Περιεχόμενα 1 Κωδικοποίησ η Πηγής 2 Χωρητικότητα Διακριτών Καναλιών 2 / 21
|
|
- Σωκράτης Αλεξανδρίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Θεωρία Πληροφορίας και Στοιχεία Κωδίκων Κωδικοποίησ η Πηγής και Χωρητικότητα Διακριτών Καναλιών Διδάσ κων: Καλουπτσ ίδης Νικόλαος Επιμέλεια: Κατσ άνος Κωνσ ταντίνος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εαρινό Εξάμηνο / 21
2 Περιεχόμενα 1 Κωδικοποίησ η Πηγής 2 Χωρητικότητα Διακριτών Καναλιών 2 / 21
3 Συµπίεσ η Πληροφορίας (Κωδικοποίησ η Πηγής) 3 / 21
4 Βασ ικοί Ορισ μοί Κωδίκων Πηγής Μη ιδιάζων (nonsingular) κώδικας: Οταν όλες οι κωδικές λέξεις είναι διαφορετικές. Μοναδικώς αποκωδικοποιήσ ιµος (uniquely decodable) κώδικας: Οταν τόσ ο οι κωδικές λέξεις όσ ο και όλες οι πιθανές ακολουθίες των κωδικών λέξεων είναι διαφορετικές. Άµεσ ος ή Προθεµατικός κώδικας (instantaneous/ prefix code): O κώδικας του οποίου καµία κωδική λέξη δεν αποτελεί πρόθεµα κάποιας άλλης. Κάθε προθεµατικός κώδικας επιτρέπει την άµεσ η αποκωδικοποίησ η της κωδικής λέξης χωρίς να χρειάζεται να ληφθούν υπόψη οι επόµενες κωδικές λέξεις. Προκύπτει το σ υμπέρασ μα ότι: Άμεσ ος = Μοναδικώς Αποκωδικοποιήσ ιμος = Μη ιδιάζων 4 / 21
5 Παραδείγματα Κωδίκων Μη ιδιάζοντες: Ι, ΙΙ, ΙΙΙ, ΙV Μοναδικώς αποκωδικοποιήσ ιµοι: ΙΙ,ΙΙΙ,ΙV Άµεσ οι: ΙΙ και ΙΙΙ: Ο ΙV δεν είναι άµεσ ος, αφού για την αποκωδικοποίησ η χρειάζεται να περιµένουµε την εµφάνισ η ψηφίων που ανήκουν σ την επόµενη κωδική λέξη, π.χ / 21
6 Ανισ ότητα Kraft ( ) Για κάθε άµεσ ο κώδικα µε µέγεθος κωδικού αλφαβήτου q και µήκη των n κωδικών του λέξεων l i, όπου i=1,2,...,n, ισ χύει n i=1 q l i 1. ( ) Αντισ τρόφως, εάν για ένα σ ύνολο µηκών l i ικανοποιείται η ανισ ότητα Kraft, υπάρχει άµεσ ος κώδικας του οποίου οι κωδικές λέξεις έχουν αυτά τα µήκη. 6 / 21
7 Μη Άμεσ οι Κώδικες Για να είναι ένας κώδικας άµεσ ος πρέπει να ισ χύει η ανισ ότητα Kraft, η οποία επιβάλλει περιορισ µούς σ τα µήκη κωδίκων που µπορούµε να επιλέξουµε. Τι σ υµβαίνει εάν ένας κώδικας είναι µοναδικώς αποκωδικοποιήσ ιµος αλλά όχι, κατ ανάγκη, άµεσ ος; Δεδοµένου ότι οι άµεσ οι κώδικες αποτελούν υποσ ύνολο των µοναδικώς αποκωδικοποιήσ ιµων, υπάρχει περίπτωσ η οι µοναδικώς αποκωδικοποιήσ ιµοι να είναι πιο αποδοτικοί; Παρόλο που δε θα το δείξουµε λεπτοµερώς, για την απόδειξη του Θεωρήµατος Κωδικοποίησ ης Πηγής (Θεώρηµα 5.1 σ τη σ υνέχεια των διαφανειών), βασ ική προϋπόθεσ η είναι να ισ χύει η ανισ ότητα Kraft. Αποδεικνύεται (McMillan βλ. π.χ. Cover & Thomas Theorem 5.5.1) ότι και οι µοναδικώς αποκωδικοποιήσ ιµοι κώδικες υπακούουν σ την ανισ ότητα Kraft. Εποµένως, δε χάνουµε τίποτα (ως προς την αποδοτικότητα της σ υµπίεσ ης) µε το να χρησ ιµοποιούµε άµεσ ους κώδικες αντί για απλώς µοναδικώς αποκωδικοποιήσ ιµους! 7 / 21
8 Βέλτισ τος Κώδικας Μεταβλητού Μήκους Κωδικοποίησ η µεταβλητού µήκους: Προκειµένου η σ υµπίεσ η να είναι αναπωλειακή, o κώδικας πρέπει να είναι µοναδικώς αποκωδικοποιήσ ιµος Αναγκαία σ υνθήκη: πρέπει να ισ χύει η ανισ ότητα Kraft. Επιπλέον, θέλουµε η σ υµπίεσ η να είναι αποδοτική, δηλαδή το µέσ ο µήκος κώδικα ( L = n i=1 p(s i)l i ) να είναι το µικρότερο δυνατό. Ερωτήµατα: Υπάρχει σ υσ τηµατικός τρόπος για να βρίσ κουµε το βέλτισ το άµεσ ο κώδικα δεδοµένης µιας κατανοµής, p; NAI! (κώδικας Huffman). Πόσ ο καλή σ υµπίεσ η πετυχαίνουµε, τελικά, όταν χρησ ιµοποιήσ ουµε κώδικες µεταβλητού µήκους; Το πολύ 1 bit µακριά από την εντροπία. 8 / 21
