Fizica starii solide II
|
|
- Ἀριστόδημε Στεφανόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 zca sta sold II I acst cus vom cocta asua tasotulu lctolo matal cstal. oml d tasot sau ctc zta dlasaa odoata a utatolo d saca ca asus la alcaa uu cam lctc coduct lctca la alcaa uu cam magtc ctul Hall sau a uu gadt d tmatua ctul Sbc. oat omatl lgat d tasotul uu sstm d sac lctc s gassc ucta d dstbut t ca zta obabltata ca o atcula cu vctoul d uda sa ocu ozta la momtul t. D ucta d dstbut s ot obt mam mdat cum a cutul lctc mobltata tc. Paa acum la cusul d zca sta codsat s-a olost ucta m-dac x[ / ] ca zta ucta d dstbut a utatolo d saca cu ga clbu cu mdul cojuato. Acasta uct d dstbut u st otvta tu studul uu sstm d utato d saca zta camulo xt sau a gadtulu d tmatua doac acst sstm u ma st clbu. I gal staa d clbu ucta d dstbut t dd u doa d c s d coodoatl satal s tm modcal utad datoat uu gadt satal al tmatu/dstbut d lcto ca duc la vaata umaulu d atcul d lmtul d volum d juul ozt. I acst caz vaata tm a uct d dstbut a lctolo cu vtza v cstal st data d
2 asot lctc. cuata ctca oltzma t t d dt t v t t acclat zta camulo xt ca duc la csta mulsulu atcullo cu d od d la valoaa. I zta u ot alcat d / dt d / dt s vaata tm a uct d dstbut st data d t t d dt t t Daca alcam smulta u cam lctc s uul magtc v. absobt otca oza d mact tc. ca duc la vaata tm a umaulu d utato datota ocslo d ga s comba. I acst caz d dt G t R t 4 4 mastlo/coclo cu oo mutatl sau dctlo taua cstala ca duc la vaata umaulu d atcul ca au u aumt. ad cot d cul Paul ca l satsac stal lctoc cuatc vaata umaulu d lcto staa/cu vcto d uda uma mastlo staa ' duc la o vaat a uct d dstbut d dt. 5 t c I absta ocslo d mast s a ga/comba d utato d dt d d v t dt dt t 6 doac umaul atcullo ca umaza o aumta tacto satul azlo st cosvat.
3 asot lctc. cuata ctca oltzma Obsvat: tactoa u atcul satul azlo zta uu cam lctc x s tataa smclasca oma st: voluta ctulu uu act d ud cuatc oat dtmata d tactoa u atcul clasc cosuzatoa st data d omull d gua d data. I zta coclo ucta d dstbut d clbu s gasst d cuata ctca sau cuata d tasot oltzma t v t c. 7 I atcula sta statoaa cad ucta d dstbut st ddta d tm / t s zta doa a ot Lotz oltzma dv v cuata ctca v v t c. 8 Ptu a gas ucta d dstbut t d cuata oltzma st csa sa cuoastm xlct tmul d coc d ata data. Acasta st o oblma dcla ca oat smlcata toduca tmulu d laxa ca dsc va la clbu a uct d dstbut cad actua camulo xt st tuta:
4 asot lctc. cuata ctca oltzma 4 t c 9 sau t x[ t / ]. mul d laxa st dc tvalul ca abata uct d dstbut d la valoaa la clbu scad d o dua c camul xt sut datat. Itoduca tmulu d laxa st osbla daca ocsl d coc sut lastc ga utatolo d saca u s modca la mast cocl sut ddt u xsta tta a stalo lctoc cocl sut stata tmul d coc s oat glja camul xt u modca sctul gtc al lctolo d cstal; acasta codt tzc d xmlu camu magtc ts ca a duc la cuatzaa vllo gtc al lctoulu. Natua cuatca a lctolo st aata doa tmul d coc va cul Paul ca l satsac stal lctoc cuatc. Psuuad ca sul lctoulu u s modca uma mast o lua cosda dtalata a umaulu d lcto staa/cu vcto d uda s a clo staa ' coduc la tmul d coc t c P ' '[ ] P ' [ ' ] ' '
5 asot lctc. cuata ctca oltzma 5 ud P ' st obabltata d tazt lctoca utata d tm d staa staa '. S-a cosdat ca mastl d staa ocuata cu obabltata staa ' lba [cu obabltata ' ] duc la dscsta uct d dstbut cad mastl d staa ' ocuata cu obabltata ' staa lba [cu obabltata ] duc la csta uct d dstbut. La clbu P ' '[ ] P ' [ ']. Cosdam doa uct d dstbut ca ot aoxmat ca tubat al dc ca ot xmat ca cu d χ << d ud χ st o uct vctoala cuoscuta acst momt a om scc tu dt ocs d mast. I acst codt tmul d coc dv ' [ ] [ ' ] P ' [ ' ] t c ' ' [ ] [ ' ] 4 P ' [ ' ][ χ χ ' ' ] ' daca s t doa tm la s daca s olosst dttata d d / / [ ] [ ]. 5 I acst caz ' χ ' ' P ' 6 t c ' χ
6 asot lctc. cuata ctca oltzma 6 sau / P ' ' χ / χ tu coc lastc ca. Ac ' χ ' sut octl lu ' vctoul χ. Calculul tmulu d laxa s oat ctua tu dt mcasm d mast ddta d tmatua s g a acstu aamtu utad gal xmata ca ' χ A 7 ud A st u coct ddt d g s st scc cau t d coc: / tu coc cu oo acustc mtal / tu aclas mcasm da smcoducto / tu coc cu oo otc smcoducto ola la tmatu dcat tu coc cu mutat ut mtal / tu coc cu mutat ozat smcoducto. Daca ma mult mcasm d mast coxsta. 8 Coductvtata lctca D la cusul d lctctat stm ca otatl d tasot al uu matal macoscoc omog cu lugm L s a tasvsala A sut caactzat d zstvtat ρ sau coductvtat σ dtmat d masuato d zstta R sau coductvtat G astl cat cl ut tu tsu alcat V mc cutul I st ootoal cu V lga Om: V RI sau I GV cu R ρl / A sau G σa/ L.
7 asot lctc. cuata ctca oltzma 7 La alcaa uu cam lctc dcta x x dv V 9 dx L lcto au o msca alatoa cu o tdta d dlasa ta dcta camulu lctc alcat ota asua uu lcto d v d μx cu x s vtza md avad xsa x μ mobltata lctolo. Acst t d msca st umt dt vtza md d umta vtza d dt. Smul mus dta mobltat dca atul ca dlasaa lctolo st ousa dct camulu lctc alcat. I mscaa d dt a lctolo cu dstat dstata cutulu dcta x j x I / A st data d j x v μ σ σ μ d x x I zta uu gadt d dstat a lctolo datoat doa uom ca duc la u gadt a cvas-vlulu m aa o cotbut a duz la dstata d cut ca ao d clbu s la tmatua costata st j x d / σ dx astl cat dstata totala d cut dv j cu d μ x D dx x D coctul d duz. μ Smla zta uu gadt d tmatua dcta x avm o cotbut adtoala la cut datoata coctulu Sbc : j x Sσ d dx ud S st coctul Sbc.
8 asot lctc. cuata ctca oltzma 8 I acst cus vom cca sa gasm ddta coductvtat sau a zstvtat d tmatua tu dvs tu d matal mtal smcoducto matal u mucat tc.. I acst l utm xtag omat ds dvs matal d masuato lctc acut la dt tmatu. I gal coductvtata lctca a uu cstal st caactzata d u tso σˆ : j σˆ 4 sau comot μ ν x y z j μ σ μν ν. 5 ν It-u sold zoto coductvtata lctca st u aamtu scala s j σ. P d alta at tu dstata cutulu lctc dta ca j v cu coctata lctolo ca atca la coduct s gasst stmad stal lctoc ocuat utat d volum: j V v v V V V π v d 4 σ π v d 6 I cuata 6 suma dua umaul cuatc d s σ ca a doua valo s sus s jos aduc u acto a suma dua vcto d ma zoa llou s oat tasoma t-o tgala avad vd ca t-u cstal t cu volum V volumul satul xsta o sgua sta msa vz cusul d sold. Rzultatul al 6 s gasst obsvad ca ucta d dstbut la clbu d u aduc c o cotbut la suma valol oztv s gatv al lu d xsa lu j doac ca s st o uct aa d tm c v st o uct maa d. d π /V mul d tubat a uct d dstbut d clbu ca tv xsa dstat d cut 6 s dtma d cuata ctca oltzma. I atcula codt statoa tu ca / t daca u xsta gadt d tmatua sau dstat d utato d saca dc daca s s alca doa u cam lctc cuata ctca oltzma 7 s oat sc ca
9 asot lctc. cuata ctca oltzma 9. 7 Al dola tm oat gljat tu camu lctc mc ud doa ctl la sut luat cosda caz ca coductvtata lctca st ddta d camul lctc. Doac dd doa d dc zulta d d cuata d ma sus d d v d d d 8 astl cat tsoul coductvtat lctc s oat xma ca d σ μν v μ v ν d. 9 4π d I cstal zoto tu u cam lctc alcat dcta x coductvtata st scalaa: d v σ σ xx x d. 4π d Ptu suat zo-gtc sc ud / m v / m cu m masa μ μ ctva a lctoulu s coodoat sc cu θ ugul ola s ϕ cl azmutal avm x sθ cosϕ y sθ sϕ z cosθ d d sθdθdϕ s d π π max 4 σ σ xx d s θdθ cos ϕdϕ 4π m d π m m d d 4 d. I cuata d ma sus am olost atul ca π cos π ϕd ϕ cos ϕ dϕ π π s θdθ π π s θdcosθ cos θ dcosθ x dx 4.
