Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα"

Transcript

1 Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης

2 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για χώρους με νόρμα. Μιλήσαμε για υπόχωρους, για χώρους-γινόμενο και για χώρους-πηλίκο. Είπαμε τί είναι χώρος Banach και αποδείξαμε ότι κάθε απολύτως συγκλίνουσα σειρά σε χώρο Banach συγκλίνει. Είδαμε ότι ένας υπόχωρος χώρου Banach είναι χώρος Banach αν και μόνο αν είναι κλειστός. Είδαμε ότι χώροςπηλίκο χώρου Banach είναι χώρος Banach. Είδαμε τί είναι ισομετρική εμφύτευση ενός χώρου με νόρμα σε έναν άλλο χώρο με νόρμα και πότε δύο χώροι με νόρμα λέγονται ισομετρικοί. Αποδείξαμε ότι κάθε χώρος X με νόρμα έχει μοναδική πλήρωση: δηλαδή ότι υπάρχει χώρος Banach X έτσι ώστε ο X να εμφυτεύεται ισομετρικά ως πυκνός υπόχωρος του X και ότι δύο τέτοιοι χώροι X είναι ισομετρικοί. Είπαμε πότε δύο νόρμες σε γραμμικό χώρο λέγονται ισοδύναμες και αποδείξαμε ότι σε χώρο πεπερασμένης διάστασης κάθε δύο νόρμες είναι ισοδύναμες. Επίσης, ορίσαμε τις p-νόρμες σε χώρο πεπερασμένης διάστασης. 1

3 2η εβδομάδα. Αποδείξαμε ότι σε χώρο πεπερασμένης διάστασης με νόρμα τα συμπαγή υποσύνολα είναι τα ίδια με τα κλειστά και φραγμένα και ότι κάθε τέτοιος χώρος είναι πλήρης. Είδαμε ότι κάθε υπόχωρος πεπερασμένης διάστασης χώρου με νόρμα είναι κλειστός. Μελετήσαμε χώρους ακολουθιών, όπως τους l p, τον c 0 και τον c με τις αντίστοιχες p-νόρμες. Μιλήσαμε για τους χώρους συναρτήσεων B(A), BC(A) με την ομοιόμορφη νόρμα και για τους χώρους L p (Ω, Σ, µ) με τις p-νόρμες. Επίσης, μιλήσαμε για τους χώρους μέτρων M(Ω, Σ). Τέλος, είδαμε τον χώρο συναρτήσεων C k,p (U) και τον χώρο Sobolev W k,p (U) (την πλήρωση του προηγούμενου). Ορίσαμε την έννοια της διαχωρισιμότητας και είδαμε ότι οι l p είναι διαχωρίσιμοι αν 1 p < + και ότι ο l δεν είναι διαχωρίσιμος. Αποδείξαμε το Λήμμα του F.Riesz: αν ο Y είναι κλειστός υπόχωρος του χώρου με νόρμα X, υπάρχει x στον X με x = 1 ώστε η απόσταση του x από τον Y να είναι όσο θέλουμε κοντά στο 1. Βάσει αυτού αποδείξαμε ότι σε απειροδιάστατο χώρο με νόρμα η κλειστή μοναδιαία μπάλα (όπως και κάθε κλειστή μπάλα) δεν είναι συμπαγής. Ορίσαμε την έννοια της ομοιόμορφης νόρμας και αποδείξαμε ότι, αν το K είναι πλήρες και κυρτό υποσύνολο του χώρου X με ομοιόμορφα κυρτή νόρμα και το x είναι στον X, τότε υπάρχει μοναδικό στοιχείο του K το οποίο ανάμεσα σε όλα τα στοιχεία του K έχει την ελάχιστη απόσταση από το x. Ορίσαμε την έννοια του εσωτερικού γινομένου και αποδείξαμε την ανισότητα του Schwarz. Ορίσαμε την νόρμα που επάγεται από εσωτερικό γινόμενο. Μιλήσαμε για ισομετρική εμφύτευση χώρου με εσωτερικό γινόμενο σε χώρο με εσωτερικό γινόμενο. Τέλος, αποδείξαμε ότι κάθε νόρμα που επάγεται από εσωτερικό γινόμενο είναι ομοιόμορφα κυρτή. 2

4 3η εβδομάδα. Ορίσαμε την έννοια της ορθογωνιότητας και την έννοια του ορθογώνιου συνόλου A ενός συνόλου A. Αποδείξαμε ότι το A είναι κλειστός υπόχωρος, ότι cl A (A ), ότι από A B συνεπάγεται B A και ότι (cl A ) = A. Αποδείξαμε ότι αν ο X είναι χώρος με εσωτερικό γινόμενο και ο Y είναι πλήρης υπόχωρος του X, τότε για κάθε x X υπάρχει μοναδικό y Y το οποίο ανάμεσα σε όλα τα στοιχεία του Y έχει την ελάχιστη απόσταση από το x. Αυτό το y ονομάζεται προβολή του x στον Y και έχει την ιδιότητα: x y Y. Με τις ίδιες υποθέσεις (πληρότητα του Y ) αποδείξαμε ότι X = Y + Y, Y Y = και Y = (Y ). Επομένως, κάθε πλήρης υπόχωρος (ειδικότερα, κάθε κλειστός υπόχωρος χώρου Hilbert) έχει ορθογώνιο συμπλήρωμα. Επίσης, αν ο cl A είναι πλήρης (αυτό ισχύει αυτομάτως αν ο X είναι Hilbert), τότε cl A = (A ) ή, ισοδύναμα, ένα στοιχείο προσεγγίζεται από γραμμικούς συνδυασμούς στοιχείων του A αν και μόνο αν είναι ορθογώνιο σε όλα τα στοιχεία τα οποία είναι ορθογώνια στο A. Ορίσαμε τις έννοιες του ορθογώνιου συνόλου, του ορθοκανονικού συνόλου, του maximal ορθοκανονικού συνόλου και της ορθοκανονικής βάσης. Αποδείξαμε ότι ένα ορθογώνιο σύνολο είναι γραμμικώς ανεξάρτητο, ότι μία ορθοκανονική βάση είναι maximal ορθοκανονικό σύνολο και ότι ισχύει και το αντίστροφο αν ο X είναι Hilbert. Αποδείξαμε το βασικό θεώρημα: κάθε χώρος με εσωτερικό γινόμενο έχει τουλάχιστον ένα maximal ορθοκανονικό σύνολο (και άρα κάθε χώρος Hilbert έχει τουλάχιστον μία ορθοκανονική βάση) και ότι το maximal ορθοκανονικό σύνολο μπορεί να επιλεγεί έτσι ώστε να περιέχει ένα δεδομένο ορθοκανονικό σύνολο. Για την απόδειξη χρησιμοποιήσαμε το Λήμμα του Zorn από την Θεωρία Συνόλων. Αποδείξαμε την ανισότητα του Bessel: (x a) 2 x 2 a A για κάθε ορθοκανονικό σύνολο A και κάθε x X. Αποδείξαμε το θεώρημα Riesz-Fischer: αν ο X είναι Hilbert και το A είναι ορθοκανονικό, τότε για κάθε κ a F (a A) με a A κ a 2 < +, η σειρά a A κ a a συγκλίνει σε στοιχείο του X και, αν x = a A κ a a, τότε (x a) = κ a για κάθε a A και x 2 = κ a 2, (x y) = κ a (y a) a A a A για κάθε y X. Είπαμε ότι οι αριθμοί (x a) (a A) ονομάζονται συντελεστές Fourier του x ως προς το ορθοκανονικό σύνολο A και η σειρά (x a) a a A ονομάζεται σειρά Fourier του x ως προς το ορθοκανονικό σύνολο A. Τέλος, αποδείξαμε το θεώρημα: αν ο X είναι Hilbert και το A είναι ορθοκανονική βάση του X, τότε η σειρά Fourier καθενός x ως προς το A συγκλίνει στο x: x = a A(x a) a και ισχύουν οι ταυτότητες Parseval: x 2 = a A (x a) 2, (x y) = a A(x a)(y a). 3