9 Βέλτισ τος Άµεσ ος Κώδικας Η ανισ ότητα Kraft εγγυάται ότι ένας κώδικας είναι άµεσ ος. Ωσ τόσ ο, ο κώδικας δεν είναι, απαραίτητα και βέλτισ τος. Ορισ μός: Βέλτισ τος είναι ο κώδικας του οποίου οι κωδικές λέξεις έχουν το ελάχισ το µέσ ο µήκος, δηλαδή πρέπει να ισ χύει ότι E[l ] = min p i l i, {l i } i l = [l 1,...,l n] = argmin {l i } i p i l i 9 / 21
10 Κωδικοποίησ η Huffman Δοθείσ ης µιας πηγής χωρίς µνήµη µε πιθανότητες εµφάνισ ης σ υµβόλων p i, ποιος είναι ο βέλτισ τος άµεσ ος κώδικας; Η διαδικασ ία Huffman βασ ίζεται σ ε τρεις παρατηρήσ εις/ιδιότητες που έχουν σ χέσ η µε βέλτισ τους κώδικες: Σε ένα βέλτισ το κώδικα τα σ ύµβολα µε µεγαλύτερη πιθανότητα εµφάνισ ης θα πρέπει να αντισ τοιχούν σ ε πιο σ ύντοµες κωδικές λέξεις από τα σ ύµβολα µε µικρότερη πιθανότητα εµφάνισ ης, δηλαδή p i > p j l i l j (Cover & Τhomas Lemma 5.8.1) Σε ένα (δυαδικό) βέλτισ το κώδικα οι δύο µακρύτερες κωδικές λέξεις (οι οποίες αντισ τοιχούν σ τα 2 λιγότερο πιθανά σ ύµβολα) έχουν το ίδιο µήκος (Cover & Thomas Lemma 5.8.1). Για το (δυαδικό) κώδικα Huffman ισ χύει, επίσ ης, ότι οι κωδικές λέξεις που ανήκουν σ τα 2 λιγότερο πιθανά σ ύµβολα διαφέρουν µόνο κατά 1 bit.! Προσ οχή: Αυτό είναι χαρακτηρισ τικό του κώδικα Huffman και δεν είναι απαραίτητο να ισ χύει για να είναι ένας κώδικας βέλτισ τος! 10 / 21
11 Αλγόριθμος Κωδικοποίησ ης Huffman Ο (δυαδικός) αλγόριθµος Huffman κατασ κευάζει το (δυαδικό) δέντρο αρχίζοντας από τα φύλλα του και προχωρώντας προς τη ρίζα του. Αλγόριθμος: Βήμα 1: Τα σ ύµβολα (ή τα µηνύµατα) ταξινοµούνται έτσ ι ώσ τε οι πιθανότητές τους να είναι σ ε φθίνουσ α ακολουθία. Βήμα 2: Στη σ υνέχεια, επιλέγουµε τα δύο (ή δύο από τα) σ ύµβολα µε τις µικρότερες πιθανότητες. Βήμα 3: Συνδυάζουµε τα δύο σ ύµβολα που επιλέξαµε σ το Bήµα 2 σ ε ένα και αναθέτουµε σ το σ υνδυασ µένο σ ύµβολο το άθροισ µα των πιθανοτήτων των επιµέρους σ υµβόλων. Επαναλαµβάνουµε τη διαδικασ ία από το Bήµα 1 µεταξύ των σ υµβόλων που αποµένουν και του σ υµβόλου που δηµιουργήσ αµε µέχρις ότου καταλήξουµε σ ε ένα σ ύµβολο µε πιθανότητα 1. Βήμα 4: Οι κωδικές λέξεις που αντισ τοιχούν σ το κάθε σ ύµβολο αποτελούνται από τις ακολουθίες 0 και 1 που δηµιουργούνται εάν διατρέξουµε το δέντρο που δηµιουργήθηκε από τον κόµβο µε το µοναδικό σ ύµβολο προς τα σ ύµβολα από τα οποία ξεκινήσ αµε. 11 / 21
12 Παράδειγμα Κωδικοποίησ ης Huffman Μέσ ο μήκος 2.30 bits, εντροπία 2.28 bits 12 / 21
13 Κωδικοποίησ η Huffman Αγγλικού Αλφαβήτου 13 / 21
14 Κωδικοποίησ η Huffman MATLAB % Διάνυσ μα γραμμάτων s=[ ]; % Διάνυσ μα πιθανοτήτων γραμμάτων p=[0.25, 0.25, 0.20, 0.15, 0.15]; % Δημιουργεί το κωδικό βιβλίο dict ως cell array με γραμμές όσ ες τα γράμματα. Πχ Dict{4,:}=[0 0 1] Dict{5,:}=[0 0 0] [dict, avglength]=huffmandict(s,p) % Δημιουργία σ ήματος πηγής δεδομένων sig = randsrc(100,1,[symbols; p]); % Δημιουργία κωδικοποιημένης ακολουθίας comp = huffmanenco(sig,dict); % Αποκωδικοποίησ η της ακολουθίας εισ όδου comp με βάσ η το λεξικό dict dsig = huffmandeco(comp,dict); % Σύγκρισ η του αρχικού μηνύματος με το αποκωδικοποιημένο isequal(sig,dsig) ans = logical 1 14 / 21