10 asot lctc. cuata ctca oltzma Doac 4 / / d / d m m d / 5 s tu ca tmul d laxa dd d g astl cat mda sa statstca s dst ca d / d d d / d d coductvtata lctca dv σ. m I am olost atul ca tu mtal la clbu coctata d lcto s sc V σ m π V / V π x[ / d / ] m D d π d d / / m d π x[ / / d / d d ] / d 4 ud π d D d dstata d sta st s tu suat zo-gtc sc D π cost ds / m 4π / vz cusul d sold. Rlat smla s obt tu toat axl cal al uu cstal cu suat zo-gtc ltc. Rlata t coductvtata lctca s mobltat aoxmata tmulu d laxa st dc σ μ adca μ. 5 m I cstal azoto mobltata s coductvtata lctca sut tso.
11 Imasta utatolo d saca mutat Imasta utatolo d saca lcto sau golu mutat st lastca adca ' tu ca masa ctva a lctolo sau golulo m st mult ma mca dcat masa mutatlo M o/atom d mutat sut mult ma ut mobl dcat utato d saca lb astl cat ot cosdat statc M Datota aoxmata tmulu d laxa st dl justcata. Vom cosda tmul d laxa codtl ca s oat tc d la suma ma zoa llou adca umaza: [ V /π ] d vz omula 6 d catolul cdt s dscutl ca V ' χ P ' d ' π χ I cotua suu ca ottalul tubato al oulu d mutat oat aoxmat ca sc-smtc astl cat ot xma obabltata d mast cstal utata d tm t-u odus d obabltat: P ' P ' P θ ud P ' st obabltata adala d mast a lctolo sau golulo s P θ st obabltata ugulaa ca dd d ugul θ t s '. Ptu mastl lastc cosdam P ' π δ ' astl cat
12 Imasta utatolo d saca mutat π P ' d' δ ' d' adca masta toat stal st u vmt ct. Ptu a calcula tmul d laxa algm vctoul ca axa olaa satul ' ca vcto vaabl. Atuc ' a d' ' sθ dθdϕ ' dω ' 4 cu dω ' sθdθdϕ ugul sold dcta lu '. ϕ β χ θ Cosdad gomta d gua d data avm galtata cos cosθ cos β sθ s β cosϕ 5 astl cat ' χ χ ' cos cos β ' cosθ ta β sθ cosϕ 6 s doac π cosϕdϕ tmul d laxa s oat xma ca π ' πv d' dθ P θ sθ ' V P θ cosθ dω ' π δ ' cosθ πv P θ cosθ sθdθ 7 Imasta uo atcul ca uma coc s abat sub dt ugu d la dcta d msca tala s oat caactza sctua dtala d mast σ θ. atcul dvat cu ugul θ ugul sold dω σ θ dω 8. atcul cdt omal utata d a aclas tm
13 Imasta utatolo d saca mutat Psuum ca cstalul cu volum V xsta u ctu d mast s u uma V d lcto st dstata lctolo ca s msca toat dctl cu vtza v. luxul d lcto ca lovst acst ctu d mast utata d tm s st Vv astl cat umaul total d lcto mastat utata d tm sub ugul θ lmtul d ug sold dω st Vv σ θ dω. Daca xsta N ct d mast ddt utata d volum a cstalulu umaul total d lcto mastat utata d tm sub ugul θ lmtul d ug sold d Ω st N V v σ θ dω. 9 Doac acst uma oat xmat s ca V P θ dω obtm π Nv σ θ cosθ dω πn v σ θ cosθ sθdθ Itoducad sctua cac d tasot σ c π σ θ cosθ sθdθ tmul d laxa a oma N v σ c I cazul tact d t Coulomb t lcto s mutatl ozat tgala dua θ d xsa sctu cac d tasot st dvgta d uct d vd matmatc tu θ tu ca ottalul Coulomb dscst slab cu dstata s σ. D uct d vd xmtal sa sctua cac d tasot st totdaua ta! D acst motv gal tgala s ac d la θ m la π ud θ m st dtmat d atculatatl oblm studat. c
14 Imasta utatolo d saca mutat 4 Imasta mutat ozat tata clasca Io d mutat uma N caza juul lo u cam lctc sub actua caua utato d saca msca s ctul d mast s abat d la dcta tala. Abata st cu atat ma ma cu cat vtza utatolo d saca st ma mca s dcta d msca st ma aoata d mutata ozata. θ - b b lcto ol Daca modlam utato d saca ca atcul clasc camul Coulomba al olo d mutat d saca ottala d tactu st Z lasat t-u mdu cu mtvtat latva ε ga Z V ± 4πε ε ud smul gatv oztv cosud lctolo golulo. Notad cu b dstata mma t o s utatoul d saca s cu θ ugul d mast t dcta tala s ca ala a utatoulu d saca d calculul mast cam Coulomba vz box stm ca tactoa utatolo d saca cu masa ctva m s vtza tala v st bolca cu b Z 4πε ε mv θ cot 4 Dmostata lat 4 Daca ctul d mast ama mobl mulsul s ga ctca a lctoulu cdt ama scmbat: mv cu v modulul vtz atcul cdt.
15 Imasta utatolo d saca mutat 5 D gomta d mast ztata gua d ma sus otad Δ obtm Δ mvs θ / 5 Notad cu φ ugul t Δ s ota Z 4πε ε t lcto s ctul d mast la u aumt momt aamtu c vaaza t π θ / tu atcula cdta la dstata ma s π θ / tu atcula mastata la dstata ma avm Δ dt 6 adca doac comota dcta Δ st cosφ π θ / dt mv s θ / cosφdt cosφ dφ 7 dφ π θ / ad cot d cosvaa mulsulu ugula dφ dφ mvb la ± s m la t adca m mvb obtm dt dt L mv la mast ca a valoaa Z mvs θ / 4πε ε π θ / Z cosφ dφ sφ vb 4πε ε vb π θ / π θ / π θ / Z cos θ / πε ε vb 8 D acasta xs zulta b Z 4πε ε mv θ cot
16 Imasta utatolo d saca mutat 6 I calculul tmulu d laxa s cosda valoaa mdata dua ugul θ a sctu dtal d mast σ. Datota smt axal ata d ctul d mast ztata gua d ma jos utato d saca tu ca ugul d mast vaaza d la θ la dstata t b s b db. θ dθ s ala ugul sold dω π sθdθ s sut cdt la o It-u cstal cu volum V s coctat d utato d saca umaul total d atcul dvat utat d tm ugul sold d Ω st gal cu luxul d atcul cdt lul d a ds πb db astl cat s a db tu ca d θ > cosud la db < s vc-vsa. atcul dvat cu ugulθ ugul sold dω VvdS σ θ dω πb db. atcul cdt omal utata d a aclas tm Vv 9 Doac Z db dθ 8πε ε mv s θ / avm πb db b db σ θ Z dω sθdθ 8πεε mv s 4 θ /
17 Imasta utatolo d saca mutat 7 xs cuoscuta s ca actoul lu Rutod obtuta tal la masta atcullo ucll lmtlo atomc. I omula sctu cac d tasot σ c π σ θ cosθ sθdθ tgala dv dvgta daca lmta oaa d tga st alasa θ motv tu ca acasta lmta s alg ca d θ m ug d mast c cosud la u b max ca s dtma olosd atul ca tu o d mutat cu coctata N dstbut uom cstal dstata md t o st / N. Cosdad ca sa d actu a cau ctu d mast oat lmtata la jumatat d dstata dt dsc b / max / N astl cat θ cot m 4πεε mv b max Z πε Z ε mv / N Doac θ m cosθ sθ dθ 4 s θ / θ m θ θ θ cos s dθ 8 4 s θ / θ m θ cos θ θ d 4 l s θ s 4s π π π m xm zultatul uct d s tu ca s oat s gatv! obtm σ c π Z π σ θ cosθ sθdθ 8π θm 8πε ε mv Z πε ε mv l 8π / ε ε mv Z N l s θ m / 4 s dc 8πm ε ε v 5 Nv σ c 4 πεε mv Z N l / Z N
18 Imasta utatolo d saca mutat 8 Acasta xs a tmulu d laxa st cuoscuta s ca omula Cowll-Wsso. Ptu suat zogtc sc tu ca v / m avm 9/ / / πm ε ε 6 4 4πεε Z N l / Z N Ptu ca logatmul d xsa d ma sus vaaza lt cu ga obtm / / A A 7 ultma galtat d satsacuta doac actoul ddt d g A dd oat slab d tmatua ddta d a mas ctv a utatolo d saca. xsa tmulu d laxa dca atul ca masta mutatl ozat st u ocs c duaza cu atat ma mult cu cat ga utatolo d saca st ma ma. bu macat ca xsa tmulu d laxa obtuta ma sus u st valabla tu g mc doac daca l x x s m / / 8 πn mul d laxa la masta atom mutatlo ut Imasta atom mutatlo ut st u ocs motat la tmatu joas cad mutatl sut doa atal ozat. Acst mcasm d mast s oat alza coc lastca dcta scmbul dt lctoul cdt cu u lcto al atomulu d mutat. Calculul tmulu d laxa s scal calculul sctu cac d tasot st dcl d obtut acst caz da utm stma tmul d laxa d masta lctolo lt atomul d dog. S obt astl omula gsoy m m cost. 9 N a 8πε ε N N ud st coctata atomlo d mutat ut s a 4πε ε m st aza o ctva. /