5 Στο δίωρο ασκήσεων/συζήτησης είδαμε με λεπτομέρεια την πληρότητα των χώρων ακολουθιών: l, c, c 0. (Την πληρότητα του l p, 1 p < +, την είχαμε δει στις διαλέξεις.) Επίσης είδαμε την πληρότητα των χώρων συναρτήσεων B(A), BC(A) και τονίστηκε η ομοιότητα όλων αυτών των αποδείξεων της πληρότητας χώρων ακολουθιών και χώρων συναρτήσεων. Ακόμη, είδαμε συνοπτικά την πυκνότητα του C c (R n ) στον L p (R n ) (1 p < + ). Τέλος αναφέρθηκαν δύο προτάσεις για ολοκληρώματα με παράμετρο: ποιές είναι οι προϋποθέσεις ώστε το ολοκλήρωμα να είναι (i) συνεχής και (ii) παραγωγίσιμη συνάρτηση της παραμέτρου. 4

6 4η εβδομάδα. Αποδείξαμε ότι αν ο Y είναι πλήρης υπόχωρος του χώρου με εσωτερικό γινόμενο X και A είναι ορθοκανονική βάση του Y, τότε η προβολή κάθε x X στον Y ισούται με a A (x a) a. Αποδείξαμε ότι αν ένας χώρος με εσωτερικό γινόμενο είναι διαχωρίσιμος και έχει άπειρη διάσταση τότε κάθε ορθοκανονική βάση του είναι άπειρη αριθμήσιμη. Αποδείξαμε το θεώρημα του Schmidt: κάθε χώρος με εσωτερικό γινόμενο ο οποίος είναι διαχωρίσιμος και έχει άπειρη διάσταση έχει ορθοκανονική βάση. Η απόδειξη του θεωρήματος του Schmidt είναι κατασκευαστική. Είδαμε ότι όλοι οι χώροι Hilbert οι οποίοι είναι διαχωρίσιμοι και έχουν άπειρη διάσταση είναι ανά δύο ισομετρικοί και άρα όλοι ισομετρικοί με τον l 2. Ορίσαμε τα φραγμένα γραμμικά συναρτησοειδή σε έναν χώρο με νόρμα και είδαμε ότι ένα γραμμικό συναρτησοειδές είναι φραγμένο αν και μόνο αν είναι συνεχές αν και μόνο αν είναι συνεχές στο 0. Ορίσαμε τον δυικό χώρο X ενός χώρου με νόρμα X και είδαμε ότι ο X είναι γραμμικός χώρος. Ορίσαμε την νόρμα x ενός φραγμένου γραμμικού συναρτησοειδούς x X και είδαμε ότι x x (x) = sup = sup x (x) = sup x (x). x 0 x x 1 x =1 Αποδείξαμε ότι η νόρμα στον X έχει τις ιδιότητες νόρμας και ότι ο X είναι χώρος Banach (ακόμη κι αν ο X δεν είναι πλήρης). Αποδείξαμε ότι, αν 1 p < +, τότε ο δυικός του l p είναι ισομετρικός με τον l q, όπου 1 p + 1 q = 1. Είδαμε ότι ο l1 εμφυτεύεται ισομετρικά στον δυικό του l. Είδαμε ότι ο δυικός του c 0 είναι ισομετρικός με τον l 1. Αναφέραμε ότι, αν 1 < p < +, τότε ο δυικός του L p (Ω, Σ, µ) είναι ισομετρικός με τον L q (Ω, Σ, µ), όπου 1 p + 1 q = 1, και ότι, αν το μέτρο µ είναι σ-πεπερασμένο, τότε το ίδιο ισχύει και για p = 1. Αναφέραμε ότι ο L 1 (Ω, Σ, µ) εμφυτεύεται ισομετρικά στον δυικό του L (Ω, Σ, µ). Τέλος, αναφέραμε ότι, αν ο Ω είναι τοπικά συμπαγής και Hausdorff τοπολογικός χώρος και B είναι η Borel σ-άλγεβρα του Ω, τότε ο δυικός του C 0 (Ω) είναι ισομετρικός με τον M r (Ω), όπου C 0 (Ω) είναι ο χώρος των συνεχών συναρτήσεων στον Ω οι οποίες μηδενίζονται στο και M r (Ω) είναι ο χώρος των κανονικών φραγμένων μέτρων Borel στον Ω. Τέλος, αποδείξαμε το θεώρημα του Riesz: για κάθε φραγμένο γραμμικό συναρτησοειδές x στον χώρο Hilbert X υπάρχει μοναδικό x X ώστε να ισχύει x (u) = (u x) για κάθε u X. Επομένως, κάθε χώρος Hilbert είναι (αντι)ισομετρικός με τον δυικό του. Στο δίωρο ασκήσεων/συζήτησης λύσαμε τις ασκήσεις 3, 5 και 13[α] του φυλλαδίου 2. 5