15 Βασ ικό Μοντέλο Καναλιού Κανάλι: Ενα σ τοχασ τικό σ ύσ τηµα. Γενικά, πολλών εισ όδων, πολλών εξόδων (MIMO). Στη γενική περίπτωσ η, κάθε έξοδος κάθε χρονική σ τιγµή i εξαρτάται σ τατισ τικά από όλες τις εισ όδους του σ υσ τήµατος µέχρι και τη χρονική σ τιγµή i (θεωρώντας αιτιατό σ ύσ τηµα). Στο µάθηµα θα ασ χοληθούµε µε κανάλια µιας εισ όδου και µίας εξόδου (SISO). Είδη Καναλιών: Κανάλια διακριτών/σ υνεχών τιµών. Κανάλια χωρίς µνήµη/µε µνήµη. Κανάλια σ υνεχούς χρόνου/διακριτού χρόνου. 15 / 21
16 Θεώρημα κωδικοποίησ ης καναλιού Ερώτημα: Πόσ η ποσ ότητα πληροφορίας µπορεί να µεταφερθεί µέσ α από ένα διακριτό κανάλι χωρίς µνήµη κάθε φορά που χρησ ιµοποιούµε το κανάλι (κατά µέσ ο όρο); 2ο Θεµελιώδες θεώρηµα του Shannon : Υπάρχει τρόπος να µεταδώσ ουµε µε ρυθµό C και αυθαίρετα µικρή πιθανότητα σ φάλµατος αποκωδικοποίησ ης (ευθύ achievability). Αντισ τρόφως, είναι αδύνατο να µεταδώσ ουµε µε ρυθµό µεγαλύτερο του C εάν επιθυµούµε αυθαίρετα µικρή πιθανότητα σ φάλµατος (αντίσ τροφο converse). 16 / 21
17 Διακριτά κανάλια χωρίς µνήµη Πίνακας Μετάβασ ης Καναλιού: p 1,1 p 1,2 p 1,N [ ] p 2,1 p 2,2 p 2,N PY X =......, p M,1 p M,2 p M,N όπου [p i,j ] = [p(y j x i )] και P Y = P X P Y X. Στην ουσ ία, το κανάλι χωρίς µνήµη είναι µια οµάδα δεσ µευµένων κατανοµών. Ενα κανάλι δεν έχει µνήµη όταν η έξοδός του σ ε οποιαδήποτε χρονική σ τιγµή i εξαρτάται (σ τατισ τικά) µόνο από την είσ οδό του τη χρονική σ τιγµή i. 17 / 21
18 Μετάδοσ η πληροφορίας Η ποσ ότητα της πληροφορίας που µπορούµε να «περάσ ουµε» µέσ α από ένα κανάλι χωρίς µνήµη κάθε φορά που το χρησ ιµοποιούµε (κατά µέσ ο όρο) ισ ούται µε την αµοιβαία πληροφορία I(X;Y ), όπου X η είσ οδος και Y η έξοδος του καναλιού. Θυμίζουμε ότι I(X;Y ) = H(X) H(X Y ) = H(Y ) H(Y X). Διαισ θητικά (και όχι αυσ τηρώς μαθηματικά) αυτό εξηγείται ως εξής: Αρχικά, η αβεβαιότητα που έχουµε σ το δέκτη για τη µεταδοθείσ α τ.µ. Χ είναι Η(Χ). Μετά τη λήψη της Y, η αβεβαιότητά µας για τη Χ ισ ούται µε H(X Y ). Εποµένως, η αβεβαιότητά µας µειώθηκε κατά I(X;Y ). Αυτή είναι η πληροφορία που καταφέραµε να «περάσ ουµε» από τον ποµπό σ το δέκτη. 18 / 21
19 Πληροφοριακή και Λειτουργική Χωρητικότητα Η πληροφοριακή χωρητικότητα (information capacity) ενός διακριτού καναλιού χωρίς µνήµη (DMC) µε είσ οδο X και έξοδο Y ισ ούται µε C = max px (x) I(X;Y ). Εσ τω ότι κάθε φορά που χρησ ιµοποιούµε το κανάλι µεταδίδουµε ένα από Μ πιθανά µηνύµατα. Ο ρυθµός µετάδοσ ης R ισ ούται µε logm Η λειτουργική χωρητικότητα (operational capacity) ενός καναλιού ισ ούται µε το µέγισ το ρυθµό R για τον οποίο µπορούµε να επιτύχουµε πιθανότητα σ φάλµατος µετάδοσ ης οποιουδήποτε µηνύµατος αυθαίρετα κοντά σ το 0. Θεώρημα (Shannon): Η λειτουργική χωρητικότητα ενός διακριτού καναλιού χωρίς µνήµη ισ ούται µε την πληροφοριακή του χωρητικότητα. 19 / 21
