ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5
|
|
- Νικάτωρ Νίκων Μοσχοβάκης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ευτέρα 23 Απριλίου 2018 Ασκηση 1. Εστω B = { e 1, e 2,, e n µια ορθοκανονική ϐάση του Ευκλείδειου χώρου (E,, ). Τι προκύπτει µε την εφαρµογή της διαδικασίας Gram-Schmidt στο σύνολο B; Ασκηση 2. Στον Ευκλείδειο χώρο R 3, ο οποίος είναι εφοδιασµένος µε το συνηθισµένο εσωτερικό γινόµενο, να ϐρεθεί µια ορθοκανονική ϐάση του υποχώρου V ο οποίος παράγεται από τα διανύσµατα : x = (1, 1, 0, 1), y = ( 1, 0, 0, 2), z = (1, 0, 2, 1) Ασκηση 3. Να επεκταθεί σε µια ορθοκανονική ϐάση του R 3 το σύνολο διανυσµάτων { x 1, x 2, όπου : 1 1 x 1 = 2, 0,, x 2 = (0, 1, 0) 2 Ασκηση 4. Θεωρούµε τα ακόλουθα διανύσµατα του R 4 : x = (2, 1, 3, 1), y = (7, 4, 3, 3), z = (1, 1, 6, 0), w = (5, 7, 7, 8) Με την διαδικασία Gram-Schmidt, να ϐρεθεί µια ορθοκανονική ϐάση του υπόχωρου V ο οποίος παράγεται από τα παραπάνω διανύσµατα, και ακολούθως να προσδιορισθεί ο ορθογώνιος υπόχωρος V του V. Ασκηση 5. Θεωρούµε τον Ευκλείδειο χώρο M 2 (R), εφοδιασµένο µε το συνηθισµένο εσωτερικό γινόµενο, και έστω οι ακόλουθοι 2 2 πίνακες πραγµατικών αρθµών : A = και B = Εστω V ο υπόχωρος του M 2 (R) ο οποίος παράγεται από τους πίνακες A και B. (1) Να ϐρεθεί µια ορθοκανονονική ϐάση B 1 του V. (2) Να ϐρεθεί µια ορθοκανονική ϐάση B 2 του V. (3) Να συµπληρωθεί η B 1 σε µια ορθοκανονική ϐάση B του M 2 (R). (4) Να ϐρεθεί η ορθογώνια προβολή του πίνακα 1 1 X = 1 1 στον υπόχωρο V.
2 2 Ασκηση 6. Εστω (E,, ) ένας Ευκλείδειος χώρος και { ε 1,, ε m ένα ορθοκανονικό σύνολο διανυσµάτων του E. Εστω y E. Αν dim R E = n <, τότε να δείξετε ότι στην ανισότητα ισχύει η ισότητα αν και µόνον αν m = n. y, ε y, ε m 2 y 2 Ασκηση 7. ίνεται ο υπόχωρος του R 4 : V = { (x, y, z, w) R 4 2x y z = 0 και y z w = 0 (1) Να ϐρεθούν δυο διαφορετικοί υπόχωροι V 1 και V 2 του R 4 διάστασης 3 έτσι ώστε V = V 1 V 2. (2) Να ϐρεθεί ένα ορθογώνιο συµπλήρωµα του V 1 και ένα ορθογώνιο συµπλήρωµα του V 2 στον R 4, ως προς το συνηθισµένο εσωτερικό γινόµενο του R 4. (3) Είναι το u = (0, 0, 1, 1) στοιχείο του V; Αν όχι ϐρείτε την προβολή του u στον V. Ασκηση 8. Θεωρούµε τους Ευκλείδειους χώρους R 4 και R 3, εφοδιασµένους µε το συνηθισµένο εσωτερικό γινόµενο, και έστω η γραµµική απεικόνιση : f : R 4 R 3, f(x, y, z, w) = (x + y, z + w, x + z) (1) Να ϐρεθούν ορθοκανονικές ϐάσεις των υποχώρων Ker(f) και Ker(f). (2) Να ϐρεθούν οι ορθογώνιες προβολές το διανύσµατος στους υποχώρους