7 5η εβδομάδα. Αποδείξαμε το θεώρημα Hahn-Banach στη γενική μορφή του: αν έχουμε έναν γραμμικό χώρο X επί του F = R, έναν γραμμικό υπόχωρο Y του X, ένα θετικά ομογενές υποπροσθετικό συναρτησοειδές p στον X, ένα γραμμικό συναρτησοειδές f στον Y και αν ισχύει f p στον Y, τότε υπάρχει γραμμικό συναρτησοειδές F στον X το οποίο είναι επέκταση του f ώστε να ισχύει F p στον X. Αν έχουμε έναν γραμμικό χώρο X επί του F = C, περιγράψαμε τη σχέση ανάμεσα σε C-γραμμικά συναρτησοειδή και σε R-γραμμικά συναρτησοειδή στον X. Αποδείξαμε το θεώρημα Bohnenblust-Sobczyk: αν έχουμε έναν γραμμικό χώρο X επί του F = C, έναν γραμμικό υπόχωρο Y του X, μία ημινόρμα p στον X, ένα γραμμικό συναρτησοειδές f στον Y και αν ισχύει f p στον Y, τότε υπάρχει γραμμικό συναρτησοειδές F στον X το οποίο είναι επέκταση του f ώστε να ισχύει F p στον X. Αποδείξαμε το θεώρημα Hahn-Banach στην μορφή του για χώρους με νόρμα: αν έχουμε έναν χώρο με νόρμα X, έναν υπόχωρο Y του X και ένα y Y, τότε υπάρχει x X το οποίο είναι επέκταση του y ώστε να ισχύει y = x. Αποδείξαμε ότι αν τα x 1,..., x n είναι γραμμικώς ανεξάρτητα στον χώρο με νόρμα X και a 1,..., a n F, τότε υπάρχει x X ώστε x (x j ) = a j για j = 1,..., n. Αποδείξαμε ότι για κάθε x σε έναν χώρο με νόρμα X ισχύει x = max x 1 x (x). Ορίσαμε την έννοια του μηδενιστή S X ενός S X και την έννοια του μηδενιστή S X ενός S X. Αποδείξαμε ότι, αν ο X είναι χώρος με νόρμα, ο Y είναι υπόχωρος του X και x X, τότε max x (x) = inf x y. x Y, x 1 y Y Αποδείξαμε ότι, αν ο X είναι χώρος με νόρμα, ο Y είναι υπόχωρος του X και x X, τότε sup x (y) = min x z. y Y, y 1 z Y Αποδείξαμε ότι, αν ο X είναι χώρος με νόρμα, x X και S X, τότε x cl S αν και μόνο αν x (x) = 0 για κάθε x S. Ορίσαμε τον δεύτερο δυικό X ενός χώρου με νόρμα X και περιγράψαμε την ισομετρική εμφύτευση J : X X του X μέσα στον X. Είπαμε ότι ο X ονομάζεται αυτοπαθής αν η ισομετρική εμφύτευση J είναι επί του X. Στο δίωρο ασκήσεων/συζήτησης μιλήσαμε για τις ασκήσεις 1, 2, 3 και 4 του φυλλαδίου 3. 6

8 6η εβδομάδα. Είδαμε ότι αναγκαία συνθήκη για να είναι ένας χώρος με νόρμα αυτοπαθής είναι να είναι πλήρης. Αποδείξαμε ότι κάθε χώρος Hilbert είναι αυτοπαθής καθώς και ότι οι χώροι l p (1 < p < + ) είναι αυτοπαθείς. Αναφέραμε ότι και οι χώροι L p (1 < p < + ) είναι αυτοπαθείς καθώς και κάθε πλήρης χώρος με ομοιόμορφα κυρτή νόρμα (χωρίς απόδειξη). Αποδείξαμε ότι, αν ο X είναι διαχωρίσιμος, τότε και ο X είναι διαχωρίσιμος. Βάσει του τελευταίου ο (l ) δεν είναι ισομετρικός με τον l 1 και άρα ο l 1 δεν είναι αυτοπαθής. Αποδείξαμε το θεώρημα του Baire: αν ο A είναι πλήρης μετρικός χώρος και τα U 1, U 2,... είναι ανοικτά και πυκνά υποσύνολα του A, τότε το + n=1 U n είναι πυκνό υποσύνολο του A. Αποδείξαμε την Αρχή Ομοιόμορφου Φράγματος: αν ο X είναι πλήρης μετρικός χώρος, αν ο Y είναι μετρικός χώρος, αν y 0 Y, αν F είναι οποιαδήποτε συλλογή συνεχών συναρτήσεων f : X Y και αν sup f F d(f(x), y 0 ) < + για κάθε x X, τότε υπάρχει (μη-κενό) ανοικτό O X ώστε sup x O sup f F d(f(x), y 0 ) < +. [Επεξήγηση: η υπόθεση sup f F d(f(x), y 0 ) < + για κάθε x X σημαίνει ότι η συλλογή συναρτήσεων F είναι φραγμένη κατά σημείο στο X ενώ το συμπέρασμα sup x O sup f F d(f(x), y 0 ) < + σημαίνει ότι η συλλογή F είναι φραγμένη ομοιόμορφα στο ανοικτό υποσύνολο O.] Αποδείξαμε το εξής θεώρημα: αν ο X είναι χώρος Banach, αν F X και αν sup x F x (x) < + για κάθε x X, τότε sup x F x < +. Αποδείξαμε και το δυικό θεώρημα: αν ο X είναι χώρος με νόρμα, αν F X και αν sup x F x (x) < + για κάθε x X, τότε sup x F x < +. Ορίσαμε την ασθενή σύγκλιση στον χώρο με νόρμα X και την ασθενή- σύγκλιση στον X : x n w x αν x (x n ) x (x) για κάθε x X. x n w x αν x n(x) x (x) για κάθε x X. w Είδαμε ότι, αν x n x, τότε x n x και ότι, αν x n x, τότε x w n x. Γι αυτό οι συνήθεις συγκλίσεις (δηλαδή η σύγκλιση ως προς την νόρμα) στον X και στον X ονομάζονται και ισχυρές συγκλίσεις. Αποδείξαμε την μοναδικότητα του ασθενούς ορίου και του ασθενούς- ορίου. Είδαμε w ότι e n 0 στους l p w (1 < p < + ) και e n 0 στους l p (1 < p + ). Επίσης είδαμε την σχέση ανάμεσα στην ασθενή και την ασθενή- σύγκλιση και στις πράξεις στον X και τον X. Αποδείξαμε ότι για κάθε χώρο με εσωτερικό γινόμενο X και κάθε ορθοκανονικό σύνολο {e 1, e 2,...} ισχύει w w e n 0 και ότι για κάθε χώρο Hilbert και κάθε ορθοκανονικό σύνολο {e 1, e 2,...} ισχύει e n 0. w Αποδείξαμε το εξής θεώρημα: αν στον χώρο με νόρμα X έχουμε x n x, τότε supn x n < + και x lim inf n + x n. Αναφέραμε και το δυικό θεώρημα: αν στον χώρο Banach X έχουμε x w n x, τότε sup n x n < + και x lim inf n + x n. (Στο δεύτερο θεώρημα η πληρότητα χρειάζεται μόνο για το πρώτο συμπέρασμα.) 7

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( ) Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά

Διαβάστε περισσότερα

π B = B και άρα η π είναι ανοικτή απεικόνιση.