19 Imasta utatolo d saca mutat 9 Imast mutat ozat tata cuatca Psuum ca tacta lastca/hamltoaul d tact H t lcto cu masa ctva m s mutatl ozat s oat xma t-u ottal Coulomb caat: Z x V 4πε ε ud / st lugma d caa adca dstata aa la ca ottalul scad d o. Ptu a ala tmul d laxa tbu sa gasm ta obabltata d tazt datota mast o mutat ozata π π P ' ' H δ ' ' V δ ' ca xma cosvaa g la masta lastca ucta δ. I s-a suus ca sul lctolo u s modca uma mast caz ca s ' zta staa cuatca a uu lcto cu vcto d uda s sctv '. Ptu mo cuatcaa a doua t doua sta uatcula cu aclas s lmtul d matc al ocau oato Oˆ ztaa coguatlo st O ˆ ψ ˆ ˆ d O V * ' ' O ψ d x O ud s-au cosdat uct d t uda laa ψ V x cu ' s s-a otat cu O V x Oˆ d tasomata ou a oatoulu Oˆ. / I cazul ottalulu Coulomba caat ' V ˆ V V ' a daca θ st ugul ola t s obtm V V Z 4πε ε V Z V d 4πε ε V π x Z d 4πε ε V Z x d ε ε V cosθ sθdθdϕd
20 Imasta utatolo d saca mutat Obsvat xsa a lmtulu d matc al uu oato oaca O ˆ oat obtuta s ztaa umlo d ocua a acstu oato: Oˆ ˆ O 4 ' O c' c ' c c c c ud s sut oato d ala s sctv ca a uu mo cu vctoul d ua. Acasta zta alcata ottalulu Coulomba caat a ca zultat ' V ˆ V 5 ' Vtcs tcs Vt ' cs tcs V ' s t s t daca stal s ' sut dtcat cu stal uatcula s sctv ca umaul lctolo st xlct dcat. ' I cazul ca coctata ctlo d mast ozat st s acsta oduc vmt d mast ddt obabltata totala d mast s multst cu umaul ctlo d mast d cstal gal cu N V s avm N ' χ π ' χ NV P ' VN V ' ' χ ' δ χ ' 6 cad d la suma la tgala algad vcto s χ ca cusul cdt cu θ ugul t s s tad cot d atul ca π dϕ π obtm ' ' 4 ' π N V V max π Z ' cos s d ' m V θ θ θδ π ε ε [ ' ] 7 d' Ptu o lat d dss aabolca: / m cu ' 'cosθ ' s olosd galtata δ ax a δ x adca δ[ / m ' ] m / δ '
21 Imasta utatolo d saca mutat mn 4π Z ε ε π [ cosθ ] cosθ sθdθ 8 Scmbad vaabla cosθ x avm mn 4π Z ε ε m xdx [m / x ] 4 Z N η 9 9 / / π mε ε ud x η dx 4 x / η st ucta oos-hg cu η 8m /. Doac uma tga at obtm xdx x dx x η l / / x x η x η x / η x / η η η l η η 4 zulta ca gal tu η >> codt satsacuta majotata cazulo d ts η lη st o uct cu vaat lta cu ga. mul d laxa dat d omula oos-hg 9 / / π mε ε 4 4 Z N η a astl o ddta a tmulu d laxa d g smlaa cu ca d cazul clasc: / 4 A
22 Imasta utatolo d saca mutat P d alta at la g mc daca η << xdx η η 44 / η s / 45 A xs ca st d asma cocodata cu zultatul clasc. atul ca s-a obtut acas ddta d g cazul clasc s cuatc s datoaza atulu ca tactua d t Coulomb a aza luga d actu astl cat aoxmata clasca oat justcata. Acsta u st sa cazul alt tu d mast asa cum vom vda catoll ca umaza.
23 Imasta lctolo oo acustc cstal ola Itactua lcto-oo cstal ola P oo tlgm cvasatcull/cuatl osclatlo tl cstal comus d o ucl cojuat doa d lcto d valta d vll gtc oa. Cstall ola sut cl cu lgatu covalt sau d t va d Waals ca u xsta dol mat asocat atomlo dt d baza. I acst caz talt mtal sau u smcoducto taua cstala st omata d o cu saca oztva lcto d coduct cu saca gatva d vll gtc suoa mscadu-s cvaslb matal doac sut ma slab lgat d ucl dcat lcto d valta. It-u cstal costad dt-u uma N d o cu saca oztva cu mas stuat ozt R..N cojuat d s tactu cu N lcto d coduct cu mas m s lasat oztl.. N Hamltoaul total st l l M s H l o V l V o V lo U l j U o R Rβ V R m M β j j β ud m do tm zta gl ctc al sstmulu d lcto s o umato do tactl lcto-lcto s o-o tactua masta lctooo d dscsa d tmul H V R Doac dlasal olo d oztl d clbu R sut mc astl cat R u R cu u << R utm dzvolta s aylo ottalul d tact: V R H V R u R Pmul tm d ata data s clud sub oma d g ottala Hamltoaul sstmulu d lcto aoxmata adabatca s da ast bzlo d g datota
24 Imasta lctolo oo odctat. I ocsul d mast a lctolo oo tv doa tmul al dola d ata data. I aoxmata oulu gd modlul Nodm s suu ca tacta lcto-oo u dd d ozta oulu: Hamltoaul tact dv V R V R astl cat V R H u 4 R Doac V R st o uct odca s oat dscomu s ou: t R t V R V x[ t ] 5 ud V t st tasomata ou a ottalulu d tact. Ptu u cstal d N o cu acas masa M s cu s atom baza dlasal omal cosuzad osclatlo cu cvt sut u A x R 6 ud st dcl d olaza st vctoul d uda al oolo s A s sut amltuda s dcta d osclat ua logtudala s doua tasvsal a modulu ooc dxat d. I acst caz H Vt t x[ t R ] A x R 7 t ad sama d atul ca ma zoa llou avm x[ N t R ] δ t 8 obtm umatoaa xs tu Hamltoaul d tactu lcto-oo: H N V A x N V A x 9
25 Imasta lctolo oo Dmostata lat 8 Ptu t s ca st u vcto d ma zoa llou cu comot s π / N a dcta xyz ca avm N clul s um tg s tu vcto d taua dcta R m a m a m a cu m tg N π m x π x π N N x sma x m N m N N x π / N / N δ δ s I cotua cosdam ca s aa acum masta osclatl tl a uu sgu lcto ozta cu vcto d uda tal s vcto d uda ' uma mast astl cat sul lctoulu sa u s modc ca zultat al mast. I acst caz suma dua d 9 s locust cu oatoul ˆ O x ' x c' c ' cuatcaa a doua ud c s c sut oato d ca s sctv d ala a lctolo. I lus s locust amltuda osclatlo omal cu oatoul ˆ A aˆ aˆ NM xmat uct d oato d ca s ala a oolo. Doac umaul oolo staa tala s ala a sstmulu lctooo s modca dua cum vom vda cotua st csaa xmaa oatolo uct d oato d ca s ala. Justcaa lat Amltudl osclatlo omal d tul u A x R u dscu dlasa al cstal t; doa suau d ud la lctat d magl cstalulu duc la dlasa al. D xmlu o solut oat
26 Imasta lctolo oo 4 ] x x [ * * R R u A A Daca s locusc s cu oato d ala s ca a osclatlo tl cu A * A vcto d uda s olaza s suum ca obtm * ˆ ˆ x ] x ˆ x ˆ [ ˆ R R R a a NM a a NM u 4 Cu acst substtut xsa Hamltoaul d tact lcto-oo dv c c a a V M N H ' ' x ' 5 Acasta omula s oat smlca tu uct loc ψ ca satsac lata x R R ψ ψ doac uma d vaabl clula lmtaa astl cat s uma suma dua toat clull lmta d volum Ω olosd lata 8 obtm c R c Ω Ω c c c c c c c c d N d d R R x x x ' x x x ' * ' ' * ' * ' ψ ψ δ ψ ψ ψ ψ 6 D acasta xs zulta ca x ' doa daca '. Rzultat smla tu aata ca tactua lcto-oo a loc cu cosvaa cvasmulsulu total: x ± ' 7 smul oztv gatv cosuzad ocsulu d ala/absobt ca/ms a uu oo cu vcto d uda uma mast. I uma mast oo s ga s cosva:
27 Imasta lctolo oo 5 ' ± 8 Daca u lmtam la ma zoa llou cosvaa cvas-mulsulu s sc ' ± K 9 cu K u vcto al tl coc xs c dsc alaa sau caa uu oo smulta cu lxa agg magl m zo llou ultmul ocs mlcad tasmsa u at a cvas-mulsulu tg tl cstal. Acst t d ocs s umsc U Umla sau d astua cad cl ca lga d cosva st 7 sut ocs N omal. I al tactua lcto-oo cu ala d oo smla s tu ocsul cu ca d oo s oat xma Hamltoaul H a a c c ud lmtul d matc st N V x M actoul ca s aulaza tu osclat tasvsal aata ca tactua lcto-oo a loc doa tu osclat/oo logtudal. I dduca Hamltoaulu H u s-a tut cot d tactua dt lcto ca caaza tacta lcto-oo. Ptu a t cot d acst ct ca aa scal mtal ud umaul lcolo d coduct st ma aoxmam caaa cu u ottal xto statc s xmam ctul acsta toduca uu lmt d matc al tactu ctv ε ud ε st ucta dlctca statca. Hamltoaul tactu caat dv H a a c c
28 Imasta lctolo oo 6 astl cat Hamltoaul total al sstmulu d lcto s oo tactu oat scs sub oma uu Hamltoa ölc H c c a a a a c c 4 ca mul s al dola tm d ata data dscu u sstm d lcto s sctv oo lb cuatcaa a doua. Calculul mtvtat lctc ε Daca t-u uct al uu sstm d lcto lb xsta o omogtat dstbuta sac sulus d saca oztva lcto td sa s aglomz acasta gu s caaza astl luta sac sulmta stabld utaltata lctca juul omogtat. caaa st statca ca cazul ostu daca saca oztva st xa sau damca daca st mobla. Daca saca oztva uctuala Q s cosda oga sstmulu d coodoat u lcto la dstata ma smt atat saca Q cat s saca d olaza dusa δ cu δ vaata coctat lctolo datoata sac Q. I cazul mtallo lata dt coctata lctolo s ga m ddusa la / / cusul d sold: m /π st valabla local ga m utad vaa satal datota toduc sac oztv; ma cs s modca cu V ultmul aamtu d obtut d cuata Posso V ε [ Qδ δ ]. 5 Daca δ st coctata lctolo uma dstbu acstoa d coctata lo absta sac Q s daca otam cu V ga m zta Q d valoaa acstu aamtu absta Q astl cat V << δ [ ] V / V. 6 Cu acasta valoa a δ cuata Posso
29 Imasta lctolo oo 7 Qδ V 7 ε ε s zolva uso tcad la tasomata ou cu ajutoul latlo V V x δ x 8 Soluta st Q Q V 9 ε ε ε ud st aza d caa omas-m ca c cosud uu ottal ε Coulomb caat vz catolul cdt Q x V 4πε Altatv utm caactza caaa cu ucta dlctca ε ca st o masua a slab ottalulu sac xt. Daca V V V / ε avm Q / ε absta caa s zta ε ε ε ultma galtat avad loc tu u sstm d lcto utc dgat cu mtal ma ca Ptu a calcula lmtul d matc al tactu caat dt lcto s oo logtudal utm uta la dcl doac cosdam doa oo logtudal s scm s. Daca tactua dt lcto cu saca s oo t-u cstal cu o d saca Z aszat uctl tl avas st u Coulombaa tasomata ou a ottalulu d tactu st
30 Imasta lctolo oo 8 Z V. V ε I acst caz otad lmtul d matc 6 cu x γ obtm Z N Z N ε γ γ D 4 V ε M V ε M MN cu V N D / Zγ. Obsvat Daca loc d uct loc 6 s olossc ud la ψ V x ca c mlca locua aajamtulu odc d o cstal cu u od omog d saca oztva obtm tu lmtul d matc ' x ψ * ' x ψ d x ' x x d δ' V adca x / Doac * Hamltoaul tactu lcto-oo caat dv H * [ a c c a c c ] 5 lat ca s oat tta ca mast tmul caa lctoul cu vcto d uda tc t-o sta cu vcto d uda ' ± ocsul d sott d absobta mul tm sau msa al dola tm oolo cu vcto d uda. Pobabltata d tazt a lctoulu d staa tala ca xsta u sgu lcto s u uma d oo: staa ala ' st dc ' π P H δ 6
31 Imasta lctolo oo 9 cu ' '. lmtul d matc al Hamltoaulu s oat sc H [ ' a ' c c ' a ' t s t t s t s t * t c s t c s ] 7 s doac ' at t ' ' t t δ δ a δ δ ' 8a ' c s tcs δ ' s tδ s ' cs tcs δ ' stδ s 8b obtm * δ ' δ ' t H δ δ 9 ' ' I cuatl d ma sus s-au olost latl scc oatolo d ca s ala: a j ] a a ud [ a δ [ a a ] [ a a ]. Rzultatul obtut tad cot s d cosvaa g scsa sub oma δ ' ' ] st ca obabltata d tazt d staa tala ca ala [ ' cot do tm ca cosud ocslo sott d absobt s ms d oo: j j j abs m P P P 4a abs π P δ 4b m π P δ 4c mul d laxa la masta oo acustc I cstal ola masta a loc scal oo acustc ocs ca st sott d o modca mult ma mca a g lctolo ata d masta d oo otc vz latl d dss caactstc acsto oo gua d data.
32 Imasta lctolo oo Ca s obabltatl d tazt s tmul d laxa la masta oo acustc cot do tm cosuzad absobt s ms d oo: abs χ P ac χ m χ P χ 4 I cazul oolo acustc v ac s tu o lg d dss aabolca tu lcto lga d cosva a g dv ± m m ± v ac sau otad θ ugul dt s 4 ϕ β χ θ m cosθ ± mv /. 4 ac D ac mvac / tu valo tc vac m/s obtm o tmatua caactstca a oolo acustc ac K ca c sama ca tu tmatu mult ma ma dcat acasta valoa ga ooulu acustc oat gljata ata d ga lctoulu astl cat χ ± vac χ s utm cosda masta ca d actc lastca: ± vac ac abs χ m P P χ χ χ 44 Ngljad ga ooulu acustc s uctl dlta d xsl obabltatlo d tazt: m δ ± m vac δ ± cosθ 45 s olosd atul ca D MN obtm
33 Imasta lctolo oo P abs m πd m ± ± δ ± cosθ m 46 MNv ac cad d la suma la tgala dua xsa tmulu d laxa [ V /π ] d s olosd atul ca gomta d ma sus smla cu cazul mast mutat ozat d sθdθdϕ cos cosθ cos β sθ s β cosϕ χ χ cos cos β cosθ ta β sθ cosϕ 47 π s doac cosϕdϕ ac max D mv π d sθ cosθdθ δ cosθ δ cosθ 4πMNvac m 48 olosd tgala dua θ ucta dlta obtm ac max D mω 4 [ d 8πMv ac m ] 49 cu Ω volumul clul lmta. Lmta oaa d tga st d obc m a ca suoaa st max d 4 daca acsta valoa st ma mca dcat lmta musa d cvta Dby D D / vac 6π N / V s max D caz cota. Ptu u gaz d oo clbu tmodamc x v ac / x vac /. 5 x v / ac
34 Imasta lctolo oo Mtal I cazul mtallo doac lcto ca atca la coduct sut mdata vcatat a vlulu m cosdad o lg d dss aabolca obtm m / m m m / 8 cm tu 4 V s tm c D 6π 8 7 cm tu o coctat a olo cm astl cat x vac / tmul d laxa st dat d max D. Itoducad otata ac Cm 5 Θ D 5 / Θ I D 5 ud Θ D v / ac D st tmatua Dby C m πm 5 D D Ω 9/ mv ac Θ / Θ D D D 4 x x I x dx x x Θ / x 4 cot x / dx 5 a tmatu alt Θ D << x x << : Θ I D / 4 / 4 ΘD x ΘD Θ D dx x dx x Θ D / / ac 5 C m ΘD b tmatu joas Θ D >> : I I b cost. 5 D Θ / 5 / ac 54 5 C b m Smcoducto I smcoducto ga lctolo oat aoxmata cu ga tmca astl cat la K s tu m m m / m / 5 6 cm tm c D a aoxmatv acas valoa ca s cazul cdt: 8 7 cm. I coscta max s acad scmbaa d vaabla x v ac / obtm
35 Imasta lctolo oo ac C s vac 5 vac I 55 cu 4D mω C 56 πmv ac Doac acst caz x << am vazut ato ca ga oolo acustc cosud u tmatu d K avm vac I 4 vac πmvac ac 57 D mω lat ca tu o lg d dss aabolca dv Mvac 4 / π / / ac 58 D m Ω Obsvat: mul d laxa oo otc cstal ola oat calculat smla olosd lata d dss scca. Acst mcasm ca u ma oat aoxmat cu u ocs lastc dv smcatv codt d tmatu dcat sau cazul xcta otc sau lctc a matalulu stuat ca ga lctolo cst mult st valoaa la clbu.
