ MATEMĀTIKAS UNIVERSITĀTE
MAZĀ MATEMĀTIKAS UNIVERSITĀTE 4. nodarbība, 2012. gada 3. marts 4. nodarbība, 2012. gada 3. marts Matemātiskā modelēšana LU FMF pētniece, doktorante Sanda Blomkalna LU FMF vadošais pētnieks Uldis Strautiņš
Διαβάστε περισσότεραDatu lapa: Wilo-Stratos PICO 15/1-6
Datu lapa: Wilo-Stratos PICO 15/1-6 Raksturlīknes Δp-c (konstants) 5 4 3 2 1 v 1 2 3 4 5 6,5 1, p-c 1,5 2, Rp 1 m/s 1 2 3 4,2,4,6,8 1, 1,2,4,8 1,2 1,6 Rp 1¼ H/m Wilo-Stratos PICO 15/1-6, 25/1-6, 3/1-6
Διαβάστε περισσότεραLATVIJAS RAJONU 33. OLIMPIĀDE. 4. klase
Materiāls ņemts no grāmatas:andžāns Agnis, Bērziņa Anna, Bērziņš Aivars "Latvijas matemātikas olimpiāžu (5.-5.).kārtas (rajonu) uzdevumi un atrisinājumi" LATVIJAS RAJONU 33. OLIMPIĀDE 4. klase 33.. Ievietot
Διαβάστε περισσότεραTaisnzobu cilindrisko zobratu pārvada sintēze
LATVIJAS LAUKSAIMNIECĪBAS UNIVERSITĀTE Tehniskā fakultāte Mehānikas institūts J. SvētiĦš, Ē. Kronbergs Taisnzobu cilindrisko zobratu pārvada sintēze Jelgava 009 Ievads Vienkāršs zobratu pārvads ir trīslocekĝu
Διαβάστε περισσότεραJauna tehnoloģija magnētiskā lauka un tā gradienta mērīšanai izmantojot nanostrukturētu atomārās gāzes vidi
Projekts (vienošanās ) Jauna tehnoloģija magnētiskā lauka un tā gradienta mērīšanai izmantojot nanostrukturētu atomārās gāzes vidi Izveidotā jaunā magnētiskā lauka gradienta mērīšanas moduļa apraksts Aktivitāte
Διαβάστε περισσότεραBŪVJU TEORIJAS PAMATI
BŪVJU TEORIJAS PAMATI Pamatjēdzieni: (atkārtojumam, turpmākam plānam)) nedeformējami ķermeņi, to mehānika (teorētiskā mehānika), cieti deformējami ķermeņi, to mehānika: pieņēmumi (hipotētiski) - materiāla
Διαβάστε περισσότεραss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
Διαβάστε περισσότεραGaismas difrakcija šaurā spraugā B C
6..5. Gaismas difrakcija šaurā spraugā Ja plakans gaismas vilnis (paralēlu staru kūlis) krīt uz šauru bezgalīgi garu spraugu, un krītošās gaismas viļņa virsma paralēla spraugas plaknei, tad difrakciju
Διαβάστε περισσότερα6. TEMATS MEHĀNISKĀS SVĀRSTĪBAS UN VIĻŅI. Temata apraksts. Skolēnam sasniedzamo rezultātu ceļvedis. Uzdevumu piemēri
6. TEMATS MEHĀNISKĀS SVĀRSTĪBAS UN VIĻŅI Temata apraksts Skolēnam sasniedzamo rezultātu ceļvedis Uzdevumu piemēri F_10_SP_06_P1 Uzdevums grupai Skolēna darba lapa F_10_UP_06_P1 Seismogrāfa darbības shēma
Διαβάστε περισσότερα4. APGAISMOJUMS UN ATTĒLI
4. APGAISMJUMS UN ATTĒLI ptisko mikroskopu vēsture un nākotne Gaismas avota stiprums. Gaismas plūsma Apgaismojums Elektriskie gaismas avoti. Apgaismojums darba vietā Ēnas. Aptumsumi Attēla veidošanās.
Διαβάστε περισσότεραΠαρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.
(, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R
Διαβάστε περισσότεραRīgas Tehniskās universitātes Būvniecības fakultāte. Apkure, ventilācija un gaisa kondicionēšana. Kursa darbs Dzīvojamās ēkas apkure un ventilācija
Rīgas Tehniskās universitātes Būvniecības fakultāte Apkure, ventilācija un gaisa kondicionēšana Kursa darbs Dzīvojamās ēkas apkure un ventilācija Izpildīja: Kristaps Kuzņecovs Stud. apl. Nr. 081RBC049
Διαβάστε περισσότεραTROKSNIS UN VIBRĀCIJA
TROKSNIS UN VIBRĀCIJA Kas ir skaņa? a? Vienkārša skaņas definīcija: skaņa ir ar dzirdes orgāniem uztveramās gaisa vides svārstības Fizikā: skaņa ir elastiskas vides (šķidras, cietas, gāzveida) svārstības,
Διαβάστε περισσότεραRekurentās virknes. Aritmētiskā progresija. Pieņemsim, ka q ir fiksēts skaitlis, turklāt q 0. Virkni (b n ) n 1, kas visiem n 1 apmierina vienādību
Rekurentās virknes Rekursija ir metode, kā kaut ko definēt visbiežāk virkni), izmantojot jau definētas vērtības. Vienkāršākais šādu sakarību piemērs ir aritmētiskā un ǧeometriskā progresija, kuras mēdz
Διαβάστε περισσότεραP P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Διαβάστε περισσότεραIevads Optometrija ir neatkarīga redzes aprūpes profesija primārās veselības aprūpes sfērā. Šī profesija vairumā attīstīto valstu tiek regulēta ar
Ievads Optometrija ir neatkarīga redzes aprūpes profesija primārās veselības aprūpes sfērā. Šī profesija vairumā attīstīto valstu tiek regulēta ar likumu (tās piekopšanai nepieciešama licence un reģistrēšanās).
Διαβάστε περισσότερα