20 Χωρητικότητα Δυαδικού Συμμετρικού Καναλιού (BSC) [ 1 f f [p Y (0) p Y (1)] = [p X (0) p X (1)] f 1 f { p Y (0) = (1 f )p X (0) + fp X (1) p Y (1) = fp X (0) + (1 f )p X (1) Χωρητικότητα: ] I(X;Y ) = H(Y ) H(Y X) = H(Y ) p(x)h(y X = x) x=0,1 = H(Y ) p(x)h(f ) x=0,1 = H(Y ) H(f ) Άρα, C BSC = 1 H(f ) και είναι επιτεύξιμη με ομοιόμορφη κατανομή για τη X. 20 / 21
21 Χωρητικότητα Δυαδικού Καναλιού Διαγραφής (BEC) Mοντελοποιεί καλά περιπτώσ εις όπου χρησ ιµοποιούµε κώδικα ανίχνευσ ης σ φαλµάτων σ το δέκτη. [ ] 1 a a 0 [p Y (0) p Y (E) p Y (1)] = [p X (0) p X (1)] 0 a 1 a Χωρητικότητα: C = max p(x) I(X;Y ) = max p(x) {H(Y ) H(Y X)} = max p(x) H(Y ) H(a). Ετσ ι, μία πρωτη ιδέα είναι να πούμε ότι max p(x) H(Y ) = log3. Ωσ τόσ ο, κάτι τέτοιο δεν επιτυγχάνεται για καμία κατανομή p(x). Η λύσ η προκύπτει θέτοντας p(x = 1) = π. Τότε προκύπτει ότι p(y = 0) = (1 π)(1 a),p(y = E) = a και p(y = 1) = π(1 a). 21 / 21
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 5 Μαρτίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Ρυθμός κωδικοποίησης Ένας κώδικας που απαιτεί L bits για την κωδικοποίηση μίας συμβολοσειράς N συμβόλων που εκπέμπει μία πηγή έχει ρυθμό κωδικοποίησης (μέσο μήκος λέξης) L
EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015
EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 13 Δ. Τουμπακάρης 30 Μαΐου 2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια Παράδοση:
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 6η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 6η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 24 Μαρτίου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 17 Μαΐου 2011 (2η έκδοση, 21/5/2011) ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 19 Φεβρουαρίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
ΕΑΠ/ΠΛΗ22/ΑΘΗ-4. 3 η ΟΣΣ
ΕΑΠ/ΠΛΗ22/ΑΘΗ-4 3 η ΟΣΣ 08.02.205 Ν.Δημητρίου Σημείωση: Η παρουσίαση αυτή είναι συμπληρωματική της ύλης των βιβλίων (τόμος Β / μέρη Α,Β και τόμος Α ) καθώς και των 2 παρουσιάσεων στο study.eap.gr (oss3_plh22_digicomms_205,
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πληροφορία Μέτρο πληροφορίας Μέση πληροφορία ή Εντροπία Από κοινού εντροπία
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση
22Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Τελική Εξέταση
22A004 (eclass EE278) Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 11 Δ. Τουμπακάρης 6 Ιουνίου 2013 22Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Τελική Εξέταση Διάρκεια Εξέτασης: 3 ώρες. 4 ασκήσεις
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή
Κεφάλαιο 2 Πληροφορία και εντροπία
Κεφάλαιο 2 Πληροφορία και εντροπία Άσκηση. Έστω αλφάβητο Α={0,} και δύο πηγές p και q. Έστω οτι p(0)=-r, p()=r, q(0)=-s και q()=s. Να υπολογιστούν οι σχετικές εντροπίες Η(Α,p/q) και Η(Α,q/p). Να γίνει
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη (2η έκδοση, 20/5/2013)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη (2η έκδοση, 20/5/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 14 Μαΐου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
Θεωρία της Πληροφορίας 3 ο Εξάμηνο
Σμήμα Πληροφορικής & Επικοινωνιών Θεωρία της Πληροφορίας 3 ο Εξάμηνο Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών 1 Διεξαγωγή και Εξέταση του Μαθήματος Μάθημα Πώς? 13 Διαλέξεις.