36 Imasta lctolo oo 4 Imasta lctolo oo otc cstal ola Itactua lcto-oo otc I cstal ola cu lgatua oca sau atal oca masta lctolo oo otc st ma utca dcat ca oo acustc doac tmul osclatlo olo cu olatat dt s omaza u momt d dol lctc ca clula cu ca lcto tactoaza Coulomba. xml d cstal ola sut cstall oc zolatoa d uct d vd lctc da s smcoducto ola cum a comus A III - V. S acst caz utm olos aoxmata oulu gd modlul Nodm ottalul Coulomba du-s la sacl ctv Q asocat olo: 4 ± ± ± πε R R j j Q V m 59 Hamltoaul d tactu a lctoulu cu cl doua tu d o st πε u R R u R R u R R u R R 4 Q V V H 6 ud dlasal d la oztl d clbu tu osclatl omal al tl sut x ± ± ± ± R u A NM 6 astl cat modlad cl d o adact ca dol al cao momt s aulaza staa d clbu cad obtm R R 4 πε u u R R Q H 6 ud u u M Q 6 st momtul d dol. Polazaa s dst ca momtul d dol utata d volum a clul lmta: Ω / M P.
37 Imasta lctolo oo 5 bu obsvat ca ds cstall oc xsta sac localzat oztv s gatv asocat olo sta d clbu acsta u cotbu la tactua lctooo c dtma stuctua d bz a cstalulu. I u tv dcat dlasal d la oztl d clbu. I acst ss momtl dola al olo adact s aulaza la clbu! ad cot d atul ca tu osclat otc vz cusul d sold M M M 64 algm vcto d olaza ± M ± m ˆ M M 65 cu ˆ u vso d olaza astl cat tm u mas dus dt M M M 66 s utad la dcl xsa Hamltoaulu obtm H Q R u ~ 67 4πε R ud A ˆ x R NM ~ u 68 st o dlasa d tul 6 ca aa masa latva locul mas olo. Hamltoaul d tact 67 st aclas cu cl d cazul mast lctolo oo acustc daca masa oulu M st locuta cu M s daca saca oztva Z st locuta cu Q. Ca uma tasomata ou a ottalulu d tactu s sc Q V V 69 ε
38 Imasta lctolo oo 6 s lmtul d matc al tactu lcto-oo u s a cosda caaa datota lctolo ca st gljabla acst caz doac lcto sut mult ma ut mobl. I coscta Q N 7 Vε M a obabltata d tazt utata d tm cu absobta sau msa uu oo otc st P abs m π ± m δ m ± 7 Saca Q st dtmata d dta dt sacl ucllo s al lctolo cat s d domaa sac lctoc ca zultat al momtlo d dol ca s omaza s oat gal lgata d mtvtata mdulu olazabl. Ma cs daca s alca u cam lctc xto olazaa totala va o suma a olaza P odusa d osclatl tl s olazaa P l a atulo lctoc: P P 7 tot P l ad cot d lgatua dt ducta lctca D s P tot : D ε P ε 7 tot zulta ε ε P tot D ε D D D 74 ε ε o lat smlaa xstad t P l s mtvtata otca latva: ~ ε P l D ~ 75 ε I coscta
39 Imasta lctolo oo 7 P P tot P l ~ D 76 ε ε Doac olazaa u c d o cu saca Q s masa dusa d codta d galtat a ot xt vd M oat ddusa s Q QD /ε cu ota actva a xt osclatlo tl ot u u obtm act M Q Q P u u D 77 Ω ε Ω sau M ot Q ε Ω M ot ~ ε ε 78 adca ot ~ Vε ε ε C V ot 79 mul d laxa la masta oo otc Itoduca uu tm d laxa la masta lctolo oo otc logtudal cu cvta ot u st gal justcata doac masta u oat cosdata lastca sau cvaslastca da cazul tmatulo alt s joas toduca acstu aamtu st osbla. Lga d cosva a g tu u lcto cu masa ctva m st ± m m ± ot 8 sau daca θ st ugul dt s m ± ot cosθ m m 8
40 Imasta lctolo oo 8 Rzolvad acasta cuat aot cu obtm doua solut cosuzatoa ocsl d absobt s ms d oo ca l otam s sctv : cosθ ± cos θ η d at doa cosθ ± cos θ η d at doa cosθ cos θ η 8a cosθ cos θ η 8b ud η m ot m Θ ot. I altat doa solutl oztv cl d atz sut lvat doac m la modulul vctoulu d uda tu oo. a matu alt: >> Θ ot >> η astl cat atat tu msa cat s tu absobta ooulu avm m oat cosdata lastca astl cat max. I acst gm d tmatua masta ot abs χ m P P χ χ χ 8 cu P abs χ χ m π ± m δ m ot ± ± 84 cosθ ta β sθ cosϕ 85 s uctl dlta utm glja ga ooulu otc: m δ ± m ot δ ± cosθ 86 cad d la suma la tgala xsa tmulu d laxa ca s cazul oolo acustc ot Cotm 4π d 87 ud la tmatu dcat utm aoxma umaul oolo cu
41 Imasta lctolo oo 9 x / ot ot / ot Θ ot >> 88 Rzultatul st ot C 4π m C ot ot d Θ ot π m Θ ot 89 ot / π Θot / C m ot / 9 b matu joas: << Θ ot << η. I acst caz masta st lastca toduca tmulu d laxa d osbla. Da daca << majotata lctolo ot doa absoab oo ocs ca lcto caata o g stuata t ot s ot. I uma absobt lctoul mt u oo doac aotul dt obabltata d ms s absobt st oat ma. Acst aot st dat d ot x ot >> 9 tu ca vaata g uu lcto uma absobt s ms mdat a uu oo otc st oat mca d dtmata doa d vaata slaba a cvt ooulu otc cu masta oat cosdata lastca. Vaata cvas-mulsulu lctoulu st oat ma uma mast!. I calculul tmulu d laxa s au cosda sa doa ocsl asocat cu absobta ooulu vz gua d data dscs obabltata d tazt P abs π δ ot 9 ot cu η m η δ ot δ cosθ δ cosθ 9 m m m
42 Imasta lctolo oo a lmtl d tga sut m η θ 94a η θ π 94b max Pocdad ca s cazul d ma sus cu x ot Θ x ot ot Cotm 4π η η η d Cotm x Θ 4π ot / η η η l η η η η 95 Ptu << η η η l η ± ± tmul d η η 6 η aatza ma st 4 / / η s ot Cotm x Θ π η ot / 96 ot π η x Θ C m ot ot / x Θ ot / 97 La tmatu joas tmul d laxa la masta lctolo oo otc cstal ola st ddt d ga lctolo! Obsvat: I cstal ola zolctc gal comus A II VI masta oo acustc st comaabla cu ca oo otc doac osclatl acustc cu lugm d uda ma oduc ot lastc sott d olazaa lctca a cstalulu. I acst caz la masta oo acustc zo ac / ca la masta oo otc cstal ola zolctc a la masta oo otc la tmatu joas zo ot x Θ ot / ca cstal ola zolctc.
43 om ctc sold. Coductvtata lctca La cutul cusulu am stablt ca tu suat zogtc sc: / m tsoul coductvtat dt ca j μ σ μν ν ν σ st zoto: σ μν σ. σ I lus am gast o lat t coductvtata lctca s mobltata lctolo cu coctat s masa ctva m s mda tmulu d laxa ca uct d g: σ μ m μ m d / d d d / d d Rlat smla cu ot sa obtut tu lat d dss dt d ca aabolca. D xmlu G s S suatl zogtc sut ltc: m m m Acasta stuat oat dusa la cazul suatlo zogtc sc t-o scmba d vaabla m / m' ' μ 4 μ μ μ astl cat ' ' ' ' '. 5 m' m' ad cot d atul ca s acst caz tsoul coductvtat st dagoal tu ca ga st o uct aa d μ cu
44 om ctc. Coductvtata/zstvtata mtallo s smcoductolo σ μμ d 4 d π m d μ 6 s d lata d d d d mm m / m' / d' obtm / m mm d 4 m mm d / σ μμ d d 5 / π mμm' d π mμ d 7 P d alta at mod aalog / / / / m mm π d d / d 8 astl cat σ xx σ μν σ cu yy σ zz 9 σ xx μ m x σ yy μ y σ zz μ z m m. Coductoul azoto oat caactzat t-o coductvtat s masa ctva d dt dt ca σ σ xx σ yy σ zz μx μ y μz m m d m m m m m d a b ultma galtat avad loc cazul lat d dss d oma lsod d otat toducad o masa ctva logtudala s ua tasvsala.
