REPREZENTĂRI GRAFICE ÎN SPAłIUL TRIDIMENSIONAL (3D)
|
|
- Κάδμος Αυγερινός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 LUCRAREA Nr. REPREZENTĂRI GRAFICE ÎN SPAłIUL TRIDIMENSIONAL (3D). Obiective Utilizarea mediului de programare Matlab pentru crearea şi controlul reprezentărilor grafice în spańiul tridimensional. 2. NoŃiuni teoretice Sistemul MATLAB oferă o serie de funcńii pentru crearea graficelor în spańiul 3D. 2.. Reprezentarea grafică tridimensională a unui set de date conńinute în vectori sau matrice Pentru a afişa sub forma de linii, în spańiul tridimensional, datele conńinute în trei vectori sau matrice se foloseşte funcńia plot3 cu una din sintaxele: plot3(x,y,z, ) plot3(x,y,z, specificańie linie, ) plot3(, Nume proprietate, Valoare proprietate ) h = plot3(...) FuncŃia plot3(x,y,z,...), unde X, Y, Z sunt vectori de aceeaşi dimensiune, afişează, în spańiul tridimensional, o curbă obńinută prin interpolarea liniara a punctelor ale căror coordonate sunt elementele vectorilor X, Y, Z. Ca şi în cazul funcńiei plot, pot fi reprezentate mai multe seturi de date, deci mai multe triplete de argumente. Dacă X, Y, Z sunt matrice de aceeaşi dimensiune, MATLAB-ul reprezintă câte o curbă pentru fiecare coloană a matricelor, folosind ciclic culorile de bază. În funcńia plot3(x,y,z, specificańie linie, )argumentul opńional specificańie linie (maxim trei caractere) permite specificarea stilului de
2 APLICAłII MATLAB linie, de marcator şi culoarea liniilor reprezentate grafic (ca şi la funcńia plot). Prin perechile de argumente de tipul Nume proprietate, Valoare proprietate, se pot stabili valori ale proprietăńilor obiectelor grafice de tip Line create prin funcńia plot3. Sintaxa h = plot3(...) afişează vectorul coloana h, care conńine identificatorii tuturor obiectelor grafice de tip Line create. Exemplu: t = :pi/:8*pi; plot3(sin(t),cos(t),t,'--r','linewidth',2) grid on Reprezentarea grafică 3D a suprafeńelor Mediul MATLAB poate crea suprafeńe 3D fie sub forma unei reńele de linii care leagă punctele de definińie, fie sub forma unei suprafeńe pline, utilizând funcńiile mesh, respectiv surf. O suprafańă este definită prin două variabile independente, i şi j, care variază continuu într-un domeniu impus, de exemplu i m, j n. Fiecare punct este specificat prin trei funcńii X(i,j), Y(i,j), Z(i,j). Nodurile care definesc suprafańa sunt trei matrice X, Y şi Z, de dimensiune m n. Pentru specificarea culorii, este necesară încă o matrice C, de aceeaşi dimensiune m n. FuncŃiile Matlab pentru reprezentări 3D ale suprafeńelor sunt: mesh - Reprezintă grafic suprafeńe 3D sub forma unei reńele; meshc - Reprezintă grafic suprafeńe 3D sub forma unei reńele în care se trasează liniile de contur ca proiecńii în planul bazei (reprezentate sub suprafańă); meshz - Reprezintă grafic suprafeńe 3D sub forma unei reńele cu plan de referinńă la cota zero; surf - Reprezintă grafic suprafeńe pline (netede) 3D; surfc - Reprezintă grafic suprafeńe pline 3D în care se trasează liniile de contur ca proiecńii în planul bazei (reprezentate sub suprafańă). 2
