Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A =
|
|
- Ήρα Τοκατλίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Matrice, determinanti Un punct de vedere liniar independent "A judeca matematic nu înseamn a gândi losoc, a judeca losoc nu înseamn a liber, a gândi liber nu înseamn a losof " Blaise Pascal Liniar independenta: λ 1 v 1 + λ 2 v λ n v n = 0 (1) = λ 1 = λ 2 = = λ n = 0 daca in schimb exista coecienti λ 1, λ 2,, λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = v i = λ 1 λ i v 1 λ 2 λ i v 2 λ 1n λ i v n spunem ca v 1, v 2,, v n sunt liniar dependenti orice set de vectori care contine vectorul nul este liniar dependent liniar dependent exista un vector care este o combinatie liniara de ceilalti vectori (nu aduce noi informatii ) matricea: A = poate interpretata ca o colectie de vectori linie: (1 2 1) = l 1 A = (0 0 2) = l 2 ( 1 2 3) = l 3 (2 4 0) = l 4 sau de vectori coloana: c 1 c 2 c A = rang(a) = nr de linii liniar independente = nr de coloane liniar independente rang(a) = 2 si se poate verica ca primele doua linii l 1 si l 2 sunt liniar independente iar l 3 = l 1 + l 2 sau l 4 = 2l 2 + l 3
2 oricare trei linii sunt liniar dependente si exista doua linii liniar independente, de exemplu l 1, l 2 acelasi rezultat are loc pentru coloanele c 1, c 2, c 3 Structura matricelor de rang r Daca A M m n (R) are rangul r atunci exista U M m r (R) si V M r n (R) atsfel ca: De ex: A = U V A = = ( 1 2 ) Structura matricelor de rang 1 Daca A M m n (R) are rangul 1 atunci a 1 a 2 exista u = si v = (b 1 b 2 b n ) astfel ca: a n Teorema lui Sylvester: A = u v rang(a) + rang(b) n rang(ab) min{rang(a), rang(b)} deci rangul nu creste prin inmultire cu o alta matrice are loc si inegalitatea: rang(a + B) rang(a) + rang(b) evidenta intrucat prin adunare putem modica fundamental matricea ea putand deveni chiar inversabila Transformari elementare: urmatoarele transformari realizate asupra liniilor( sau coloanelor) unei matrice se numesc transformari elementare pe linii (coloane): inmultirea unei linii ( coloane) cu un numar real nenul: l i cl i schimbarea a doua linii ( coloane) intre ele: l i l j, l j l i adunarea la o linie (coloana) a unei alte linii (coloane) inmultite cu un numar nenul l i l i + cl j Matrice elementare: matricele obtinute din matricea I in urma unei transformari elementare se numesc matrice elementare
3 Retine: daca realizam o transformare elementara pe linii asupra matricei I si rezultatul il notam cu E atunci EA realizeaza aceeasi transformare elementara pe linii asupra matricei A: Exemplu: Fie A = a11 a 12 si I = a 21 a inmultim linia 2 cu c = E = EA = ( c ) a11 a 12 c a 21 c a 22 si observam ca daca realizam o transformare elementara pe coloane asupra matricei I si rezultatul il notam cu E atunci AE realizeaza aceeasi transformare elementara pe coloane asupra matricei A: Exemplu: Fie A = a11 a 12 si I = a 21 a adunam coloanei 2 coloana 1 = E = AE = a11 a 12 + a 11 a 21 a 22 + a si observam ca 0 1 O matrice este inversabila daca si numai daca este un produs de matrice elementare: A = E 1 E 2 E p Determinanti Efectul