45 om ctc. Coductvtata/zstvtata mtallo s smcoductolo d xmlu Rlatl ot xts s cazul ca bzl d g cot ma mult lsoz N c lsoz cvalt ca cu lcto s avad axl cal d-a lugul axlo d coodoat x y s z. I acsta stuat scca S vz gua d ma jos N c σ σ xx σ yy σ zz N c μ x μ y μ z m d a m d Nc m m m b Masa ctva d dt st dta d masa ctva obtuta d lata d dss cl doua d gal doa cad xsta u sgu mm al bz s cad coductoul st zoto. D asma tsoul coductvtat oat ava comot dagoal daca axl lsozlo sut dsus dua alta dct dcat x y s z. U alt caz d motata actca st cl ca ga dd doa d modulul lu da ddta ds zotoa u st aabolca. Acsta st cazul comuslo smcoducto A III V cu bada tzsa gusta d xmlu ISb tu ca / g mg m d masa ctva la maga oaa a bz d coduct. I acasta stuat v d / d ˆ cu ˆ / s d d σ π d d d d d π d m 4 ud am todus o masa ctva ddta d g d. d m Acst lat sut valabl dt d atua mtalca sau smcoductoa a cstalulu. Mtall s smcoducto ucta d dstbut s mcasml d mast scc au comota dt la alcaa uu cam lctc asa cum vom vda cl c umaza.
46 om ctc. Coductvtata/zstvtata mtallo s smcoductolo 4 Rzstvtata lctca a mtallo s alajlo Rzstvtata lctca a mtallo Doac taua cstala a mtallo st omata dt-u sgu t d atom acst matal sut cstal ola astl cat coductvtata uu mtal u dal s zoto st dtmata d masta lctolo oo acustc. I acst caz 8π mmvac ΘD / ac 5 ΘD D ΩDI cu 5 5 Θ I D Θ D / 4 x x x dx x x 6 I mtal la tmatu joas suum ca dstbuta lctolo st total d dgata astl cat δ cu valoaa vlulu m la s d d / ac d d ac d / d d ac σ ac 7 m adca / 5 8π Mvac ΘD σ 5 ΘD ΘD D Ω mdi I ΘD σ σ 5 8 sau tm d zstvtat Θ ρ ρ I ΘD 5 D 9
47 om ctc. Coductvtata/zstvtata mtallo s smcoductolo 5 Obsvat omula tmulu d laxa 5 a ost obtuta aoxmata mast lastc a lctolo oo acustc. I cazul ca ga oolo acustc ds oat mca st luata cosda s obt o omula asmaatoa ucta cu dublul uct Θ I D d locuta Θ Θ D D x x x J5 dx [x x ] / 5 Ambl xs dau acas ddta a tmulu d laxa lmta tmatulo joas s alt. Ca uct d ddta zstvtat d tmatua J 5 5 ΘD ρ 4ρ J5 ΘD st cuoscuta ca omula loc-güs. Obsvat Aoxmata dstbut total dgat a lctolo st justcata cazul mtallo doac altl tu o uct d dstbut m-dac x[ / ] utm xma mda tmul / d xsa tmulu d laxa ca d d / d d d / / d / d d / / y y ud y /
48 om ctc. Coductvtata/zstvtata mtallo s smcoductolo 6 x dx y 4 x x y st tgala m-dac s / y σ σ / y. 5 Doac la tmatu scazut da t m Dac cu y / >> utm aoxma tgall y π y 6 6 y obtm π σ σ 7 4 cocta ata d xsa 8 d d sub %. Pod d la omula zstvtat mtallo 9 sau d la omula loc-güs obtm aclas ddt d tmatua gmul d tmatu alt s joas. a matu alt: >> ΘD. Doac Θ I D Θ J5 Θ / D ΘD x dx D D Θ D / Θ x dx 4 D 4 4 ρ ρ 8 Θ Acasta s t ddta cuoscuta laa a zstvtat d tmatua valabla la tmatua cam sau tmatu ma alt vz gua d ma sus.
49 om ctc. Coductvtata/zstvtata mtallo s smcoductolo 7 I cazul ca tu aumt mtal Θ D 4 K aoxmata ΘD >> u ma st valabla la tmatua cam s st csaa ta tmlo suo aa la x dzvoltaa s a xotallo: x x x x x s 6 Θ / 4 Θ D D x Θ D I x dx 6 Θ 9 Θ Θ 4 D / Θ D Θ x D D J5 x dx 4 8 D ddta zstvtat d tmatua d uso dta cl doua cazu Θ D ρ ρ ΘD 8 Θ ρ ρ ΘD 8 D 9 b matu joas: << Θ D. I acst caz lmta suoaa a tgal s oat xtd la t s zultatul tga st o costata b. I coscta acst gm d tmatua 5 ρ ρ' Θ D ddta co mata d xmt tu mtal moovalt alcal bvalt Cd Z tvalt I ttavalt S Pb s la ul mtal d tazt Mo. P d alta at la mult mtal d tazt ρ sub K datota uu alt mcasm d mast: lcto uso a bzlo s ca sut utato ctv d sa ca s mast lcto g actc mobl a bzlo d. La acst mtal 5 ρ A cu A costat. I gal ddta d tmatua a zstvtat aata ca gua d data.
50 om ctc. Coductvtata/zstvtata mtallo s smcoductolo 8 Rzstvtata zduala a mtallo. Rgula Mattss Dua cum s s d s zstvtata lctca datoata osclatlo tl mast oo s aulaza la K doac umaul d oo dv zo o tl dv statc. xmtal s costata sa ca valoaa zstvtat mtallo omal u a clo suacoductoa! td s o valoa costata umta zstvtat zduala masua c tmatua scad s K. Rzstvtata zduala st ddta d tmatua s s datoaza mast lctolo d coduct mctul statc al tl mutat dct dslocat zt t-u mtal al. La tmatua cam zstvtata zduala st cu - od d mam ma mca dcat ca a mtalulu dal astl cat dv smcatva doa la tmatu joas. Imasta lctolo mctul statc st cosdata lastca tmul d laxa utad xmat ca smla cazulu mast mutat z N v σ c ud N st umaul mutatlo statc v vtza m vtza lctolo la tm atu scazut s σ c st sctua cac d tasot. Doac ocsul d mast mutat statc s cl d mast oo acustc sut colat z ac obabltatl d mast s adua s 5 ρ ρz ρ' 4a Θ ρ m 5 D z N 4b z xs dumta gula lu Mattss; zta coctata d lcto la K. Pot xsta abat d la acasta gula datota mutatlo ca scmba sctul ooc modcaa tactu lcto-oo. Masuaa zstvtat la tmatu oat scazut st o mtoda d a stma utata uu mtal.
51 om ctc. Coductvtata/zstvtata mtallo s smcoductolo 9 Rzstvtata lctca a alajlo. Rgula Nodm I gal zstvtata lctca cst cazul alajlo mtalc doac toduca taua uu mtal A a atomlo mtalulu dstosoaza taua cstala a mtalulu A s masta lctolo cst. I lus tactua cmca a comotlo oat duc la csta zstvtat. Alaj mtalc s omaza doa t mtal mscbl ca mxtua omata sta lcda u s saa statu/gu cotad u sgu lmt. It-u alaj ba dzodoat A- cu coctat al comotlo A s gal cu c s sctv c daca stuctua alajulu u s modca tvalul d comozt als ρ c c 5 z lat umta s gula Nodm. Acasta lat s oat justca cosdad ca ottalul mdu al lctoulu alaj st o tata guoasa st dsgu mult ma comlcata V cv c A V 6 ud V s V sut ottall atomc al atomlo A s. I coscta ottalul A vcatata atomlo d t A s dv sctv V A V c V A V V cva 7 cu V A V V. I calculul tmulu d laxa obabltata d mast s obt d A atatul lmtulu d matc al ottalulu d tact t staa tala s ala acst lmt d matc tu atom A s d ' V V c ' V ' V A A V c ' V. 8 A It-u alaj cotbuta atomlo A s la tmul d laxa ca st ootoal cu zstvtata lctca s obt multd lmtul d matc cosuzato cu coctata c sctv c astl cat P c c ' V A c c ' V A c c ' V A. 9
52 om ctc. Coductvtata/zstvtata mtallo s smcoductolo Rgula Nodm st comata d zultatl xmtal tu alaj ba dzodoat d xmlu Ag-Au alaj ct mscbl vz gua d data Ag-Cu Au-Cu cuba uctata d gua d ma jos staga da ul abat s-au obsvat la alajl mtallo d tazt cu mtall obl. I ul alaj d xmlu Au-Cu s ot obt aumt codt d tmatua s su comus odoat cu ta cstala ca zstvtata scad ata d comus dzodoat ca atom A s u sut aszat odc la cotua gua d ma jos staga. I astl d cazu zstvtata oat ma scazuta dcat a mtallo comot. Cu Cu Au CuAu Au D asma aumt stuat alaj d mtall A s s obt doa aumt tval d comozt vz gua d ma sus data. I acst tval gula Nodm st valabla. Ptu alaj mtalc comlt mscbl mxtua d gaut d mtal A s oat cosdata ca o ta d zsto coctat s s aall vz gua d data.