3 REPREZENTĂRI GRAFICE ÎN SPAłIUL TRIDIMENSIONAL (3D) Reprezentarea grafică a suprafeńelor sub forma unei reńele (funcńia mesh) FuncŃia mesh se apelează cu una dintre sintaxele: mesh(x,y,z) mesh(x,y,z,c) mesh(z) mesh(z,c) meshc( ) meshz( ) mesh(, Nume proprietate, Valoare proprietate ) unde: X şi Y sunt vectori ordonańi crescător şi cu pas constant; Z este funcńia de două variabile care trebuie reprezentată grafic sub forma unei suprafeńe; C este matricea culorilor. În cazul cel mai general, când funcńiile au patru argumente, sunt create suprafeńe specificate prin matricele X, Y şi Z, cu culorile specificate prin matricea C. MATLAB-ul realizează o transformare lineară asupra datelor din C pentru a obńine culorile din paleta de culori curentă. Dacă X, Y şi Z sunt matrice, C trebuie să aibă aceeaşi dimensiune cu acestea. Sintaxa mesh(x,y,z), în care matricea C este omisă, consideră culoarea ca fiind proporńională cu înălńimea suprafeńei. Dacă argumentele X şi Y nu apar în sintaxa funcńiei (mesh(z)), atunci se reprezintă grafic valorile matricei Z în funcńie de indicii acesteia. Dacă X şi Y sunt vectori, length(x) = n şi length(y) = m, unde [m,n]=size(z), punctele de coordonate (X(j), Y(i), Z(i,j)) sunt intersecńiile liniilor de grid care compun reńeaua de linii (mesh). X şi Y corespund coloanelor respectiv liniilor lui Z. Dacă X şi Y sunt matrice, intersecńiile liniilor reńelei au coordonatele (X(i,j), Y(i,j), Z(i,j)). Prin perechile de argumente de tipul Nume proprietate, Valoare proprietate, se pot stabili valori ale proprietăńilor obiectelor grafice de tip Line create prin funcńia mesh Reprezentarea grafică a suprafeńelor pline (funcńia surf) FuncŃia surf se apelează cu una din sintaxele: surf (X,Y,Z) surf (X,Y,Z,C) surfc(z) surfc(z,c) 3
4 APLICAłII MATLAB surf(, Nume proprietate, Valoare proprietate ) unde: X şi Y sunt vectori ordonańi crescător şi cu pas constant; Z este funcńia de două variabile care trebuie reprezentată grafic; C este matricea culorilor. SemnificaŃia argumentelor este similară cu cea a funcńiei utilizată pentru reprezentarea suprafeńelor sub forma unei reńele de linii (mesh). Prin perechile de argumente de tipul Nume proprietate, Valoare proprietate, se pot stabili valori ale proprietăńilor obiectelor grafice de tip Line create prin funcńia surf FuncŃii de referinńă Matlab pentru reprezentarea grafică a funcńiilor de două variabile Pentru a reprezenta grafic o funcńie de două variabile, f(x,y), sub forma unei suprafeńe ca reńea de linii colorate sau suprafańă plină, înainte de apelul funcńiei grafice dorite este necesară generarea matricelor X şi Y utilizate în evaluarea funcńiei de două variabile, f. Pentru transformarea domeniului specificat de cei doi vectori x şi y de dimensiuni n, respectiv m, în matricele X şi Y de dimensiuni m n, astfel încât liniile lui X sunt copiile vectorului x, iar coloanele lui Y sunt copiile vectorului y, se foloseşte funcńia meshgrid, care poate avea una din sintaxele: [X,Y] = meshgrid(x,y), care transformă domeniul specificat de vectorii x şi y în matricele X şi Y; [X,Y] = meshgrid(x) este identică cu [X,Y] = meshgrid(x,x). [X,Y,Z] = meshgrid(x,y,z) determină matrice tridimensionale utilizate pentru evaluarea funcńiilor de trei variabile şi reprezentări tridimensionale volumetrice. ObservaŃie: O funcńie similară cu meshgrid este ndgrid, cu excepńia cazului cu două variabile de intrare şi două argumente de ieşire. În acest caz, funcńia, [X,Y,Z] = meshgrid(x,y,z) produce acelaşi rezultat ca şi funcńia, [Y,X,Z] = ndgrid(y,x,z) Din această cauză, funcńia meshgrid este mai potrivită pentru problemele în spańiu cartezian cu două sau trei dimensiuni, în timp ce funcńia ndgrid este mai potrivită pentru problemele multidimensionale. 4