ΕΑΠ/ΠΛΗ22/ΑΘΗ-3. 3 η ΟΣΣ
ΕΑΠ/ΠΛΗ22/ΑΘΗ-3 3 η ΟΣΣ 04.02.207 Ν.Δημητρίου Σημείωση: Η παρουσίαση αυτή είναι συμπληρωματική της ύλης των βιβλίων (τόμος Β / μέρη Α,Β και τόμος Α ) καθώς και των 2 παρουσιάσεων στο study.eap.gr (oss3_plh22_digicomms_207,
Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1
Θεωρία πληροφοριών Εισαγωγή Αµοιβαία πληροφορία Εσωτερική πληροφορία Υπό συνθήκη πληροφορία Παραδείγµατα πληροφορίας Μέση πληροφορία και εντροπία Παραδείγµατα εντροπίας Εφαρµογές Τεχνολογία Πολυµέσων 07-
ΕΑΠ/ΠΛΗ22/ΑΘΗ-4. 3 η ΟΣΣ
ΕΑΠ/ΠΛΗ22/ΑΘΗ-4 3 η ΟΣΣ 06.02.2016 Ν.Δημητρίου Σημείωση: Η παρουσίαση αυτή είναι συμπληρωματική της ύλης των βιβλίων (τόμος Β / μέρη Α,Β και τόμος Α ) καθώς και των 2 παρουσιάσεων στο study.eap.gr (PLH22_3rdOSS_2015_16,
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θ.Ε. ΠΛΗ22 (2012-13) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #4. Έκδοση v2 με διόρθωση τυπογραφικού λάθους στο ερώτημα 6.3 Στόχος: Βασικό στόχο της 4 ης εργασίας αποτελεί η εξοικείωση με τα μέτρα ποσότητας πληροφορίας τυχαίων
Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών»
Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Άσκηση 1 Πρόκειται να µεταδώσουµε δυαδικά δεδοµένα σε RF κανάλι µε. Αν ο θόρυβος του καναλιού είναι Gaussian - λευκός µε φασµατική πυκνότητα W, να βρεθεί
( ) log 2 = E. Σεραφείµ Καραµπογιάς
Παρατηρούµε ότι ο ορισµός της Η βασίζεται στη χρονική µέση τιµή. Για να ισχύει ο ορισµός αυτός και για µέση τιµή συνόλου πρέπει η πηγή να είναι εργοδική, δηλαδή H ( X) ( ) = E log 2 p k Η εντροπία µιας
Μάθημα Εισαγωγή στις Τηλεπικοινωνίες Κωδικοποίηση πηγής- καναλιού Μάθημα 9o
Μάθημα Εισαγωγή στις Τηλεπικοινωνίες Κωδικοποίηση πηγής- καναλιού Μάθημα 9o ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τομέας Επικοινωνιών και Επεξεργασίας Σήματος Τμήμα Πληροφορικής & Τηλεπικοινωνιών
Κωδικοποίηση Πηγής. Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα):
Κωδικοποίηση Πηγής Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα): Coder Decoder Μεταξύ πομπού-καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας
Θέματα Συστημάτων Πολυμέσων
Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 25 Απριλίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 14 Μαΐου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας
Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης
Κωδικοποίηση Πηγής Coder Decoder Μεταξύ πομπού και καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας της πηγής με εναλλακτικά σύμβολα ή λέξεις. Κωδικοποίηση
Shmei sveic Perigrafik c Statisvtik c
Shmei sveic Perigrafik c Statisvtik c E. G. Tsvi ac Ας θεωρήσ ουμε έναν πίνακα αριθμών X ={x 1, x,..., x } (1) Το σ ύνολο αυτό θα μπορούσ ε να αποτελείται από τις αποδόσ εις μιας μετοχής σ ε διαφορετικές
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πιθανότητες Πληροφορία Μέτρο
Απαντήσεις σε απορίες
Ερώτηση Η µέση ποσότητα πληροφορίας κατά Shannon είναι Η(Χ)=-Σp(xi)logp(xi)...σελ 28 Στο παραδειγµα.3 στη σελιδα 29 στο τέλος δεν καταλαβαίνω πως γίνεται η εφαρµογή του παραπάνω τύπου ηλαδη δεν βλεπω συντελεστη
Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης
Δίαυλος Πληροφορίας Η λειτουργία του διαύλου πληροφορίας περιγράφεται από: Τον πίνακα διαύλου μαθηματική περιγραφή. Το διάγραμμα διάυλου παραστατικός τρόπος περιγραφής. Πίνακας Διαύλου Κατασκευάζεται με
Θεώρημα κωδικοποίησης πηγής
Κωδικοποίηση Kωδικοποίηση πηγής Θεώρημα κωδικοποίησης πηγής Καθορίζει ένα θεμελιώδες όριο στον ρυθμό με τον οποίο η έξοδος μιας πηγής πληροφορίας μπορεί να συμπιεσθεί χωρίς να προκληθεί μεγάλη πιθανότητα
Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από:
Δίαυλος Πληροφορίας Η λειτουργία του περιγράφεται από: Πίνακας Διαύλου (μαθηματική περιγραφή) Διάγραμμα Διαύλου (παραστατικός τρόπος περιγραφής της λειτουργίας) Πίνακας Διαύλου Χρησιμοποιούμε τις υπό συνθήκη
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Μαριάς Ιωάννης Μαρκάκης Ευάγγελος marias@aueb.gr markakis@gmail.com Περίληψη Shannon theory Εντροπία Μελέτη κρυπτοσυστηµάτων
Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης
Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >
1 Βασικές Έννοιες Θεωρίας Πληροφορίας
1 Βασικές Έννοιες Θεωρίας Πληροφορίας Εντροπία τυχαίων μεταβλητών X, Y : H(X) = E [log Pr(x)] (1) H(X, Y ) = E [log Pr(x, y)] (2) H(X Y ) = E [log Pr(x y)] (3) Ιδιότητες Εντροπίας: Νόμος Bayes: Pr(y x)
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣΟΡ Κεφάλαιο 1 : Εισαγωγή στη Θεωρία ωία Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Έννοια της πληροφορίας Άλλες βασικές έννοιες Στόχος
Εισαγωγή στη θεωρία πληροφορίας
Θεωρία πληροφορίας Εισαγωγή στη θεωρία πληροφορίας Τηλεπικοινωνιακά συστήματα Όλα τα τηλεπικοινωνιακά συστήματα σχεδιάζονται για να μεταφέρουν πληροφορία Σε κάθε τηλεπικοινωνιακό σύστημα υπάρχει μια πηγή
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η & 12η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 11η & 12η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 13 & 27 Μαΐου 2014 ηµήτρης-αλέξανδρος Τουµπακάρης Προχ. Θέµατα Θεωρίας Πληροφορίας
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 10η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 10η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 21 Μαΐου 2015 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας
EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Λυμένες ασκήσεις σε Κανάλια
EE78 (Α4) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 4 Δ. Τουμπακάρης 5 Ιουνίου 5 EE78 (Α4) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Λυμένες ασκήσεις σε Κανάλια. *Τα κανάλια με μνήμη έχουν μεγαλύτερη
Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9
Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις
Σεραφείµ Καραµπογιάς. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.3-1
Ο αλγόριθµος Lempel-iv Ο αλγόριθµος Lempel-iv ανήκει στην κατηγορία των καθολικών universal αλγορίθµων κωδικοποίησης πηγής δηλαδή αλγορίθµων που είναι ανεξάρτητοι από τη στατιστική της πηγής. Ο αλγόριθµος
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 10η διάλεξη (2η έκδοση, 7/5/2013)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 10η διάλεξη (2η έκδοση, 7/5/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 23 Απριλίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
a n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8
Διακριτά Μαθηματικά Σχέσεις Αναδρομής Ι 1 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 2 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 1ος τρόπος: Εχουμε τη
Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας
Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 3: Επισκόπηση Συµπίεσης 2 Θεωρία Πληροφορίας Κωδικοποίηση Θεµελιώθηκε απο τον Claude
ΕΑΠ/ΠΛΗ22/ΑΘΗ.3. 4 η ΟΣΣ
ΕΑΠ/ΠΛΗ22/ΑΘΗ.3 4 η ΟΣΣ 19.03.2017 Σχόλια για τη ΓΕ3 & Συμπληρωματικές Διαφάνειες στα Κανάλια Επικοινωνίας και τους Κώδικες Διόρθωσης Σφαλμάτων Νίκος Δημητρίου ΕΑΠ / ΠΛΗ22 /ΑΘΗ.3 / 4η ΟΣΣ / 19.03.2017
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Κωδικοποίηση Πηγής Ψηφιακή Μετάδοση Υπάρχουν ιδιαίτερα εξελιγμένες τεχνικές αναλογικής μετάδοσης (που ακόμη χρησιμοποιούνται σε ορισμένες εφαρμογές) Επίσης,
Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ
Θεωρία τησ Πληροφορίασ (Θ) Ενότητα 3: Κωδικοποίηςη Πηγήσ ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 12η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 2 Ιουνίου 2015 ηµήτρης-αλέξανδρος Τουµπακάρης Προχ. Θέµατα Θεωρίας Πληροφορίας 12η
Θεωρία Πληροφορίας. Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Διακριτές πηγές πληροφορίας με μνήμη Μαρκοβιανές αλυσίδες Τάξη μακροβιανών αλυσίδων
Κώδικες µεταβλητού µήκους
6 Κώδικες µεταβλητού µήκους Στο κεφάλαιο αυτό µελετώνται οι κώδικες µεταβλητού µήκους, στους οποίους όλες οι λέξεις δεν έχουν το ίδιο µήκος και δίνονται οι µέ- ϑοδοι Fano-Shannon και Huffman για την κατασκευή
Συμπίεση χωρίς Απώλειες
Συμπίεση χωρίς Απώλειες Στόχοι της συμπίεσης δεδομένων: Μείωση του απαιτούμενου χώρου αποθήκευσης των δεδομένων. Περιορισμός της απαιτούμενης χωρητικότητας διαύλου επικοινωνίας για την μετάδοση. μείωση