53 om ctc. Coductvtata/zstvtata mtallo s smcoductolo Coductvtata lctca a smcoductolo S dosb d mtal smcoducto coductvtata/zstvtata st dtmata d ambl tu d utato d saca: lcto s golu a ucta d dstbut st d t Maxwll-oltzma: x 4 I acst caz tu u tm d laxa A d / d x d A d / d x d / d d A 5 Γ 5 Γ 4 ud tu x / ucta Γ st dta ca y Γ y x x x dx. 4 π 5 π ad cot ca tu tg Γ! Γ!! avm Γ 4 s tu lcto daca masa ctva dd slab d tmatua 4A 5 σ Γ m 4a π 4A 5 μ Γ A. 4b π m La masta oo acustc: / A ac Mvac 4 / Ω π D m ac 4Aac / μ 44 / π m
54 om ctc. Coductvtata/zstvtata mtallo s smcoductolo La masta oo otc la tmatu alt smcoducto ola: / A ot / πε Θot m ot ot 8Aot / / μ 45 π m La masta oo otc la tmatu joas smcoducto ola: A ot π ε m ot Θ x ot Θ x ot ot Aot Θot μ x m 46 La masta mutat ozat: / A 9 / Z πm / 4 N ε K ε cost. 8A μ π m / / 47 ud K st o uct ca dd oat slab d g: 4πε ε K l Z N / omula Cowll-Wsso tata clasca 8m K omula oos-hg tata cuatca tactu caata La masta mutat ut: m A 8πε ε N cost. A μ cost. 48 m mobltata d ddta d tmatua. bu macat ca ultml doua mcasm mobltata st vs ootoala cu coctata mutatlo d ma ma smcoducto u. D asma omull d ma sus a ost gljata ddta oat slaba d tmatua a mas ctv costat d culaj lcto-oo s cvtlo d osclat acustc s otc.
55 om ctc. Coductvtata/zstvtata mtallo s smcoductolo I lus u s-au luat cosda mcasm d mast ca masta lcto-lcto tva dslocat tc. talt aumt smcoducto sau codt scal. D xmlu masta tva a loc t val d bada d coduct a S lustat gua d data. I cocluz cu xcta mast oo otc la tmatu joas s μ 49 ud s / s / la masta oo acustc la masta oo otc la tmatu alt s / la masta mutat ozat s la masta mutat ut. La ma vd omull tu masta golulo s obt locud masa ctva a lctolo cu ca a golulo. otus datota dtlo dt stuctua gtca a bzlo d valta s coduct suatl zo-gtc tu golu u sut gal sc s mcasml d mast u sut totdaua aclas ca tu lcto. I atcula masta oo acustc st sotta d masta tva s oo otc. D aca ot aaa dt t aamt s d 49 cazul smcodutolo s d aclas matal. Dua cum am vazut s la sma cazul coduct ambola j j j s σ μ μ 5 Ddta d tmatua a coductvtat st dtmata d ddta d atat a mobltat cat s a coctat utatolo d saca. Ptu smcoducto tsc s g σ μ μ μ μ N c N v x 5 ud
56 om ctc. Coductvtata/zstvtata mtallo s smcoductolo 4 N c v πm 4π / / 5 sut dstatl ctv d sta bada d coduct s valta. Latma bz tzs s oat dtma d masuato xmtal al coctat tsc dat d ctul Hall vz laboatoul d sold! s d taa ultoaa cu o l data a ddt l. / I cazul ca mobltatl lctolo s golulo au acas ddta d tmatua aclas s σ s / x g 5 adca / g σ x la masta mutat ut la tmatu joas g σ x la masta mutat ozat g σ x la m asta oo otc smcoducto ola la alt g σ x la masta oo acustc smcoducto u Doac ddta d tmatua a actoulu xotal st domata zstta lctca a smcoductolo dd d tmatua ca R Ax 54 masuatol xmtal mtad gasa mcasmulu d mast s a latm bz tzs d ddta g mult d o l data sau ca tu ca tu d masuato. l R vz laboatoul d sold! S zta ma mult astl d cub tu dt valo al s s s cosda lvata ca ca s ao ma g st ma aoa d valoaa obtuta d alt
57 om ctc. Coductvtata/zstvtata mtallo s smcoductolo 5 Cosdatl d ma sus sut valabl doa daca u sgu mcasm d mast st domat stuat ca u cosud totdaua altat. D xmlu tu -G tvalul d tmatua -8 K x.66 μ tm c tu -G tvalul -4 K μ x.. I atcula daca masta utatolo d saca lcto sau golu cu masa ctva m oo acustc s mutat ozat a loc smulta 55 ac ac μ. 56 m m ac / Doac μ s μ la tmatu alt utm glja masta ac / mutat ozat la tmatu joas gljam masta oo acustc cl doua mcasm actoad smulta doa la tmatu tmda tu ca ac A ac / A / 4Aac 8A / μ ac μ / π m π m A A ac μ ac 6 β μ A ac / A ac A / A ac / / β π m μ 4 ac / / / β 57 s μ sau m x / / x d π μ 4 π β μac 4 ac / / d / J β 5 Γ 58 μ μ J β 59 ac ud cu x / x x x J β dx 6 x β
58 om ctc. Coductvtata/zstvtata mtallo s smcoductolo 6 s tad cot ca β s obt ddta d tmatua a mobltat tgul tval d valo cluzad cl alt s joas. It-adva tu μ β J β x x x dx Γ μ μ ac 6 a daca μ β ac Γ4 6 μ J β x x x dx μ μ 6 β β β μac N d I cazul coct al uu smcoducto cu mutat ozat dooa d coctat d xmlu P S vz cusul/smaul d statstca a uta tolo d saca sold! coctata lctolo st dtmata d codta d utaltat lctca d N N 6 ud d N st coctata mutatlo ut vl gtc al caoa xsta lcto localzat d gd c d g v I acst caz ddta coctat lctolo d tmatua s talsc t cazu tmatu mc tu ca N d >> s tu ca lcto d bada d coduct ov xctaa tmca a lctolo localzat vll d mutat. Avm o coctat mca d lcto data d N c N d d x c N c N d x gd / 4 x gd / 64
59 om ctc. Coductvtata/zstvtata mtallo s smcoductolo 7 tmatu tmda t tmatua d satuat o zat s tu ca doo sut comlt toat vll dooa sut lb s tmatua d c a coduct tsc tu ca N da N <<. I acst caz d d al coduct xtsc vz gua d data N d / N d xtsc s tsc 65 tmatu ma st ca doo tsca: sut comlt ozat s coducta st g N c N v x >> N d 66 lctca vz gua d ata data gua st d t tsc cu ddta domata d tmatua d t xotal d I ca c vst coductvtata zta lσ utadu-s dtma latma bz tzs. I domul d satuat ddta coductvtat d tmatua st dctata d ddta d a mobltat tu ca ma d mutat ozat utm suu domat s ca σ μ / dd d ou xotal d tmatua s N cost. Avad vd zta uu uma d ca acsta st mcasmul d mast. La tmatu ma joas gua coductvtata N c N d gd / / 4 gd.5 gd σ μ x x x 67 d zta d tul lσ gasdu-s ga d oza a mutat. gd
60 Coct udamtal d tasot I codt d clbu s zta uu gadt d tmatua cstal aa u lux tmc. P aalog cu dstata cutulu lctc dstata luxulu tmc utata d tm s oat d ca w σ v v d 4π I xsa d ma sus ga tmca adca locust saca lctca d xsa dstat d cut a cu <<. Avad vd otatl d smt al uct d dstbut d clbu j 4π v d w v d 4 π Acst lat sut valabl s zta camulu magtc. I cam lctc s zta uu gadt d tmatua cuata ctca oltzma st v 4 Ptu d d v 5a d d d d x 5b d d obtm d v. 6 d
61 Coct udamtal d tasot. Coductvtata tmca O comaat cu coductvtata lctca dvata zta doa a camulu lctc t-u coducto uom aata ca cazul gal s locust cu astl cat dstatl d cut lctc s lux tmc dv ˆ β j ˆ σ 7 ˆ χ w ˆ β 8 ud σˆ βˆ s χˆ sut tso udamtal d tasot. P comot latl d ma sus s scu β μν jμ σ μν ν ν ν χ μν wμ β μν ν ν ν 9 ud d σ μν vμvν d 4π d d β μν vμvν d 4π d d χ μν vμvν d 4π d I cazul zoto cad camul lctc s gadtul d tmatua sut alcat dcta ax x j x σ xx x d dx β xx d dx w x β xx x d dx χ xx d dx 4 coct udamtal d tasot coductvtat lctc d la cutul cusulu. σ xx σ β xx β χ xx χ calculadu-s aalog