5 REPREZENTĂRI GRAFICE ÎN SPAłIUL TRIDIMENSIONAL (3D) Reprezentarea obiectelor 3D predefinite În MATLAB există funcńii predefinite pentru reprezentarea anumitor corpuri în spańiu, cum ar fi, sfera şi cilindru. Generarea unei sfere cu raza egala cu unitatea se realizează cu funcńia sphere, care poate avea una din sintaxele următoare: sphere(n) sphere [X,Y,Z] = sphere(n) FuncŃia sphere(n) reprezintă grafic suprafańa unei sfere formată din n n suprafeńe elementare. FuncŃia sphere, fără argumentul n, presupune utilizarea valorii implicite pentru acesta (n=2). FuncŃia [X,Y,Z] = sphere(n) creează trei matrice X, Y şi Z, cu coordonatele sferei unitate, care vor fi utilizate ulterior ca argumente ale funcńiei surf sau mesh pentru reprezentarea grafică a suprafeńei sferei. Generarea unui cilindru (sau forme geometrice derivate din acesta), cu înălńimea egală cu unitatea, se realizează cu funcńia cylinder, prin una dintre sintaxele: [X,Y,Z] = cylinder [X,Y,Z] = cylinder(r) [X,Y,Z] = cylinder(r,n) cylinder(...) Când este apelată cu argumentele de ieşire X, Y şi Z, funcńia cylinder nu are nici un efect grafic, ci se creează matricele cu coordonatele necesare reprezentării grafice ulterioare cu una din funcńiile mesh sau surf. În cazul în care se specifică argumentele de intrare, în cazul general notate cu r şi n, se particularizează aspectul obiectului grafic, fiind posibilă astfel şi reprezentarea grafică a altor corpuri derivate dintr-un cilindru: conuri, piramide, trunchiuri de con, trunchiuri de piramida sau alte corpuri obńinute ca o dispunere succesiva a astfel de corpuri, de-a lungul axei z. Prin argumentul r (vector sau scalar), se pot specifica razele cercurilor circumscrise poligoanelor regulate care formează bazele formelor geometrice 3D ce compun obiectul grafic de tip surface, dispuse consecutiv în intervalul de o unitate al axei Z. Cilindrul are 2 de puncte la distanńe egale în jurul circumferinńei sale. Dacă r este un vector cu m elemente, vor exista (m-) astfel de forme geometrice 3D. Dacă r este un scalar, va fi generată o singură forma
6 APLICAłII MATLAB geometrică şi va fi considerată aceeaşi valoare a razei pentru baza inferioară şi baza superioară. Valoarea implicită a argumentului r este. Argumentul n, întotdeauna un scalar, specifică numărul de laturi ale poligoanelor regulate care formează bazele formelor geometrice 3D. Valoarea implicita a acestuia este 2. Sintaxele fără argumente de intrare sunt echivalente specificării valorilor implicite ale acestora. Sintaxele fără argumente de ieşire reprezintă grafic, în fereastra figură curentă, cu funcńia surf, obiectul de tip suprafańă cu aspectul particularizat prin argumentele de intrare (dacă există). 3. Probleme de rezolvat 3.. Crearea unui grafic 3D pentru funcńii reale de două variabile reale 3... Să se reprezinte grafic, în coordonate 3D, funcńia reală de două variabile reale, f, care are expresia: f ( x, y) : x 4y 2 2 = +, unde x (, ) si y (,) Să se reprezinte grafic, în coordonate 3D, funcńia reală de două variabile reale, f, care are expresia: y τ ( θs θm ) f( x, y) := θm e erf x 2 γ c λ y x e ν x erf + 2 ( ) θs θm eν x erf... x γ c 2 λ y γ c + λ y y τ y τ... 6
7 REPREZENTĂRI GRAFICE ÎN SPAłIUL TRIDIMENSIONAL (3D) În expresia funcńiei definite de utilizator f, se foloseşte funcńia eroare Erf, definită matematic prin relańia: ( ) not 2 z 2 t =, predefinită în Matlab, prin funcńia erf. Erf z e dt π Pentru rezolvarea problemei s-au considerat următoarele valori numerice: γ := 893 c := 387 mt :=. a :=.2 α :=. λ := 393 p := θs := 83 c τ := mt ν := c γ θm := p τ α a λ τ c γ FuncŃia f reprezintă expresia analitică a temperaturii pentru o bară omogenă semi-infinită, la capătul căreia se aplică o treaptă de temperatură. Pătrunderea câmpului termic este studiată în cazul subansamblelor echipamentelor electrice ce sunt solicitate termic semnificativ. SituaŃia corespunde încălzirii unui contact electric de