π B = B και άρα η π είναι ανοικτή απεικόνιση. 3 Παράρτημα 2 Παρατηρήσεις, ασκήσεις και Διορθώσεις Παράγραφος ) Σελίδα, : Παρατηρούμε τα ακόλουθα για το χώρο πηλίκο / Y : Y = / Y και (α) { } (β) = Y / Y { } Επίσης από τον τύπο () έπεται ιδιαίτερα ότι

Διαβάστε περισσότερα

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη 94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4. Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος

Διαβάστε περισσότερα

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη 94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4.2 Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος

Διαβάστε περισσότερα

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine. 8 Έστω (, ) 4 Ασθενείς τοπολογίες σε χώρους με νόρμα 4. θεωρήματα Mazur, Alaoglou, Goldste. χώρος με νόρμα. Υπενθυμίζουμε ότι η ασθενής τοπολογία T του έχει ως βάση ( ανοικτών ) περιοχών του όλα τα σύνολα

Διαβάστε περισσότερα

L 2 -σύγκλιση σειρών Fourier

L 2 -σύγκλιση σειρών Fourier Κεφάλαιο 7 L -σύγκλιση σειρών Fourier 7.1 Χώροι Hilbert 7.1.1 Χώροι µε εσωτερικό γινόµενο και χώροι Hilbert Ορισµός 7.1.1. Εστω X γραµµικός χώρος πάνω από το K. Μια συνάρτηση, : X X K λέγεται εσωτερικό

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω (, ) και (, ) {( x, ) : x και } χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται χώρος με

Διαβάστε περισσότερα

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y.

2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. με νόρμα, με τις ακόλουθες νόρμες οι οποίες ορίζονται μέσω των νορμών των X και Y. 2 Πεπερασμένα ευθέα αθροίσματα και προβολές σε χώρους με νόρμα. Έστω ( X, ) και (, ) X Y {( x, ) : x X και Y} Y χώροι με νόρμα. Τότε ο διανυσματικός χώρος = ( με τις συνήθεις κατά σημείο πράξεις ) γίνεται

Διαβάστε περισσότερα

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές. 6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται

Διαβάστε περισσότερα

2. d(x, y) = 0 x = y. 3. d(x, y) = d(y, x)

2. d(x, y) = 0 x = y. 3. d(x, y) = d(y, x) Τελεστές σε χώρους Hilbert Γεωργάτος Σπυρίδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Επιτροπή Επιβλέπων: Φελουζής Ευάγγελος - Αναπληρωτής Καθηγητής Μέλη : Τσολομύτης Αντώνιος - Καθηγητής Νικολόπουλος Χρήστος

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 14, 30 Απριλίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Χώροι με εσωτερικό γινόμενο (Ευκλείδειοι χώροι) 2. Βέλτιστες προσεγγίσεις

Διαβάστε περισσότερα

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).

f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ). Κεφάλαιο 4 Συναρτήσεις μεταξύ μετρικών χώρων 4.1 Συνεχείς συναρτήσεις Εστω (X, ρ) και (Y, σ) δύο μετρικοί χώροι. Στην 2.2 δώσαμε τον ορισμό της συνέχειας μιας συνάρτησης f : X Y σε κάποιο σημείο x 0 X:

Διαβάστε περισσότερα

Sunarthsiak Anˆlush. Shmei seic gia metaptuqiakì mˆjhma

Sunarthsiak Anˆlush. Shmei seic gia metaptuqiakì mˆjhma Sunarthsiak Anˆlush Shmei seic gia metaptuqiakì mˆjhma Μ. Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης νοιξη 2004 2 Perieqìmena 1 Εισαγωγικά 7 1.1 Διατάξεις............................... 7 1.2

Διαβάστε περισσότερα

Καλώς ήρθατε στην Συναρτησιακή Ανάλυση! http://eclass.uoa.gr/courses/math495/ Εαρινό Εξάμηνο 2015-16 Γραμμικοί χώροι K είναι το σώμα R ή C. Ορισμός Ενα X /0 λέγεται K-γραμμικός χώρος αν είναι εφοδιασμένο

Διαβάστε περισσότερα

x, y = x 1 y 1 + x 2 y 2 + x 3 y 3. x k y k. k=1 k=1

x, y = x 1 y 1 + x 2 y 2 + x 3 y 3. x k y k. k=1 k=1 Σημειώσεις για τους χώρους Hilbert και άλλα Αριστείδης Κατάβολος Από το βιβλίο «Εισαγωγή στη Θεωρία Τελεστών», εκδ. «Συμμετρία», 2008. Περιεχόμενα I Χώροι Hilbert 1 1 Εσωτερικά γινόμενα 1 1.0.1 Παραδείγματα.........................

Διαβάστε περισσότερα

j=1 x n (i) x s (i) < ε.

j=1 x n (i) x s (i) < ε. Κεφάλαιο 5 Πληρότητα 5.1 Πλήρεις μετρικοί χώροι Ορισμός 5.1.1 (πλήρης μετρικός χώρος). Ενας μετρικός χώρος (X, ρ) λέγεται πλήρης (complete) αν κάθε ρ βασική ακολουθία (x n ) στον X είναι ρ συγκλίνουσα.

Διαβάστε περισσότερα

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους.

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους. 7 3.5 Το θεώρημα Hah-Baach σε τοπολογικούς διανυσματικούς χώρους. Εξετάζουμε καταρχήν τη σχέση μεταξύ ενός μιγαδικού διανυσματικού χώρου E και του υποκείμενου πραγματικού χώρου E R. Έστω E μιγαδικός διανυσματικός

Διαβάστε περισσότερα

Αρµονική Ανάλυση ( ) Φυλλάδιο Ασκήσεων 3

Αρµονική Ανάλυση ( ) Φυλλάδιο Ασκήσεων 3 Αρµονική Ανάλυση (2017 2018) Φυλλάδιο Ασκήσεων 3 0. (α) Εστω f L (T). είξτε ότι σ n ( f ) f n N. (ϐ) Εστω f L (T). είξτε ότι (γ) είξτε ότι S n ( f ) f + n k=1 sin(kt) k n k= n [Υπόδειξη: Για το (γ) ϑεωρήστε

Διαβάστε περισσότερα

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον

1 Χώροι πηλίκα { } x = y x y Y. Με τις πράξεις της πρόσθεσης και του βαθμωτού πολλαπλασιασμού που ορίζονται με τον Χώροι πηλίκα Έστω διανυσματικός χώρος και Y διανυσματικός υπόχωρος του. Για κάθε θεωρούμε το σύμπλοκο σχετικά με τον Y, = + y y Y = + Y ορ { : } δηλαδή το είναι η παράλληλη μεταφορά του Y κατά το διάνυσμα.