Ker(f) και Ker(f). z = (5, 2, 1, 4) Ασκηση 9. Θεωρούµε τον Ευκλείδειο χώρο R 3, εφοδιασµένον µε το συνηθισµένο εσωτερικό γινόµενο, και έστω V = { (x, y, z) R 3 x 5y 2z = 0 (1) Να ϐρεθεί µια ορθοκανονική ϐάση του R 3 η οποία να περιέχει δύο διανύσµατα του V. (2) Να ϐρεθεί µια ορθοκανονική ϐάση του R 3 η οποία να περιέχει ένα διανύσµα του V. Ασκηση 10. Στον Ευκλείδειο χώρο (R 4,, ) να ϐρεθεί η ορθογώνια προβολή του διανύσµατος x = (3, 1, 2, 4) στον υπόχωρο V ο οποίος παράγεται από τα διανύσµατα : x 1 = (1, 2, 1, 1), x 2 = (0, 3, 1, 1), x 3 = (0, 0, 2, 1) Ακολούθως να ϐρεθεί ο ορθογώνιος υπόχωρος V του V και να ϐρεθεί η κάθετη προβολή του x στον V. Ασκηση 11. Να δεχιθεί ότι η απεικόνιση, : R 3 R 3 R (x 1, x 2, x 3 ), (y 1, y 2, y 3 ) = x 1 y 1 + 5x 2 y 2 + 3x 3 y 3 + 2x 1 y 2 + 2x 2 y 1 + x 3 y 1 + x 1 y 3 + 3x 2 y 3 + 3x 3 y 2 είναι ένα εσωτερικό γινόµενο στον R 3. (1) Να ϐρεθεί µια ορθοκανονική ϐάση του Ευκλείδειου χώρου (E,, ). (2) Αν V = { (x, y, z) R 3 x y + z = 0 να ϐρεθεί η ορθογώνια και η κάθετη προβολή του διανύσµατος x = (1, 1, 1) στον υπόχωρο V.
3 3 Ασκηση 12. Εστω (E,, ) ένας Ευκλείδειος χώρος, και C = { x 1, x 2,, x n ένα υποσύνολο διανυσµάτων του E. Εστω D = { y 1, y 2,, y n το σύνολο διανυσµάτων το οποίο κατασκευάζεται επαγωγικά ακολουθώντας τη διαδικασία Gram-Schmidt. Σηµειώνουµε ότι αν τα διανύσµατα y 1, y 2,, y k 1 έχουν κατασκευαστεί, τότε αυτά τα διανύσµατα είναι µη-µηδενικά και το διάνυσµα y k κατασκευάζεται µέσω του τύπου ( ). (1) Ισχύει ότι (2) Ισχύει ότι (3) Ισχύει ότι k = 1, 2,, n : k = 1, 2,, n : y k = 0 k = 1, 2,, n : y k = x k 0 y k x k { x 1 = 0, αν k = 1 x k L( x 1, x 2,, x k 1 ), αν k 2 k = 1 ή x k, x j = 0, j = 1, 2,, k 1 αν k 2 Ασκηση 13. Εστω (E,, ) ένας Ευκλείδειος χώρος, και C = { x 1, x 2,, x n ένα γραµµικά ανεξάρτητο υποσύνολο διανυσµάτων του E. Εστω C = { y 1, y 2,, y n το ορθογώνιο σύνολο µη-µηδενικών διανυσµάτων το οποίο κατασκευάζεται ακολουθώντας τη διαδικασία Gram-Schmidt. Να δειχθεί ότι, k = 2,, n: G( x y k 2 1, x 2,, x k ) = G( x 1, x 2,, x k 1 ) Ασκηση 14. Εστω (E,, ) ένας Ευκλείδειος χώρος πεπερασµένης διάστασης και V ένας υπόχωρος του E. Αν x E, ϑεωρούµε το σύνολο όλων των γωνιών ( x, V) = { ( x, y) y V τις οποίες σχηµατίζουν τα διανύσµατα του υπόχωρου V µε το διάνυσµα x. Να δειχθεί ότι η µικρότερη από όλες αυτές τις γωνίες είναι η γωνία που σχηµατίζει το διάνυσµα x µε την ορθογώνια προβολή του x στον υπόχωρο V: min ( x, V) = ( x, Π V ( x)) Ασκηση 15. Εστω (E,, ) ένας Ευκλείδειος