transformarilor elementare asupra determinantilor: daca in matricea A schimbam intre ele doua linii (coloane) atunci determinantul isi schimba semnul daca inmultim o linie (coloana) cu un numar atunci determinantul se inmulteste cu acel numar daca la o linie (coloana) adaugam o alta linie (coloana) inmultita cu un numar atunci determinantul ramane neschimbat Determinantii testeaza liniar independenta liniilor (coloanelor): = daca o linie (coloana) este o combinatie liniara intre celelalte linii (coloane) atunci det(a) = 0 ( determinantul va nenul doar daca liniile si coloane sunt liniar independente) daca elementele unei linii (coloane) sunt nule = deta = 0 daca matricea are doua linii (coloane) identice = det(a) = 0 daca doua linii (coloane) sunt proportionale = det(a) = 0 Alte proprietati:
4 derivarea unui determinant: d f 11 (x) f 12 (x) f 13 (x) dx f 21 (x) f 22 (x) f 23 (x) f 31 (x) f 32 (x) f 33 (x) = f 11 (x) f 12 (x) f 13 (x) f 21 (x) f 22 (x) f 23 (x) f 31 (x) f 32 (x) f 33 (x) + f 11 (x) f 12 (x) f 13 (x) f 21 (x) f 22 (x) f 23 (x) f 31 (x) f 32 (x) f 33 (x) + f 11 (x) f 12 (x) f 13 (x) f 21 (x) f 22 (x) f 23 (x) f 31 (x) f 32 (x) f 33 (x) se deriveaza pe rand ecare linie ( sau coloana) liniaritatea determinantului: a 11 a 12 a 13 x 21 + y 21 x 22 + y 22 x 23 + y 23 a 31 a 32 a 33 = a 11 a 12 a 13 x 21 x 22 x 23 a 31 a 32 a 33 + a 11 a 12 a 13 y 21 y 22 y 23 a 31 a 32 a 33 determinantul este o aplicatie liniara in raport cu ecare linie sau coloana Aplicatii in geometrie: 1 Aria triunghiului format de punctele A(x A, y A ), B(x B, y B ) si C(x C, y C ) este: A ABC = 1 2 det x A y A 1 x B y B 1 x C y C 1 avem nevoie de modul inaintea determinantului pentru a ne asigura ca aria este tot timpul pozitiva Ce "ascunde" liniar dependenta? daca determinantul de mai sus este nul stim ca liniile sunt liniar dependente, asadar va exista o linie care sa e o combinatie liniara de celelalte, sa presupunem de exemplu l 3 = αl 1 + βl 2, adica: (x C y C 1) = α (x A y A 1) + β (x B y B 1) deci 1 = α + β si prin urmare: x C = α x A + (1 α) x B y C = α y A + (1 α) y B care conduce la: x C x A = y C y A = 1 α x B x A y B y A adica punctul C se aa pe dreapta AB = determinatul este nul daca punctele sunt coliniare: x A y A 1 A(x A, y A ), B(x B, y B ), C(x C, y C ) coliniare x B y B 1 x C y C 1 = 0
5 Retine: coordonatele punctelor M situate pe dreapta AB sunt o combinatie ana a coordonatelor punctelor A si B adica: (x M, y M ) = α (x A, y A ) + (1 α)(x B, y B ) α R coordonatele punctelor N situate in interiorul segmentului combinatie convexa a coordonatelor punctelor A si B: AB sunt o (x N, y N ) = α (x A, y A ) + (1 α)(x B, y B ) α > 0 2 Volumul tetraedrului format de punctele A(x A, y A, z A ), B(x B, y B, z B ), C(x C, y C, z C ) si D(x D, y D, z D ) este dat de formula: V ABCD = 1 x A y A z A 1 6 det x B y B z B 1 x C y C z C 1 x D y D z D 1 printr-un rationament asemanator liniar dependenta liniilor conduce la conditia de coplanaritate a punctelor Liniar independenta functiilor: functiile f 1 (x), f 2 (x),, f n (x) sunt liniar independente daca si numai daca wronskian-ul