către arcul electric sau la scurtcircuit. ObservaŃie: Când o expresie depăşeşte lungimea unui rând, în Matlab, se utilizează semnul (trei puncte) la capătul rândului, pentru a marca scrierea unei instrucńiuni pe mai multe rânduri. SemnificaŃiile notańiilor sunt următoarele: α coeficientul global de cedare a căldurii [W/m 2 ]; mt masa contactului [kg]; a suprafańa contactului [m 2 ]. θ temperatura [ ]; λ conductibilitatea termică a materialului [W/m ]; c căldura specifică masică [Ws/kg ]; γ masa specifică [kg/m 3 ]; τ constantă de timp termică locală [s]; p pierderi specifice [W/m 3 ]. 7
8 APLICAłII MATLAB Să se reprezinte grafic următoarele funcńii parametrice: F( u, v) := u sin( v) F2( u, v) := u cos( v) F3( u, v) := u sin( u) 2 4. Probleme rezolvate 4.. Reprezentare grafică Folosind nońiunile teoretice, prezentate la 2.2, se va reprezenta grafic funcńia f(x,y) definită la 3... Se vor seta parametrii reprezentării grafice astfel încât să se obńină imaginea prezentată. clc clear X=-:.2:; Y=-:.2:; f=meshgrid(x.^2+4.*y.^2); mesh(x,y,f); figure meshc(x,y,f); figure surf(x,y,f) figure surfc(x,y,f)
9 REPREZENTĂRI GRAFICE ÎN SPAłIUL TRIDIMENSIONAL (3D) 4.2. Reprezentare grafică 2 Folosind nońiunile teoretice, prezentate la 2.2, se va reprezenta grafic funcńia f(x,y) definită la Se vor seta parametrii reprezentării grafice astfel încât să se obńină imaginea prezentată Reprezentare grafică 3 Folosind nońiunile teoretice, prezentate la 2.2, se vor reprezenta grafic funcńiile parametrice (F, F2, F3) definită la 3..3, astfel încât să se obńină imaginea prezentată Probleme propuse 9
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
INTRODUCERE ÎN PROGRAMAREA MATLAB
LUCRAREA Nr. 2 INTRODUCERE ÎN PROGRAMAREA MATLAB. Obiective Lucrarea are ca scop însuşirea modului de lucru cu produsul program Matlab pentru calcul numeric, utilizând funcńii matematice uzuale. 2. NoŃiuni
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Teme de implementare in Matlab pentru Laboratorul de Metode Numerice
Teme de implementare in Matlab pentru Laboratorul de Metode Numerice As. Ruxandra Barbulescu Septembrie 2017 Orice nelamurire asupra enunturilor/implementarilor se rezolva in cadrul laboratorului de MN,
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Algebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
CURS 5: GRAFICĂ ÎN MATLAB
: GRAFICĂ ÎN MATLAB 1. REPREZENTĂRI GRAFICE 2D 1.1. Reprezentări grafice elementare Funcţiile MATLAB pentru reprezentări grafice elementare sunt: plot loglog semilogx semilogy fill Reprezintă grafice în
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă
Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare
Geometrie computationala 2. Preliminarii geometrice
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
2 Transformări liniare între spaţii finit dimensionale
Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Laborator 6. Integrarea ecuaţiilor diferenţiale
Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul
Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy
Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,
1.3 Baza a unui spaţiu vectorial. Dimensiune
.3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi
Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială
Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane
Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii
Matrice. Determinanti. Sisteme liniare
Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice
Capitolul COTAREA DESENELOR TEHNICE LECŢIA 21