χώρος, και C = { x 1, x 2,, x n ένα υποσύνολο διανυσµάτων του E. Για την ορίζουσα Gram G( x 1, x 2,, x n ) των διανυσµάτων x 1, x 2,, x n, να δειχθεί ότι : και επιπλέον : 0 G( x 1, x 2,, x n ) x 1 2 x 2 2 x n 2 (1) G( x 1, x 2,, x n ) = 0 αν και µόνον αν το σύνολο x 1, x 2,, x n είναι γραµµικά εξαρτηµένο. (2) Τα ακόλουθα είναι ισοδύναµα : (αʹ) G( x 1, x 2,, x n ) x 1 2 x 2 2 x n 2. (ϐʹ) (i) είτε ένα τουλάχιστον εκ των διανυσµάτων x 1, x 2,, x n είναι το µηδενικό, (ii) είτε το σύνολο διανυσµάτων x 1, x 2,, x n είναι ορθογώνιο. Ασκηση 16. Εστω (E,, ) ένας Ευκλείδειος χώρος και F ένας υπόχωρος του E. Υποθέτουµε ότι F = U V, όπου U V Να δειχθεί ότι : U = F V, όπου F V V = F U, όπου F U
4 4 Ασκηση 17. Εστω (E,, ) ένας Ευκλείδειος χώρος πεπερασµένης διάστασης και F ένας υπόχωρος του E. Αν x E, να δειχθεί ότι : x 2 = Π F ( x) 2 + K V ( x) 2 Επιεπλέον να δεχιθούν τα εξής : (1) (2) Π F ( x) x Π F ( x) = x x F Ο αριθµός K V ( x) καλείται η απόσταση του διανύσµατος x E από τον υπόχωρο F και συµβολίζεται µε : Εποµένως : d( x, F) = 0 x F. d( x, F) = K V ( x) Ασκηση 18. Εστω (E,, ) ένας Ευκλείδειος χώρος και F ένας υπόχωρος του E. Υποθέτουµε ότι ο υπόχωρος F έχει πεπερασµένη διάσταση. Εστω x E ένα διάνυσµα του E και υποθέτουµε ότι : Να δειχθεί ότι 1 : και επιπλέον : x = x 1 + x 2, όπου x 1 F x = y + z, όπου y F και z F z x 2 z = x 2 y = x 1 και z = x 2 Ασκηση 19. Να ϐρεθεί η απόσταση d( x, V) του διανύσµατος x του R 4 από τον υπόχωρο V του R 4, στις ακόλουθες περιπτώσεις : (1) x = (2, 2, 1, 1) και V = L( y 1, y 2 ), όπου : y 1 = (3, 4, 4, 1) και y 1 = (0, 1, 1, 2). (2) x = (1, 0, 3, 0) και V = L( y 1, y 2, y 3 ), όπου : y 1 = (5, 3, 4, 3), y 2 = (1, 1, 4, 5), και y 3 = (2, 1, 1, 2). Υπενθυµίζουµε ότι ένας ενδοµορφισµός f : E E καλείται προβολή, αν f 2 = f. Γνωρίζουµε ότι για µια προβολή ισχύει ότι : E = Ker(f) Im(f) Αν ο R-διανυσµατικός χώρος είναι Ευκλείδειος, τότε µια προβολή f : E E καλείται ορθογώνια προβολή, αν Ker(f) Im(f). Εποµένως για µια ορθογώνια προβολή f ισχύει ότι : E = Ker(f) Im(f), Ker(f) Im(f) Ασκηση 20. Εστω f : R n R n ένας ενδοµορφισµός του R n και έστω A ο πίνακας του f στην κανονική ϐάση του R n. Αν ο πίνακας A είναι συµµετρικός, να δειχθεί ότι : R n = Ker(f) Im(f) και Ker(f) Im(f) Επιπλέον : ο πίνακας A είναι ταυτοδύναµος, δηλαδή A 2 = A, αν και µόνον αν ο ενδοµορφισµός f είναι µια ορθογώνια προβολή. 1 Αν ο Ευκλείδειος χώρος E έχει πεπερασµένη διάσταση, τότε z είναι η απόσταση του x από τον υπόχωρο F.