Διαβάστε περισσότερα

Καλώς ήρθατε στους Γραμμικούς Τελεστές! http://eclass.uoa.gr/courses/math122/ Εαρινό Εξάμηνο 2014-15 Χώροι με εσωτερικό γινόμενο Ορισμός Εστω E K-γραμμικός χώρος (K = R ή C). Ενα εσωτερικό γινόμενο (inner

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν

Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν 3 4.3 Τελείως κανονικοί χώροι ( ). 3 2 Έχοντας υπόψιν το Λήμμα του Urysoh, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν κανονικός χώρος, x και κλειστό ώστε x. Υπάρχει τότε συνεχής συνάρτηση f :, ώστε

Διαβάστε περισσότερα

convk. c i c i t i. c i u i c < c i φ i (F (ω)) c < ( ) c i m i < i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1

convk. c i c i t i. c i u i c < c i φ i (F (ω)) c < ( ) c i m i < i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 Ολοκλήρωση συναρτήσεων με τιμές σε χώρους Baach Αν (Ω, S, µ είναι χώρος μέτρου και (X, είναι χώρος Baach, μια συνάρτηση F : Ω X θα λέγεται ασθενώς μετρήσιμη (αντίστοιχα, ασθενώς ολοκληρώσιμη αν για κάθε

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα

Μιχάλης Παπαδημητράκης. Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα Μιχάλης Παπαδημητράκης Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα 1 Παράγωγος στο. Ας θυμηθούμε ότι μια μιγαδική συνάρτηση f ορισμένη σε ένα υποσύνολο του μιγαδικού επιπέδου λέμε ότι είναι

Διαβάστε περισσότερα

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m.

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m. Σηµειώσεις Συναρτησιακής Ανάλυσης Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Περιεχόµενα 1. Το ϑεώρηµα κατηγορίας του Baire 4 2. Χώροι Banach 5 3. Φραγµένοι γραµµικοί τελεστές 8 4. Χώροι πεπερασµένης

Διαβάστε περισσότερα

Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα

Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα Στοιχειώδεις τελεστές στην άλγεβρα των adjointable τελεστών σε Hilbert πρότυπα Χαράλαμπος Μαγιάτης Ανάλυση & Κβαντική Θεωρία Πληροφορίας Σεμινάριο Τμήματος Μαθηματικών ΕΚΠΑ 17/05/2019 1 / 56 Hilbert C

Διαβάστε περισσότερα

1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n

1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n Οι ασκήσεις αυτές έχουν σκοπό να βοηθήσουν τους φοιτητές στην μελέτη τους για το μάθημα «Ανάλυση ΙΙ» του Τμήματος Μαθηματικών του Πανεπιστημίου Αιγαίου. Συνιστούμε στους φοιτητές να επεξεργαστούν αυτές

Διαβάστε περισσότερα

Φασµατικη θεωρια µη φραγµενων γραµµικων τελεστων

Φασµατικη θεωρια µη φραγµενων γραµµικων τελεστων Φασµατικη θεωρια µη φραγµενων γραµµικων τελεστων Πτυχιακη Εργασια Ιωσηφιδης Ηλιας Α.Μ: 311/2329 Επιβλεπων : Τσολοµυτης Αντωνης A Τµηµα Μαθηµατικων Πανεπιστηµιο Αιγαιου Σαµος 27 Εξεταστικη Επιτροπη : Τσολοµύτης

Διαβάστε περισσότερα

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό 81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης 1 Oct 16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 4 η Γεωμετρική Αναπαράσταση

Διαβάστε περισσότερα

EukleÐdeiec emfuteôseic: ˆnw frˆgmata

EukleÐdeiec emfuteôseic: ˆnw frˆgmata EukleÐdeiec emfuteôseic: ˆnw frˆgmata Εστω f : X Y μια εμφύτευση του μετρικού χώρου (X, ρ) στο χώρο με νόρμα (Y, ). Η παραμόρφωση της f ορίζεται ως εξής: f(x) f(y) ρ(x, y) dist(f) = sup sup x y ρ(x, y)

Διαβάστε περισσότερα

Συµπαγείς τελεστές. Κεφάλαιο Τελεστές πεπερασµένης τάξης. n. Γράφουµε rank(t ) = n. Αν οι E, F είναι χώροι µε νόρµα, συµβολίζουµε

Συµπαγείς τελεστές. Κεφάλαιο Τελεστές πεπερασµένης τάξης. n. Γράφουµε rank(t ) = n. Αν οι E, F είναι χώροι µε νόρµα, συµβολίζουµε Κεφάλαιο 3 Συµπαγείς τελεστές 3.1 Τελεστές πεπερασµένης τάξης Ορισµός 3.1.1 Μια γραµµική απεικόνιση T : E F µεταξύ δύο γραµµικών χώρων E, F λέγεται τάξης n (n N) αν ο υπόχωρος T (E) = im T έχει διάσταση

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

Θέματα Αρμονικής Ανάλυσης

Θέματα Αρμονικής Ανάλυσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Αρμονικής Ανάλυσης Ενότητα 2: Πραγματική Ανάλυση Μιχ. Μ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1), Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος 73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b

Διαβάστε περισσότερα

H idiìthta prosèggishc kai to prìblhma thc bˆshc se q rouc Banach. Andreac Mhtropouloc

H idiìthta prosèggishc kai to prìblhma thc bˆshc se q rouc Banach. Andreac Mhtropouloc H idiìthta prosèggishc kai to prìblhma thc bˆshc se q rouc Banach Andreac Mhtropouloc Tm ma Majhmatik n Panepist mio Ajhn n Aj na 2012 Perieqìmena 1 Περιγραφή της εργασίας 1 1.1 Το πρόβλημα..................................

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. ΕΙΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Έστω μια δυναμοσειρά a (x ξ) = a 0 + a (x ξ) + a 2 (x ξ) 2 + με ακτίνα σύγκλισης R και με ρ = lim a. Αν x = ξ, η δυναμοσειρά συγκλίνει και έχει άθροισμα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html ευτέρα 23

Διαβάστε περισσότερα

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t)

f(x) = lim f n (t) = d(t, x n ) d(t, x) = f(t) Κεφάλαιο 7 Ακολουθίες και σειρές συναρτήσεων 7.1 Ακολουθίες συναρτήσεων: κατά σημείο σύγκλιση Ορισμός 7.1.1. Εστω X σύνολο, (Y, ρ) μετρικός χώρος και f n, f : X Y (n = 1, 2,...). Λέμε ότι η ακολουθία συναρτήσεων

Διαβάστε περισσότερα

Κ X κυρτό σύνολο. Ένα σημείο x Κ

Κ X κυρτό σύνολο. Ένα σημείο x Κ 8 5 Το θεώρημα Kre-Mlm Βασικές ιδιότητες συμπαγών και κυρτών συνόλων. Ορισμός 5. Έστω X διανυσματικός χώρος και Κ X κυρτό σύνολο. Ένα σημείο x Κ λέγεται ακραίο ( extreme ) σημείο του Κ, αν δεν είναι γνήσιος

Διαβάστε περισσότερα

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ. και την ΟΙΚΟΝΟΜΙΑ»

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ. και την ΟΙΚΟΝΟΜΙΑ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ σε ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ και την ΟΙΚΟΝΟΜΙΑ» Εφαρμογές

Διαβάστε περισσότερα

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2...