lor W (f 1, f 2,, f n ) este nenul: f 1 (x) f 2 (x) f n (x) f 1 (x) f 2 (x) f n(x) W (f 1, f 2,, f n ) = f 1 (x) f 2 (x) f n(x) 0 f (n 1) 1 (x) f (n 1) 2 (x) f n (n 1) (x) Exemplu: stim deja de la cursul de Algebra ca polinoamele f 1 = 1, f 2 = X si f 3 = X 2 sunt liniar independente, putem verica acelasi rezultat si pentru functiile polinomiale atasate f 1 (x) = 1, f 2 (x) = x si f 3 (x) = x 2 : 1 x x 2 W (f 1, f 2, f 3 ) = 0 1 2x = 2 0 Determinanti Vandermonde si formula de interpolare a lui Lagrange: o problema clasica in matematica se refera la aarea polinomului de grad n 1, p = a n 1 X n 1 + a n 2 X n a 1 X + a 0 care satisface relatiile: p(x 1 ) = y 1 p(x 2 ) = y 2 p(x n ) = y n
6 necunoscutele sunt evident a n 1, a n 2,, a 1, a 0 iar daca transformam relatiile anterioare intr-un sistem obtinem un sistem liniar de ecuatii cu determinantul matricei sistemului egal cu: 1 x 1 x 2 1 x n x 2 x 2 2 x n 1 2 = 1 x n x 2 n x n 1 un astfel de determinant se numeste determinant Vandermonde si are loc formula: 1 x 1 x 2 1 x n x 2 x 2 2 x n 1 2 n = = (x j x i ) 1 x n x 2 n x n 1 j>i n Exemplu: cum se aplica formula de mai sus? sa consideram determinantul: 1 a a 2 a 3 = 1 b b 2 b 3 1 c c 2 c 3 1 d d 2 d 3 se stabileste ordinea a, b, c, d si prin asta intelegem o "ordine sociala" crescatoare stabilita intre a, b, c si d In produsul indicat de formula se vor scriu toate diferentele in care primul termen trebuie sa e mai mare in "rang" decat cel de al doilea: 1 a a 2 a 3 1 b b 2 b 3 1 c c 2 c 3 = (b a)(c a)(d a)(c b)(d b)(d c) 1 d d 2 d 3 cu putina rabdare se obtine in cele din urma formula polinomului p numita formula de interpolare a lui Lagrange: p = (X x 2)(X x 3 ) (X x n ) (x 1 x 2 )(x 1 x 3 ) (x 1 x n ) y 1 + (X x 1)(X x 3 ) (X x n ) (x 2 x 1 )(x 2 x 3 ) (x 2 x n ) y 2 + (X x 1)(X x 2 ) (X x n 1 ) (x n x 1 )(x n x 2 ) (x n x n 1 ) y n n Unde este liniar independenta?? Polinoamele: p 1 = (X x 2)(X x 3 ) (X x n ) (x 1 x 2 )(x 1 x 3 ) (x 1 x n )
7 p 2 = (X x 1)(X x 3 ) (X x n ) (x 2 x 1 )(x 2 x 3 ) (x 2 x n ) p n = (X x 1)(X x 2 ) (X x n 1 ) (x n x 1 )(x n x 2 ) (x n x n 1 ) sunt liniar independente si formeaza chiar o baza a spatiului R n 1 [X] al polinoamelor de grad cel mult n 1 cu coecienti reali Determinanti??? Problema 1 Aratati ca (a 2 + b 2 )(c 2 + d 2 ) = (ac bd) 2 + (ad + bc) 2 apoi argumentati faptul ca pentru orice n N numarul 25 n este o suma de patrate pefecte a b c d Solutie: Considera matricele A = si B = b a d c si observa ca deta = a 2 + b 2 iar det(b) = c 2 + d 2 In plus: Evident: det(ab) = ac bd bc ad ad + bc ac bd = (ac bd)2 + (ad + bc) 2 det(a)det(b) = det(ab) Problema 2 Descompuneti in factori expresia: E = a 3 + b 3 + c 3 3abc Solutie: Considera matricea: A = a b c c a b b c a observa E = det(a) = a 3 + b 3 + c 3 3abc dar putem realiza transformari elementare asupra determinantului matricei A: a b c E = c a b b c a = a b c + a + b c a b + c + a b c a + b + c = a b c + a + b c a a b 0 b a c b 0 = (c + a + b) ( (c a)(c b) + (a b) 2) = (a + b + c)(a 2 + b 2 + c 2 ab ac bc) Problema 3 Aati urmatorul termen al sirului: 1, 4, 3, 8, 9,?