5 5 Ασκηση 21. Εστω f : E E ένας ενδοµορφισµός του Ευκλείδειου χώρου (E,, ). Υποθέτουµε ότι ο E έχει πεπερασµένη διάσταση. Από την Ασκηση 19 του Φυλλαδίου 5 ότι : υπάρχει c R: Να δειχθεί ότι ϑέτοντας x E : f( x) c x f = inf { c R c > 0 και f( x) c x, x E αποκτούµε έναν µη-αρνητικό πραγµατικό αριθµό f ο οποίος καλείται η στάθµη του ενδοµορφισµού f, και ισχύει ότι : x E : f( x) f x Ασκηση 22. Εστω f : E E ένας ενδοµορφισµός του Ευκλείδειου χώρου (E,, ). Υποθέτουµε ότι ο E έχει πεπερασµένη διάσταση. Να δειχθούν τα εξής : (1) (2) (3) f = sup { f( x) x = 1 = sup { f( x) x 1 { f( x) = sup x 0 x f = sup { f( x), y x = 1 = y x, y E : = sup { f( x), y x 1 y { f( x), y = sup x 0 y x y f( x), y f x y
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2018/laii2018html ευτέρα 23 Απριλίου 2018 Αν C
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 5
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 12 Απριλίου 2019 Αν
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii08/laii08.html Παρασκευή 4 Μαίου
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 29 Μαρτίου 2019 Ασκηση
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii09/laii09.html Παρασκευή 0 Μαίου
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 4 Μαίου 2018 Ασκηση
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 11 Μαίου 2018
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2018/laii2018html Παρασκευή 9 Μαρτίου 2018 Ασκηση
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 1 Μαρτίου
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii9/laii9html Παρασκευή 9 Μαρτίου 9 Ασκηση Εστω (E,,
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2017/lai2017.html Παρασκευή 22 εκεµβρίου 2017
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 1 Μαρτίου 2019 Ασκηση
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii18/laii18html Παρασκευή 9 Μαρτίου 18 Ασκηση 1 Θεωρούµε
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2018/laii2018html Παρασκευή 23 Μαρτίου
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 15 εκεµβρίου 2017
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 16 Μαρτίου 2018
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2018/lai2018html Παρασκευή 7 εκεµβρίου 2018 Ασκηση
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 14 εκεµβρίου 2018 Ασκηση
Διαβάστε περισσότεραΓραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος
Γραµµικη Αλγεβρα ΙΙ Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 011-01 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laiihtml
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ. (ii) Αν ο Β m+1, με m N, αντιστρέφεται, τότε και ο Β αντιστρέφεται
ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ 1) Έστω A, Β Μ n (R) τέτοιοι, ώστε A + Β = Ι n. Να δείξετε ότι : A = A 2 κκκ Β = Β 2 ΑΑ = Ο 2) Έστω A, Β Μ n (R), με A = A 2 και ΑΑ + ΒΒ = Ο. Να δειχθεί ότι ΑΑ = ΒΒ
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 23 Νοεµβρίου
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 23 Μαρτίου 2018
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai208/lai208html Παρασκευή 2 Οκτωβρίου 208 Ασκηση Να γράψετε
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 17 Νοεµβρίου
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai217/lai217html Παρασκευή 17 Νοεµβρίου 217 Ασκηση
Διαβάστε περισσότεραΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 14, 30 Απριλίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Χώροι με εσωτερικό γινόμενο (Ευκλείδειοι χώροι) 2. Βέλτιστες προσεγγίσεις
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai218/lai218html Παρασκευή 23 Νοεµβρίου 218 Ασκηση 1
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε
Διαβάστε περισσότεραΓραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2018/lai2018html Παρασκευή 12 Οκτωβρίου
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - II Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 52 9 Η Κανονική Μορφή Jordan - II
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ισοµετρίες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 78 12 Ισοµετρίες 121 Χαρακτηρισµός Ισοµετριών Εστω
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ ΑΣΚΗΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ - Διανυσματικοί Χώροι Διδάσκουσα : Δρ Μ Αδάμ Λαμία, 6//05 Έστω = (,,), = (0,,)
Διαβάστε περισσότεραΤμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 3. Σύντομες Λύσεις
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων Γ. Καραγιώργος ykarag@aegean.gr Quiz Σύντομες Λύσεις Άσκηση. Δείξτε ότι η απεικόνιση u, v = u v + 5u v, όπου u = (u, u ), v = (v, v ),
Διαβάστε περισσότεραΓραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10
Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου
Διαβάστε περισσότεραΓραμμική Αλγεβρα ΙΙ Διάλεξη 7 Βάσεις Διάσταση Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 7/3/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 7 7/3/ / 1
Γραμμική Άλγεβρα ΙΙ Διάλεξη 7 Διάσταση Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 7/3/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 7 7/3/2014 1 / 1 Εάν ένα υποσύνολο S του διανυσματικού χώρου V παράγει το V,
Διαβάστε περισσότεραΓραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης
Γραµµικη Αλγεβρα Ι Ακαδηµαϊκο Ετος 2011-2012 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml 21-2 - 2012
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii19/laii19html Παρασκευή 1 Μαρτίου 19 Υπενθυµίσεις
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017 Ασκηση 1.
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 6 Νοεµβρίου 005 Ηµεροµηνία Παράδοσης της Εργασίας
Διαβάστε περισσότεραΚλασικη ιαφορικη Γεωµετρια
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων, Τοµεας Γεωµετριας Κλασικη ιαφορικη Γεωµετρια Πρώτη Εργασία, 2018-19 1 Προαπαιτούµενες γνώσεις και ϐασική προετοιµασία
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ
ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται
Διαβάστε περισσότερα) ( ) Μάθηµα 3 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ. Λυµένες Ασκήσεις * * * Θεωρία : Γραµµική Άλγεβρα : εδάφιο 6, σελ (µέχρι Πρόταση 4.18). είναι ορθοκανονικά
Γραµµική Άλγεβρα ΙΙ Σελίδα από Μάθηµα ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ Θεωρία : Γραµµική Άλγεβρα : εδάφιο 6, σελ (µέχρι Πρόταση 48) Λυµένες Ασκήσεις Άσκηση Αν {,,, } και {,,, } σύνολα διανυσµάτων του p p p ν q q q
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.
Διαβάστε περισσότεραΓραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ελάχιστο Πολυώνυµο Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 20 4. Ελάχιστο Πολυώνυµο Στην παρούσα παράγραφο
Διαβάστε περισσότεραx 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.
Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε
Διαβάστε περισσότεραΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι
Διαβάστε περισσότεραΈντυπο Yποβολής Αξιολόγησης ΓΕ
Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Κανονική Μορφή Fitting Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 26 5. Κανονική Μορφή Fitting Εστω A M n
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/aeligia/linearalgerai/lai07/lai07html Παρασκευή Νοεµβρίου 07 Ασκηση Αν
Διαβάστε περισσότεραΠαράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )
Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.