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2... ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Β.ΒΛΑΧΟΥ, Α. ΣΟΥΡΜΕΛΙΔΗΣ Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών Φθινόπωρο 2013 1 Θα θέλαμε να αναφέρουμε ότι για την συγγραφή αυτών των σημειώσεων χρησιμοποιήσαμε ιδιαίτερα α)το βιβλίο

Διαβάστε περισσότερα

f x 0 για κάθε x και f 1

f x 0 για κάθε x και f 1 06 4.2 Το Λήμμα του Uysoh το Λήμμα της εμφύτευσης και το θεώρημα μετρικοποίησης του Uysoh. Ο κύριος στόχος αυτής της παραγράφου είναι η απόδειξη ενός θεμελιώδους αποτελέσματος γνωστού ως το Λήμμα του Uysoh.

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

G n. n=1. n=1. n=1 G n) = m (E). n=1 G n = k=1

G n. n=1. n=1. n=1 G n) = m (E). n=1 G n = k=1 ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Επαναληπτικές Εξετάσεις στη Θεωρία Μέτρου και Ολοκλήρωση Θέμα. Εστω R Lebesgue μετρήσιμο σύνολο. (αʹ) Να αποδειχθεί ότι για κάθε ε

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

B = F i. (X \ F i ) = i I

B = F i. (X \ F i ) = i I Κεφάλαιο 3 Τοπολογία μετρικών χώρων Ομάδα Α 3.1. Εστω (X, ρ) μετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το G \ F είναι

Διαβάστε περισσότερα

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)].

Ασκήσεις. και. για κάποιο k n. ( ) BdΚ και επί πλέον το BdΚ είναι ακραίο. [Υπόδειξη Πρβλ. την άσκηση 11 της παραγράφου 3.1 για το (α)]. 3 Ασκήσεις ) Έστω διανυσματικός χώρος, C κυρτό και C. (α) Αποδείξτε ότι τα ακόλουθα είναι ισοδύναμα: (ι) e( C) = +,(ιι), = = και (ιιι) Το σύνολο C \{ } είναι κυρτό. (β) Επίσης αποδείξτε ότι αν e( C) και

Διαβάστε περισσότερα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα 33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ Έστω συνάρτηση f ορισμένη σε διάστημα I. Λέμε ότι η F είναι αντιπαράγωγος της f στο I αν ισχύει F = f στο I. ΠΡΟΤΑΣΗ. Αν η F είναι αντιπαράγωγος της f στο

Διαβάστε περισσότερα

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν.

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν. 93 4 Διαχωριστικά αξιώματα Στο κεφάλαιο αυτό εισάγουμε τα λεγόμενα διαχωριστικά αξιώματα και εξετάζουμε τις βασικές ιδιότητές τους. Ένα από αυτά το έχουμε ήδη εισαγάγει δηλαδή το αξίωμα Husdorff ( ορισμός

Διαβάστε περισσότερα

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας Σηµειώσεις Eφαρµοσµένα Μαθηµατικά Ι ικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 207 Περιεχόµενα Κεφάλαιο. Επισκόπηση γνωστών εννοιών. -8. Σειρές πραγµατικών αριθµών..2 Σειρές συναρτήσεων..3 Γενικευµένα ολοκληρώµατα. Κεφάλαιο

Διαβάστε περισσότερα

Θεωρία μέτρου και ολοκλήρωσης

Θεωρία μέτρου και ολοκλήρωσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία μέτρου και ολοκλήρωσης Ενότητα 6: Μιγαδικά Μέτρα Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

1 Το ϑεώρηµα του Rademacher

1 Το ϑεώρηµα του Rademacher Το ϑεώρηµα του Rademacher Νικόλαος Μουρδουκούτας Περίληψη Σε αυτήν την εργασία ϑα αποδείξουµε το ϑεώρηµα του Rademacher, σύµφωνα µε το οποίο κάθε Lipschiz συνάρτηση f : R m είναι διαφορίσιµη σχεδόν παντού.

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΣΥΝΑΡΤΗΣΙΑΚΗΣ ΑΝΑΛΥΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΥΣ

ΜΕΘΟΔΟΙ ΣΥΝΑΡΤΗΣΙΑΚΗΣ ΑΝΑΛΥΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΥΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΝ ΠΑΡΑΓΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ` ΜΕΘΟΔΟΙ ΣΥΝΑΡΤΗΣΙΑΚΗΣ ΑΝΑΛΥΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΔΙΑΦΟΡΙΚΝ ΕΞΙΣΣΕΝ ΜΕ ΜΕΡΙΚΕΣ ΠΑΡΑΓΓΟΥΣ ΔΙΠΛΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Μ.Δ.Ε. ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΙΣ ΕΠΙΣΤΗΜΕΣ ΜΗΧΑΝΙΚΝ ΟΛΓΑ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, 6-12-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την απόδειξη του Θεωρήματος που διατυπώσαμε στο τέλος του προηγούμενου μαθήματος. Απόδειξη. [α] Θεωρούμε συνάρτηση f : A R και

Διαβάστε περισσότερα

Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης.

Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης. Κεφάλαιο 1 Μέτρο και ολοκλήρωμα Lebesgue: Εγχειρίδιο χρήσης. Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Stein and Shakarchi 2009 και Wheeden 2015. 1.1 Μέτρο Lebesgue στο R Αν E R το μέτρο

Διαβάστε περισσότερα

Θεωρία μέτρου και ολοκλήρωσης

Θεωρία μέτρου και ολοκλήρωσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία μέτρου και ολοκλήρωσης Ενότητα 5: Οι χώροι L p Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

1.2 Βάσεις και υποβάσεις.