Capitolul COTAREA DESENELOR TEHNICE LECŢIA 21! 21.1. Generalităţi.! 21.2. Elementele cotării.! 21.3. Aplicaţii.! 21.1. Generalităţi! Dimensiunea este o caracteristică geometrică liniară sau unghiulară,care
y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =
Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
1.4 Schimbarea bazei unui spaţiu vectorial
Algebră liniară, geometrie analitică şi diferenţială. Schimbarea bazei unui spaţiu vectorial După cum s-a văzut deja, într-un spaţiu vectorial V avem mai multe baze, iar un vector x V va avea câte un sistem
Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
Sisteme liniare - metode directe
Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K
Seminar Algebra. det(a λi 3 ) = 0
Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +
Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.
Transformata Laplace
Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate
III. Reprezentarea informaţiei în sistemele de calcul
Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea
1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.
liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Examen AG. Student:... Grupa:... ianuarie 2011
Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)
3.4. Minimizarea funcţiilor booleene
56 3.4. Minimizarea funcţiilor booleene Minimizarea constă în obţinerea formei celei mai simple de exprimare a funcţiilor booleene în scopul reducerii numărului de circuite şi a numărului de intrări ale
Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili
Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru
CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1
CURS 5 REDUCEREA SISTEMELOR DE FORŢE (CONTINUARE) CUPRINS 5. Reducerea sistemelor de forţe (continuare)...... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 5.1. Teorema lui Varignon pentru sisteme
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi
Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu
Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1
Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric
Să se arate că n este număr par. Dan Nedeianu
Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)
Studiu privind soluţii de climatizare eficiente energetic
Studiu privind soluţii de climatizare eficiente energetic Varianta iniţială O schemă constructivă posibilă, a unei centrale de tratare a aerului, este prezentată în figura alăturată. Baterie încălzire/răcire
* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1
FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile
T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
Lab06: Extragerea trăsăturilor şi selecţia trăsăturilor. Aplicaţie pentru recunoaşterea obiectelor bazată pe formă.
Lab06: Extragerea trăsăturilor şi selecţia trăsăturilor Aplicaţie pentru recunoaşterea obiectelor bazată pe formă. Aplicație practică a extragerii şi selecţiei trăsăturilor Recunoaşterea celor 4 forme
INTERPOLARE. y i L i (x). L(x) = i=0
INTERPOLARE Se dau punctele P 0, P 1,..., P n in plan sau in spatiu, numite noduri si avand vectorii de pozitie r 0, r 1,..., r n. Problemă. Să se găsească o curbă (dintr-o anumită familie) care să treacă
Examen AG. Student:... Grupa: ianuarie 2016
16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex
Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A =
Matrice, determinanti Un punct de vedere liniar independent "A judeca matematic nu înseamn a gândi losoc, a judeca losoc nu înseamn a liber, a gândi liber nu înseamn a losof " Blaise Pascal Liniar independenta:
Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,
vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se