Διαβάστε περισσότεραΓραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 7
Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαιο 7 ιασκοντες: Ν. Μαρµαρίης - Α. Μπεληγιάννης Βοηθοι Ασκησεων: Χ. Ψαρουάκης Ιστοσελια Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii.html - - Ασκηση.
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση
Διαβάστε περισσότεραΚεφάλαιο 7 Ορθογώνιοι Πίνακες
Κεφάλαιο 7 Ορθογώνιοι Πίνακες Εσωτερικό Γινόμενο και ορθογωνιότητα Έστω V ένας διανυσματικός χώρος, υπόχωρος του n. Κάθε συνάρτηση ορισμένη στο VV (την οποία θα συμβολίζουμε με ) ορίζει ένα εσωτερικό γινόμενο
Διαβάστε περισσότερα1.i) 1.ii) v 2. v 1 = (2) (1) + ( 2) ( 1) + (-2) (2) + (0) (-4) v 3. Βρίσκουµε πρώτα µία ορθογώνια βάση: u 1. . u 1 u. u 2
http://elearn.maths.gr/, maths@maths.gr, Τηλ: 979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 7-8: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση
Διαβάστε περισσότεραΕνότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Σταθµητοί Χώροι και Ευκλείδειοι Χώροι Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 59 Μέρος 2. Ευκλείδειοι
Διαβάστε περισσότεραΚεφάλαιο 5 Γραμμικοί Μετασχηματισμοί
Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί 5 Γενικά Γραμμικοί Μετασχηματισμοί Μία σχέση μεταξύ των στοιχείων δύο συνόλων Α,Β αντιστοιχίζει στοιχεία του Α με στοιχεία του Β άλλου μέσω ενός κανόνα που μπορεί να
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi07/asi07.html Παρασκευή 9 Μαίου 07 Για κάθε µετάθεση
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai017/lai017html Παρασκευή 17 Νοεµβρίου 017
Διαβάστε περισσότεραΗ ΜΕΤΡΙΚΗ ΤΟΥ ΧΩΡΟΥ. (στην περίπτωση, που γνωρίζουμε το πεδίον ορισμού του δείκτου, θα
Η ΜΕΤΡΙΚΗ ΤΟΥ ΧΩΡΟΥ Η μετρική του χώρου Στην ορίσαμε το εσωτερικό γινόμενο δύο διανυσμάτων μέσω των συντεταγμένων τους, όταν οι συντεταγμένες αυτές λαβαίνονται σε ένα Καρτεσιανό σύστημα αναφοράς του Ερχόμαστε,
Διαβάστε περισσότεραn = dim N (A) + dim R(A). dim V = dim ker L + dim im L.
Γραμμική Άλγεβρα ΙΙ Διάλεξη 9 Γραμμικοί Ισομορφισμοί Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 19/3/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 9 19/3/2014 1 / 12 Γραμμικές απεικονίσεις και υπόχωροι Εικόνα
Διαβάστε περισσότεραΤίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: υϊκοί Χώροι και Χώροι Πηλίκα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: υϊκοί Χώροι και Χώροι Πηλίκα Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 6 υϊκοι Χωροι και Χωροι Πηλικα Στο παρόν Κεφάλαιο ϑα µελετήσουµε
Διαβάστε περισσότερα2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.