1.2 Βάσεις και υποβάσεις. . Βάσεις και υποβάσεις. Το «καθήκον» του ορισμού μιας τοπολογίας διευκολύνεται αν είμαστε σε θέση να περιγράψουμε αρκετά ανοικτά σύνολα τα οποία να παραγάγουν όλα τα ανοικτά σύνολα. Ορισμός.9. Έστω X,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΤΡΙΑΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Ας θυμηθούμε από την περασμένη φορά ότι ένα σύνολο M σε έναν μετρικό χώρο (X, d είναι συμπαγές όταν: αν έχουμε οποιαδήποτε ανοικτά σύνολα που καλύπτουν

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, 17-10-13 Μ. Παπαδημητράκης. 1 Την προηγούμενη φορά αναφέραμε (και αποδείξαμε στην περίπτωση n = 2) το θεώρημα που λέει ότι, αν n N, n 2, τότε για κάθε y 0 υπάρχει μοναδική μηαρνητική

Διαβάστε περισσότερα

Το Θεώρημα Stone - Weierstrass

Το Θεώρημα Stone - Weierstrass Το Θεώρημα Stone - Weierstrass Θεώρημα 1 Έστω ¹ X συμπαγής χώρος Hausdorff και έστω C R (X η πραγματική άλγεβρα όλων των συνεχών συναρτήσεων f : X R. Έστω ότι ένα υποσύνολο A C R (X (1 το A είναι υπάλγεβρα

Διαβάστε περισσότερα

Θεωρία Τελεστών Σημειώσεις Αριστείδης Κατάβο λος1 Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών telmasu, 11 Ιουνίου 2016

Θεωρία Τελεστών Σημειώσεις Αριστείδης Κατάβο λος1 Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών telmasu, 11 Ιουνίου 2016 Θεωρία Τελεστών Σημειώσεις Αριστείδης Κατάβολος 1 Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών 2014-15 1 telmasu, 11 Ιουνίου 2016 Περιεχόμενα 1 Χώροι με νόρμα, χώροι Hilbert 1 1.1 Χώροι με νόρμα και τελεστές...................

Διαβάστε περισσότερα

Πραγματική Ανάλυση Πέτρος Βαλέττας Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών

Πραγματική Ανάλυση Πέτρος Βαλέττας Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Πραγματική Ανάλυση Πέτρος Βαλέττας Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών 2010-11 Περιεχόμενα I Μετρικοί χώροι 1 1 Μετρικοί χώροι 3 1.1 Ορισμός και παραδείγματα........................... 3 1.2 Χώροι με

Διαβάστε περισσότερα

Καλώς ήρθατε στην Τοπολογία! http://eclass.uoa.gr/courses/math451/ Χειμερινό Εξάμηνο 2015-16 Υπενθύμιση: Η τοπολογία της ομοιόμορφης σύγκλισης Εστω K ένα σύνολο (π.χ. K = [a,b]) και f n,f : K R φραγμένες

Διαβάστε περισσότερα

f 1 (A) = {f 1 (A i ), A i A}

f 1 (A) = {f 1 (A i ), A i A} ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΕΜ Χειμερινό εξάμηνο 2017-18 ΜΕΜ231-ΤΟΠΟΛΟΓΙΑ, 11Η ΔΙΑΛΕΞΗ ΣΥΜΠΑΓΕΙΑ ΔΙΔΑΣΚΩΝ: Ι.Δ. ΠΛΑΤΗΣ Μετά τη συνεκτικότητα, όπου είδαμε κάπως αναλυτικά την ιδιότητα εκείνη που επιτρέπει σύνολα

Διαβάστε περισσότερα

Θεωρία μέτρου και ολοκλήρωσης

Θεωρία μέτρου και ολοκλήρωσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία μέτρου και ολοκλήρωσης Ενότητα 4: Ολοκλήρωση επί Καρτεσιανών γινομένων Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Αρμονική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης

Μιχάλης Παπαδημητράκης. Αρμονική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης Μιχάλης Παπαδημητράκης Αρμονική Ανάλυση Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα 1 Το ολοκλήρωμα Lebesgue. 1 1.1 Σύνολα μηδενικού μέτρου..................................... 1 1.2 Η συλλογή C

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

= lim. (P QP ) n x, x. E(Ex) = lim. (P QP ) m P x = Ex, EP x = lim

= lim. (P QP ) n x, x. E(Ex) = lim. (P QP ) m P x = Ex, EP x = lim Άσκηση: Η προβολή στην τομή δύο υποχώρων Αν P, Q είναι δύο ορθές προβολές σε έναν χώρο Hilbert H και R = P Q είναι η προβολή στην τομή im P im Q, δείξτε ότι, για κάθε x H, Rx = lim (P QP ) x = lim (P Q)

Διαβάστε περισσότερα

Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη)

Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 2009 (μπορεί να περιέχουν λάθη) Λύσεις στην Συναρτησιακή Ανάλυση Κανονική εξεταστική 009 (μπορεί να περιέχουν λάθη) (L) Θέμα 1 α) i Ένα σύνολο A X λέγεται γραμμικά ανεξάρτητο αν κάθε πεπερασμένο υποσύνολό του είναι γραμμικά ανεξάρτητο.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Εισαγωγικές εξετάσεις για το Μεταπτυχιακό Πρόγραμμα - Μέρος 2ο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Εισαγωγικές εξετάσεις για το Μεταπτυχιακό Πρόγραμμα - Μέρος 2ο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Εισαγωγικές εξετάσεις για το Μεταπτυχιακό Πρόγραμμα - Μέρος 2ο ΠΡΟΣΟΧΗ: Τα θέµατα που ακολουθούν καλύπτουν ένα ευρύ φάσµα διαφόρων περιοχών των Μαθηµατικών. Αυτό

Διαβάστε περισσότερα

ii

ii Σημειώσεις Γενικής Τοπολογίας Σημειώσεις Μ. Γεραπετρίτη από τις παραδόσεις (διορθώσεις, 2016) Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013 ii Περιεχόμενα 1 Τοπολογικοί Χώροι 3 1.1 Ανοικτά σύνολα,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΔΕΚΑΤΟ ΤΡΙΤΟ ΜΑΘΗΜΑ Χρησιμοποιούμε τα σύμβολα f και f() d για να συμβολίσουμε όλα μαζί τα αόριστα ολοκληρώματα της f σε ένα διάστημα I. Δηλαδή, γράφουμε f = f + c ή f() d =

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΔΕΚΑΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΔΕΚΑΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ ΔΕΚΑΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, 9--3 Μ. Παπαδημητράκης. Σήμερα θα δούμε κάποια πράγματα για μια σημαντική ειδική κατηγορία σειρών, εκείνες που έχουν όλους τους προσθετέους τους μη-αρνητικούς. Και θα αρχίσουμε

Διαβάστε περισσότερα

5 Σύγκλιση σε τοπολογικούς χώρους

5 Σύγκλιση σε τοπολογικούς χώρους 121 5 Σύγκλιση σε τοπολογικούς χώρους Στο κεφάλαιο αυτό πρόκειται να μελετήσουμε την έννοια της σύγκλισης σε γενικούς τοπολογικούς χώρους, πέραν των μετρικών χώρων. Όπως έχουμε ήδη διαπιστώσει ( πρβλ.