8 Solutie: Genul acesta de probleme sunt frecvente in testele de stabilire a IQ-ului dar nu fac altceva decat sa stabileasca IQ-ul celui care le-a propus! Asadar avem un sir haotic si se presupune ca intre termenii sai exista o relatie care odata descoperita va conduce la aarea termenului urmator De ce nu o relatie polinomiala intre termenii sirului? Am gasit! Toti termenii sunt valori consecutive ale aceluiasi polinom p adica: p(1) = 1, p(2) = 4, p(3) = 3, p(4) = 8, p(5) = 9, p(6) =? si putem sa aam un polinom de grad 4 care satisface aceste proprietati folosind formula de interpolare a lui Lagrange: adica: p = (X 2)(X 3)(X 4)(X 5) (1 2)(1 3)(1 4)(1 5) 1 (X 1)(X 3)(X 4)(X 5) + 4 (2 1)(2 3)(2 4)(2 5) (X 1)(X 2)(X 4)(X 5) + 3 (3 1)(3 2)(3 4)(3 5) (X 1)(X 2)(X 3)(X 5) + 8 (4 1)(4 2)(4 3)(4 5) (X 1)(X 2)(X 3)(X 4) + 9 (5 1)(5 2)(5 3)(5 4) p = 1 (X 2)(X 3)(X 4)(X 5) 24 2 (X 1)(X 3)(X 4)(X 5) (X 1)(X 2)(X 4)(X 5) 4 4 (X 1)(X 2)(X 3)(X 5) (X 1)(X 2)(X 3)(X 4) 8 deci termenul urmator al sirului este p(6) = = 24 Rezultatul era oricum evident!!
Matrice. Determinanti. Sisteme liniare
Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice
Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă
Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
2 Transformări liniare între spaţii finit dimensionale
Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
1.3 Baza a unui spaţiu vectorial. Dimensiune
.3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.
liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia
Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane
Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Seminar Algebra. det(a λi 3 ) = 0
Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:
Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi
Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr Lucian MATICIUC http://mathettituiasiro/maticiuc/ CURS I II Matrice şi determinanţi Sisteme de ecuaţii
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...
1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale
Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.
Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele
Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI
Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază
CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi
Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială
1.4 Schimbarea bazei unui spaţiu vectorial
Algebră liniară, geometrie analitică şi diferenţială. Schimbarea bazei unui spaţiu vectorial După cum s-a văzut deja, într-un spaţiu vectorial V avem mai multe baze, iar un vector x V va avea câte un sistem
Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
CURS 5 Spaţii liniare. Spaţiul liniar R n
CURS 5 Spaţii liniare. Spaţiul liniar R n A. Arusoaie arusoaie.andreea@gmail.com andreea.arusoaie@info.uaic.ro Facultatea de Informatică, Universitatea Alexandru Ioan Cuza din Iaşi 30 Octombrie 2017 Structura
Ariadna Lucia Pletea Adrian Corduneanu Mircea Lupan LECŢII DE ALGEBRĂ LINIARĂ
Ariadna Lucia Pletea Adrian Corduneanu Mircea Lupan LECŢII DE ALGEBRĂ LINIARĂ IASI, 005 1 Cuprins Capitolul 1 1.1. Matrice şi determinanţi...5 1.1.1. Determinantul unei matrice pătratice...8 1.1.. Matricea
Adriana-Ioana Lefter DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs
Adriana-Ioana Lefter MATEMATICĂ (ALGEBRĂ ŞI ECUAŢII DIFERENŢIALE) Anul I, Facultatea de Chimie Note de curs Cuprins Partea 1 ALGEBRĂ 1 Capitolul 1 Matrice şi determinanţi 3 11 Corpuri 3 12 Matrice 4 13
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
, m ecuańii, n necunoscute;
Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +
Matrici şi sisteme de ecuaţii liniare
Matrici şi sisteme de ecuaţii liniare 1. Matrici şi determinanţi Reamintim aici câteva proprietăţi ale matricilor şi determinanţilor. Definiţia 1.1. Fie K un corp (comutativ) şi m, n N. O funcţie A : {1,...,
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă
Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a
INTERPOLARE. y i L i (x). L(x) = i=0
INTERPOLARE Se dau punctele P 0, P 1,..., P n in plan sau in spatiu, numite noduri si avand vectorii de pozitie r 0, r 1,..., r n. Problemă. Să se găsească o curbă (dintr-o anumită familie) care să treacă
Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ GEOMETRIE
Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ ŞI GEOMETRIE IAŞI, 005 CUPRINS 1 MATRICE ŞI SISTEME ALGEBRICE LINIARE 5 1.1 Matrice şi determinanţi.......................... 5 1. Sisteme de ecuaţii algebrice
ELEMENTE DE GEOMETRIA COMPUTAŢIONALĂ A CURBELOR Interpolare cu ajutorul funcţiilor polinomiale
3 ELEMENTE DE GEOMETRIA COMPUTAŢIONALĂ A CURBELOR 31 Interpolare cu ajutorul funcţiilor polinomiale Prin interpolare se înţelege următoarea problemă: se dau n + 1 puncte P 0, P 1,, P n în plan sau în spaţiu
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.
Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,
Conice - Câteva proprietǎţi elementare
Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii
Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).
Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y
Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale
Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educaţiaşiformareaprofesionalăînsprijinulcreşteriieconomiceşidezvoltăriisocietăţiibazatepecunoaştere
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Geometrie computationala 2. Preliminarii geometrice
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Algebră liniară CAPITOLUL 1
Algebră liniară CAPITOLUL SPAŢII VECTORIALE FINIT DIMENSIONALE. Definiţia spaţiilor vectoriale Pentru a introduce noţiunea de spaţiu vectorial avem nevoie de noţiunea de corp comutativ de caracteristică
VARIANTE PENTRU BACALAUREAT, M1-1, 2007
VARIANTE PENTRU BACALAUREAT, M-, 27 VARIANTA SUBIECTUL I. a) Să se determine ecuația dreptei care trece prin punctul A(2; 5;3) și este paralelă cu dreapta x = y 2 4 6 = z +3 9. b) Să se determine valoarea
Algebră liniară CAPITOLUL 3
Algebră liniară CAPITOLUL 3 TRANSFORĂRI LINIARE 3.. Definiţia transformării liniare Definiţia 3... Fie V şi W două spaţii vectoriale peste un corp comutativ K. O funcţie u: V W se numeşte transformare
CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar
Progresii aritmetice si geometrice. Progresia aritmetica.
Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Algebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice...
Geometrie Afină Contents 1 Spaţii vectoriale 3 1.1 Spaţii vectoriale peste un corp K........................ 3 1.2 Exemple de spaţii vectoriale........................... 4 1.3 Dependenţă liniară de vectori..........................
CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.
Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba
Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
Sala: Octombrie 2014 SEMINAR 1: ALGEBRĂ. este un Q-spaţiu vectorial, faţă de operaţiile uzuale de adunare şi înmulţire cu un număr raţional.
Sala: Octombrie 24 SEMINAR : ALGEBRĂ Conf univ dr: Dragoş-Pătru Covei Programul de studii: CE, IE, SPE Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat distribuit
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE
CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă
Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015
Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma
Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15
MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()
Să se arate că n este număr par. Dan Nedeianu
Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)
Probleme pentru clasa a XI-a
Probleme pentru clasa a XI-a 1 ( ) 01. Fie A si B doua matrici de ordin n cu elemente numere reale, care satisfac relatia AB = A + B. a) Sa se arate ca det(a 2 + B 2 ) 0. b) Sa se arate ca rang A + B =
Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
Tranzistoare bipolare şi cu efect de câmp
apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Lectia VII Dreapta si planul
Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.
elemente de geometrie euclidiană
Universitatea de Vest din Timişoara Facultatea de Fizică Algebră liniară şi elemente de geometrie euclidiană Adrian NECULAE - Curs pentru uzul studenţilor - Timişoara - 2010 Tipografia Universităţii de
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
SEMINAR TRANSFORMAREA FOURIER. 1. Probleme
SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)
CERCUL LUI EULER ŞI DREAPTA LUI SIMSON
CERCUL LUI EULER ŞI DREAPTA LUI SIMSON ABSTRACT. Articolul prezintă două rezultate deosebite legate de patrulaterul inscriptibil şi câteva consecinţe ce decurg din aceste rezultate. Lecţia se adresează
Subiecte Clasa a V-a
(40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii
Dreapta in plan. = y y 0
Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului
Concurs MATE-INFO UBB, 25 martie 2018 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, 5 martie 18 Proba scrisă la MATEMATICĂ NOTĂ IMPORTANTĂ: 1 Problemele tip grilă (Partea A pot avea unul
III. Reprezentarea informaţiei în sistemele de calcul
Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea
GEOMETRIE ANALITICĂ. Mihai-Sorin Stupariu
GEOMETRIE ANALITICĂ Mihai-Sorin Stupariu Sem. al II-lea, 007-008 Cuprins 1 Elemente de algebră liniară 3 1.1 Spaţii vectoriale. Definiţie. Exemple................ 3 1. Combinaţii liniare. Baze şi repere..................