2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω (, ) και (, ) {( x, ) : x και } χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται χώρος με
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114
Διαβάστε περισσότεραx R 2 : (x 1 x 01 ) 2 + (x 2 x 02 ) 2 < ε}
1 Ανοικτή μπάλα στον R n Ορισμός: Εστω x 0 R n και ε > 0. Ανοικτή μπάλα του R n με κέντρο x 0 και ακτίνα ε καλείται το σύνολο: B( x 0, ε) = { x R n : x x 0 < ε} Κλειστή μπάλα στον R n Ορισμός: Εστω x 0
Διαβάστε περισσότεραΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες
Διαβάστε περισσότεραΘεωρια ακτυλιων. Ασκησεις
Θεωρια ακτυλιων Ασκησεις Ακαδηµαϊκο Ετος 2015-2016 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/ringtheory/ringtheory2015/ringtheory2015.html 4 εκεµβρίου 2015 2 Περιεχόµενα
Διαβάστε περισσότεραΜαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ταυτόχρονη ιαγωνοποίηση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 31 6. Ταυτόχρονη ιαγωνοποίηση 6.1. Ταυτόχρονη
Διαβάστε περισσότεραΓραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html
Διαβάστε περισσότερα============================================================== Σχηµατίζουµε τον πίνακα µε στήλες τα διανύσµατα v1,v2,v3,u1,u2:
http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ -: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - I Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 35 7 Η Κανονική Μορφή Jordan - I Στην
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 11: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3 1. Να βρείτε τις ιδιοτιμές και τα ιδιοδιανύσματα των πιο κάτω πινάκων: 1 0 3 1 1 1 1 1 3 1 1 4 a b.
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi06/asi06.html Πέµπτη Απριλίου 06 Ασκηση. Θεωρούµε τα
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Τριγωνοποίηση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 7 2 Τριγωνοποίηση 21 Ανω Τριγωνικοί Πίνακες και
Διαβάστε περισσότεραΣυναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα
Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για
Διαβάστε περισσότεραΘεωρια ακτυλιων. Ασκησεις
Θεωρια ακτυλιων Ασκησεις Ακαδηµαϊκο Ετος 2016-2017 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/ringtheory/ringtheory2016/ringtheory2016.html 15 Φεβρουαρίου 2017 2 Περιεχόµενα
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά
Διαβάστε περισσότεραΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ
ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ Άξονας Έστω η ευθεία x x (σχ. 21) και τα σηµεία Ο, Ι πάνω σ αυτή, ώστε ΟΙ= i όπου i το µοναδιαίο διάνυσµα, δηλαδή ένα διάνυσµα που θεωρούµε ότι η φορά του είναι θετική και το µέτρο
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 7
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uo.gr/abelga/numbertheory/nt2016/nt2016.html Πέµπτη 7 εκεµβρίου 2016 Ασκηση 1. Για κάθε
Διαβάστε περισσότεραΣυνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )
Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι
Διαβάστε περισσότεραΘεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις
202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα
Διαβάστε περισσότερα[ ] και το διάνυσµα των συντελεστών:
Μηχανική ΙΙ Τµήµα Ιωάννου-Απόστολάτου 8 Μαϊου 2001 Εσωτερικά γινόµενα διανυσµάτων µέτρο διανύσµατος- ορθογώνια διανύσµατα Έστω ένας διανυσµατικός χώρος V, στο πεδίο των µιγαδικών αριθµών Τα στοιχεία του
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ
ΚΕΦΑΛΑΙΟ 5: 5. ΟΡΙΣΜΟΙ Έστω U και V δύο διανυσματικοί χώροι. Μια συνάρτηση F : U V θα λέγεται γραμμική απεικόνιση (ή ομομορφισμός, ή απλά μορφισμός εάν ικανοποιεί τις συνθήκες (i F ( u + = u + για κάθε
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
1 Oct 16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 4 η Γεωμετρική Αναπαράσταση
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Οι πρώτες δύο ασκήσεις αναφέρονται στις έννοιες γραµµική ανεξαρτησία, γραµµικός
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 13 Οκτωβρίου 016 Ασκηση 1. είξτε ότι
Διαβάστε περισσότεραΙΑΝΥΣΜΑΤΑ. Σ Λ + α = α
Κεφάλαιο 3ο: ΙΑΝΥΜΑΤΑ Ερωτήσεις του τύπου «ωστό-άθος» 1. * Αν α =, τότε α =. 2. * Αν α, µη µηδενικά διανύσµατα και θ η γωνία τους, τότε 0 θ π 3. * Ισχύει α + 0 = 0 + α = α 4. * Κάθε διάνυσµα µπορεί να
Διαβάστε περισσότερα