ΠΛΗ21 Κεφάλαιο 2. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 2 Δυαδική Κωδικοποίηση
Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 2 Δυαδική Κωδικοποίηση Στόχοι του κεφαλαίου είναι να γνωρίσουμε: Τι είναι Κώδικας Τι είναι αλφάβητο & λέξεις ενός κώδικα Τι είναι οι δυαδικές λέξεις Το πλήθος των λέξεων
Περίληψη Προηγούμενου Μαθήματος Κανάλια επικοινωνίας με θόρυβο και η χωρητικότητά τους
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Γ Κοντογιάννης Πέμπτη Μαΐου 7 Φυλλάδιο #3 Πρίληψη Προηγούμνου Μαθήματος Κανάλια πικοινωνίας μ θόρυβο και η χωρητικότητά τους Πώς πριγράφουμ ένα κανάλι πικοινωνίας; Τι θα πι «θόρυβος»;
Θέματα Συστημάτων Πολυμέσων
Θέματα Συστημάτων Πολυμέσων Ενότητα # 5: Βασική Θεωρία Πληροφορίας Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Ενδεικτικές Λύσεις
EE78 (Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 15 Δ Τουμπακάρης 3 Ιουνίου 015 EE78 (Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Ενδεικτικές Λύσεις 1 Υποβέλτιστοι κώδικες
ΣΥΓΚΡΙΣΗ ΕΠΙ ΟΣΕΩΝ ΨΗΦΙΑΚΩΝ ΚΑΝΑΛΙΩΝ & ΟΡΙΑ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΑΥΤΩΝ
ΕΙΣ. ΣΥΣΤ. ΕΠΙΚΟΙΝΩΝΙΩΝ 011-1 16/1/011 9:45:1 µµ ΣΥΓΚΡΙΣΗ ΕΠΙ ΟΣΕΩΝ ΨΗΦΙΑΚΩΝ ΚΑΝΑΛΙΩΝ & ΟΡΙΑ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΑΥΤΩΝ ΑΠΑΙΤΗΣΕΙΣ ΣΕ ΕΥΡΟΣ ΖΩΝΗΣ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΙΑΒΙΒΑΣΗΣ ΙΑΚΡΙΤΩΝ Ε ΟΜΕΝΩΝ Η ΣΧΕΣΗ ΜΕΤΑΞΥ ΕΥΡΟΥΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 422: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2004 2005, Χειµερινό Εξάµηνο Φροντιστηριακή Άσκηση 3: Εντροπία, κωδικοποίηση Quadtree 1. Εντροπία 22 Σεπτεµβρίου 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 04: ΣΥΜΠΙΕΣΗ ΚΑΙ ΜΕΤΑ ΟΣΗ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2007 2008, Χειµερινό Εξάµηνο 6 Νοεµβρίου 2007 Φροντιστηριακή Άσκηση 2: (I) Εντροπία,
7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση
Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής. Εντροπία Shannon
Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής Εντροπία Shannon Ένα από τα βασικά ερωτήματα της θεωρίας της πληροφορίας ήταν ανέκαθεν το πώς θα μπορούσε να ποσοτικοποιηθεί η πληροφορία, ώστε να μπορούμε
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ 5. Εισαγωγή Ο σκοπός κάθε συστήματος τηλεπικοινωνιών είναι η μεταφορά πληροφορίας από ένα σημείο (πηγή) σ ένα άλλο (δέκτης). Συνεπώς, κάθε μελέτη ενός τέτοιου συστήματος
Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα
Γενικό πλάνο Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 1 Παράδειγµα δοµικής επαγωγής 2 Ορισµός δοµικής
Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Αρχικός συγγραφέας: Ηλίας
Μαθηματικά Πληροφορικής 3ο Μάθημα Αρχικός συγγραφέας: Ηλίας Κουτσουπιάς Τροποποιήσεις: Σταύρος Κολλιόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Δομική επαγωγή Η ιδέα της μαθηματικής
Μαθηµατικά για Πληροφορική
Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 14/10/2008 1 / 24 Γενικό πλάνο 1 Παράδειγµα δοµικής επαγωγής
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης
ιαφορική εντροπία Σεραφείµ Καραµπογιάς
ιαφορική εντροπία Σεραφείµ Καραµπογιάς Για πηγές διακριτού χρόνου µε συνεχές αλφάβητο, των οποίων οι έξοδοι είναι πραγµατικοί αριθµοί, ορίζεται µια άλλη ποσότητα που µοιάζει µε την εντροπία και καλείται
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 13: Συνελικτικοί Κώδικες Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Κώδικες: Εισαγωγή Συνελικτικοί κώδικες Ατζέντα Ιστορική αναδρομή Μαθηματικό υπόβαθρο Αναπαράσταση
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Θεωρία Πληροφορίας. Διάλεξη 7: Κωδικοποίηση καναλιού με γραμμικούς κώδικες block. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 7: Κωδικοποίηση καναλιού με γραμμικούς κώδικες block Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Τεχνικές Διόρθωσης Λαθών Κώδικες εντοπισμού λαθών Κώδικες εντοπισμού
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
ΤΕΙ ΛΑΡΙΣΑΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΤΕΙ ΛΑΡΙΣΑΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Εισαγωγή στη Θεωρία Πληροφοριών Χρήστου Νικολαΐδη Συµπληρωµατικές Σηµειώσεις (*) & Ασκήσεις (*) Στις σηµειώσεις µου µε
ABSTRACT. PAPADOPOULOS SPYRIDON Department of Information and Communication Systems Engineering UNIVERSITY OF THE AEGEAN
Δίκτυα Ακτινικής Βάσ ης σ ε Σώματα Δεδομένων Μεγάλου Ογκου σ ε SIMD Υπολογισ τικά Συσ τήματα Η Διπλωματική Εργασ ία παρουσ ιάσ τηκε ενώπιον του Διδακτικού Προσ ωπικού του Πανεπισ τημίου Αιγαίου Σε Μερική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Θεωρητικές Ασκήσεις (# ): ειγµατοληψία, κβαντοποίηση και συµπίεση σηµάτων. Στην τηλεφωνία θεωρείται ότι το ουσιαστικό περιεχόµενο της
Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο
Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών
Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
4. ΚΩ ΙΚΟΠΟΙΗΣΗ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΧΩΡΙΣ
4. ΚΩ ΙΚΟΠΟΙΗΣΗ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΧΩΡΙΣ ΘΟΡΥΒΟ Στο κεφάλαιο αυτό θα θεωρήσουµε ότι το κανάλι επικοινωνίας είναι ιδανικό, χωρίς θόρυβο, ότι δηλαδή δεν συµβαίνουν σφάλµατα κατά τη µετάδοση της πληροφορίας. Εδώ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 Ε_3.Μλ3ΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης:
Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Τμήμα Πληροφορικής και Τηλ
Μαθηματικά Πληροφορικής 3ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Δομική επαγωγή Η ιδέα της μαθηματικής επαγωγής μπορεί να επεκταθεί και σε άλλες δομές εκτός από το σύνολο N
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Ενότητα: Ασκήσεις Αυτοαξιολόγησης Καθηγητής Κώστας Μπερμπερίδης Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Τμήμα Μηχανικών Η/Υ και Πληροφορικής Περιεχόμενα Σκοπός Ενότητας
ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ ΕΙΚΟΣΤΟ ΠΡΩΤΟ ΜΑΘΗΜΑ, --3 Μ. Παπαδημητράκης. Τώρα θα δούμε μια ακόμη εφαρμογή του Κριτηρίου του Ολοκληρώματος. Παράδειγμα. Γνωρίζουμε ότι η αρμονική σειρά αποκλίνει στο +, το οποίο φυσικά σημαίνει
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 13 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst15
Nέες Τεχνολογίες. στις Επικοινωνίες
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Nέες Τεχνολογίες στις Επικοινωνίες Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Κώδικες Διόρθωσης Λαθών Τεχνολογικό Εκπαιδευτικό
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 014-015 Μοναδικά Αποκωδικοποιήσιμοι Κώδικες Δρ. Ν. Π. Σγούρος Έλεγος μοναδικής Αποκωδικοποίησης Γενικοί ορισμοί Έστω δύο κωδικές λέξεις α,β με μήκη,m και
d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου
Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Σήματα και πληροφορία Βασικές έννοιες 2 Αναλογικά και Ψηφιακά Σήματα Στις τηλεπικοινωνίες συνήθως χρησιμοποιούμε περιοδικά αναλογικά σήματα και
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 10: Παλμοκωδική Διαμόρφωση, Διαμόρφωση Δέλτα και Πολύπλεξη Διαίρεσης Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Παλμοκωδική Διαμόρφωση (PCM) Παλμοκωδική Διαμόρφωση
Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου
Συμπίεση Η συμπίεση δεδομένων ελαττώνει το μέγεθος ενός αρχείου : Εξοικονόμηση αποθηκευτικού χώρου Εξοικονόμηση χρόνου μετάδοσης Τα περισσότερα αρχεία έχουν πλεονασμό στα δεδομένα τους Είναι σημαντική
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 10 : Κωδικοποίηση καναλιού Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Απόσταση και βάρος Hamming Τεχνικές και κώδικες ανίχνευσης &
2 Η ολοκλήρωση της διπλωματικής εργασίας συγχρηματοδοτήθηκε μέσω του Εργου «Υποτροφίες ΙΚΥ» από πόρους του ΕΠ «Εκπαίδευση και Δια Βίου Μάθηση», του Ευ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες Μεταπτυχιακή Εργασία Διάταξη και Θεωρία Γενικής Ισορροπίας Μαρία Παπαδάκη Επιβλέπων
Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση
Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T 0 1 2 3 4 5 6 7 U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους
Τεχνολογία Πολυμέσων. Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του