Διαβάστε περισσότερα

Συναρτησιακή Ανάλυση, εαρινό εξάμηνο Έκτο φυλλάδιο ασκήσεων. Παραδώστε τις ασκήσεις 1, 3, 4, 8 και 10 μέχρι το μάθημα της Παρασκευής 24/3.

Συναρτησιακή Ανάλυση, εαρινό εξάμηνο Έκτο φυλλάδιο ασκήσεων. Παραδώστε τις ασκήσεις 1, 3, 4, 8 και 10 μέχρι το μάθημα της Παρασκευής 24/3. Συναρτησιακή Ανάλυση, εαρινό εξάμηνο 2016-17. Έκτο φυλλάδιο ασκήσεων. Παραδώστε τις ασκήσεις 1, 3, 4, 8 και 10 μέχρι το μάθημα της Παρασκευής 24/3. 1. Αν ο X είναι χώρος Bnch, αποδείξτε ότι ο X είναι αυτοπαθής

Διαβάστε περισσότερα

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος). 4 Τοπολογικοί χώροι. Στοιχειώδεις έννοιες της τοπολογίας Στην παράγραφο αυτή εισάγουμε τις βασικές έννοιες της τοπολογίας, δηλαδή αυτές του ανοικτού και κλειστού συνόλου, της κλειστότητας και του εσωτερικού

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 12 Απριλίου 2019 Αν

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2018/laii2018html ευτέρα 23 Απριλίου 2018 Αν C

Διαβάστε περισσότερα

Σύγκλιση σειρών Fourier σε χώρους L p

Σύγκλιση σειρών Fourier σε χώρους L p Σύγκλιση σειρών Fourier σε χώρους L p Μιχάλης Σαράντης και Κωνσταντίνος Τσίνας Βασικά αποτελέσµατα από την ανάλυση Fourier Ορισµός.. Ο n-οστός πυρήνας του Dirichlet ορίζεται ως (.) D n (y) Πρόταση.. Για

Διαβάστε περισσότερα

x \ B T X. A = {(x, y) R 2 : x 0, y 0}

x \ B T X. A = {(x, y) R 2 : x 0, y 0} ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΕΜ Χειμερινό εξάμηνο 2017-18 ΜΕΜ231-ΤΟΠΟΛΟΓΙΑ, 6Η ΔΙΑΛΕΞΗ ΚΛΕΙΣΤΑ ΣΥΝΟΛΑ, ΕΣΩΤΕΡΙΚΑ ΚΑΙ ΚΛΕΙΣΤΟΤΗΤΕΣ, ΟΡΙΑΚΑ ΣΥΝΟΛΑ, ΧΩΡΟΙ HAUSDORFF ΔΙΔΑΣΚΩΝ: Ι.Δ. ΠΛΑΤΗΣ 1. Κλειστα συνολα Εχοντας

Διαβάστε περισσότερα

Καλώς ήρθατε στη Θεωρία Γραμμικών Τελεστών! (712) http://eclass.uoa.gr/courses/math122/ Χειμερινό Εξάμηνο 2017-18: Εβδομάδες 1 ως 8 Περιεχόμενα 1 Εισαγωγικά 2 Γραμμικοί χώροι 3 Χώροι με εσωτερικό γινόμενο

Διαβάστε περισσότερα

Εισαγωγή στην Φασματική Θεωρία Αλγεβρών Banach. A. Kατάβολος

Εισαγωγή στην Φασματική Θεωρία Αλγεβρών Banach. A. Kατάβολος Εισαγωγή στην Φασματική Θεωρία Αλγεβρών Banach A. Kατάβολος Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 1999 Μερική Αναθεώρηση, 2017 Περιεχόμενα 1 Πρώτοι ορισμοί 2 2 Παραδείγματα 3 2.1...................................

Διαβάστε περισσότερα

Κεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη

Κεφάλαιο 1. ιατεταγµένοι χώροι. 1.1 Κώνοι και διάταξη Κεφάλαιο 1 ιατεταγµένοι χώροι 1.1 Κώνοι και διάταξη Εστω E γραµµικός χώρος. Ενα κυρτό, µη κενό υποσύνολο P του E είναι κώνος αν λ P για κάθε λ R +. Αν επιπλέον ισχύει P ( P) = {0} το P είναι οξύς κώνος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Εισαγωγή στη Θεωρία Υπερκυκλικών Τελεστών ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του ΣΟΥΡΜΕΛΙΔΗ ΑΘΑΝΑΣΙΟΥ ΕΠΙΒΛΕΠΟΥΣΑ ΚΑΘΗΓΗΤΡΙΑ: ΒΑΓΙΑ ΒΛΑΧΟΥ ΠΑΤΡΑ, ΙΟΥΛΙΟΣ 2015 Ευχαριστίες

Διαβάστε περισσότερα

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 3. Σύντομες Λύσεις

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 3. Σύντομες Λύσεις Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων Γ. Καραγιώργος ykarag@aegean.gr Quiz Σύντομες Λύσεις Άσκηση. Δείξτε ότι η απεικόνιση u, v = u v + 5u v, όπου u = (u, u ), v = (v, v ),

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο

Εθνικό Μετσόβιο Πολυτεχνείο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Διπλωματική Εργασία Εφαρμογές της Θεωρίας Γραμμικών Τελεστών στην Ομαλοποίηση ill-posed Τελεστικών Εξισώσεων Συγγραφή :

Διαβάστε περισσότερα

2

2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ο ΧΩΡΟΣ JAMES TREE - Η ΚΑΤΑΣΚΕΥΗ ΕΝΟΣ ΚΑΘΟΛΙΚΑ ΑΔΙΑΣΠΑΣΤΟΥ ΧΩΡΟΥ BANACH Κουζούμη Φωτεινή Μεταπτυχιακή Διατριβή ΙΩΑΝΝΙΝΑ, 206 2 3 Η παρούσα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, 15-10-13 Μ. Παπαδημητράκης. 1 Παράδειγμα. Ως εφαρμογή της Αρχιμήδειας Ιδιότητας θα μελετήσουμε το σύνολο { 1 } A = n N = {1, 1 n 2, 1 } 3,.... Κατ αρχάς το σύνολο A έχει προφανώς

Διαβάστε περισσότερα

Ασκήσεις Απειροστικού Λογισμού ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Περιεχόμενα Υπακολουθίες και ακολουθίες Cuchy Σειρές πραγματικών αριθμών 3 3 Ομοιόμορφη συνέχεια 3 4 Ολοκλήρωμα

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

h(x, y) = card ({ 1 i n : x i y i

h(x, y) = card ({ 1 i n : x i y i Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,

Διαβάστε περισσότερα