62 Coct udamtal d tasot. Coductvtata tmca I atcula tu suat zogtc sc σ m 5 β m 6 χ m 7 Coductvtata tmca a soldlo Coductvtata tmca st dtmata d tasotul d g atat utato d saca lcto s/sau golu cat s osclatl tl oo d asocat cu ocs d mast coc caactzat t-u tm d laxa. Coductvtata tmca st caactzata d ootoaltata dt dstata luxulu tmc utata d tm s gadtul d tmatua: w x d κ 8 dx smul gatv dcad scada luxulu d g tmca. Paamtul κ st coductvtata tmca s gal st o suma a cotbutlo lctoc s ooc: κ κ κ. 9 Coductvtata tmca a coductolo I coducto mtal sau smcoducto κ / κ astl cat κ κ. Ptu a dtma xsa coductvtat tmc s olosst d obc u motaj xmtal ca luxul sac lctc dcta cosdata d xmlu x st ul astl cat j w x x d β d σ x dx dx β x d dx χ d dx
63 Coct udamtal d tasot. Coductvtata tmca 4 d ud obtm β κ χ σ sau κ m D acasta xs zulta ca o valoa ula a coductvtat tmc s obt cad cost. sau cad gazul lctoc st total dgat caz ca. D uct d vd xmtal coct d tasot satsac lata Wdma- az κ σ 4 κ xs c oat usa sub oma L cost. ud L st umaul lu Lotz. σ Acasta xs st cuoscuta s sub uml d lga Wdma-az-Lotz. Avm κ L σ 5 Daca tmul d laxa st dat d A A m A d d d d m / m / / d d m m / / d / d 6
64 Coct udamtal d tasot. Coductvtata tmca 5 / / / / y y m A d d m A m m m ud x y x dx x y 7 cu sut tgall m-dac. Cu acst otat obtm x / y / [ ] [ ] / / / 5/ 5 7 y y y y L 8 Mtal olosd aoxmata 6 y y y π tu tgall m Dac valabla tu tmatu scazut da t / >> y s ddta vlulu m d tmatua valabla aclas codt π 9 avm / / 6 / s s s s s y π / 6 / s s s s π astl cat
65 Coct udamtal d tasot. Coductvtata tmca 6 / / / 5/ 5 7 y y y y L π ultma at a galtat d ma sus ca zta lga Wdma-az- Lotz la mtal obtadu-s dua locul cu ajutoul lat. Numaul Lotz cazul mtallo st L.45 8 WΩ/K. L I gua d data st aatata ddta d tmatua a umaulu Lotz tu N s comusul mtalc Pa Cu 4 O 8. Ptu mtal la o tmatua data σ κ asa cum zulta d gua d ma jos obtuta tu tmatua cam. Lga Wdma-az st vcata xmtal doa la tmatu alt. La tmatu joas a tbu ca mtal doac da d 4 L κ σ 5 ρ
66 Coct udamtal d tasot. Coductvtata tmca 7 xmt zulta κ. Acasta ddta s oat justca atul ca tmul d laxa s modca datota coductvtat tmc astl cat locul ddt la mtal la tmatua joasa obtuta tu coductvtata lctca avm dc κ. D asma la tmatu joas dv motata s masta mctul statc ca aduc o cotbut adtoala la coductvtata tmca 5 s lctoca z κ L / ρ z. Doac zstta zduala st ddta d z tmatua obtm κ s aalog cu gula Mattss κ κ z κ adca κ A La tmatu alt σ κ cost. vz gua d data. s Rlata aata ca odata cu scada tmatu coductvtata tmca lctoca tc t-u maxm s ao scad ad la zo ddta ca st acod cu xta dua cum s oat obsva d gua d staga tu Au. I gal d ddta laa κ s obt coctul d ata dt s costata A d xtaolaa odoat la og.
67 Coct udamtal d tasot. Coductvtata tmca 8 Smcoducto I cazul u dstbut dgat d utato d saca x x Γ y dx x x y y 4 ud. olosd lata d cuta Γ x dx x x Γ Γ ca s oat dmosta uso tga at: x x x Γ Γ dx x x x x dx x x obtm Γ Γ Γ Γ 5 5/ 7 / 5/ 9/ y y y y L. 5 Avm / L ac la masta oo acustc tu ca / / 4 L la masta mutat ozat tu ca / I cazul smcoductolo xsta doua tu d utato d saca: lcto s golu xsa coductvtat tmc acst caz d σ σ χ χ σ σ β β κ 6 ud coct udamtal d tasot tu lcto s golu sut m σ m σ 7 σ β σ β 8 σ χ σ χ 9
68 Coct udamtal d tasot. Coductvtata tmca 9 Coductvtata tmca st σ σ σ σ σ σ κ 4 s L L L σ β σ β σ σ σ σ σ σ σ σ 4 ud uml Lotz tu lcto s golu sut L L I smcoducto utc doat ddta d tmatua a coductvtat tmc gm xtsc st smlaa cu ca d mtal doac coctata utatolo d saca st aoxmatv costata vz gua d ma sus. I smcoducto tsc coctata utatolo d saca dd d tmatua ddta d tmatua a coductvtat tmc avad oma d gua d data. Guul d ct ca tasotul utatolo d saca t-u coducto a loc zta uu gadt d tmatua sau caza s umsc ct tmolctc. Cl ma motat sut ctl Sbc Plt s omso ca l-at studat la sma.
69 Coct udamtal d tasot. Coductvtata tmca Coductvtata tmca a tl cstal Cotbuta oolo a osclatlo tl cstal la tasotul d g tmca st dtmat matal zolatoa d uct d vd lctc. Daca luxul tmc datoat tasotulu d oo a loc t doua otu al uu matal t ca xsta u gadt d tmatua suum ca acst oo sua ocs d mast. Dm luxulu tmc utata d tm al uu mod d vbat ooca cu ga s uma d uda ca w v g 4 ud s cazul oolo acustc v g v ac θ ϕ st vtza d gu. Avad vd ca la clbu tmc s dstata oolo dd doa d w doac vtza d gu st acas ca mam da ousa ca sm tu s. I coscta u lux d g tmca dt d zo aa doa daca dstata oolo da d valoaa la clbu tmc s u ma a acas valoa tu modul s. Acasta stuat aa zta uu gadt d tmatua cad dstata oolo vaaza tm oc uct al cstalulu. Daca la u momt d tm t dstata oolo st dua u tval d tm Δt oo s dlasaza s umaul lo cosud dstat dt-o gu la dstata v g Δt adca va v g Δt v g Δt 4 a vtza d vaat a dstat oolo st t dt v g. 44 O sta statoaa s stablst cad au loc ocs d mast ca modca dstata oolo ss ous vaat sal datota dtulu:
70 Coct udamtal d tasot. Coductvtata tmca coc dt t t. 45 La l ca cazul mast lctolo toducm u tm d laxa la masta oo-oo coc t. 46 I aoxmata laa s suu ca zta gadtulu d tmatua dstbuta oolo u s abat utc d la ca d clbu tmul d dt s oat locu cu ud / x astl cat cuata ctca oltzma tu oo dv g v 47 s dstata luxulu tmc utata d tm s sc g g v v w 48 Coductvtata tmca ooca st dc data d g g κ v v 49 Ptu u gadt tmc dcta x d xmlu locud lata d ma sus ϕ θ ac g x g v v v tu modu acustc s v ac ϕ θ obtm ] / [x / x 5
71 Coct udamtal d tasot. Coductvtata tmca s ] / [x / x v ac ϕ θ κ 5 Putm acum tc d la suma satul la tgala: d D 5 olosd dstata d sta/osclat Ω Ω cost ac cost cost v d V d d d V ds V D ϕ θ π π π / 5 adca π ϕ θ κ 4 ] / [x / x d V v d ac D Ω Ω 54 Cosdad ca v ac v ac d 4 Ω Ω ϕ θ π 55 s tad cot d xsa lmt suoaa a tgal dua cvt: / 6 V N v ac D π vaabla x / avm dx x C x v ac D / Θ κ 56 cu D D / Θ s
72 Coct udamtal d tasot. Coductvtata tmca 4 x x x C 9 N 57 4 Θ D x x Ptu a gas coductvtata tmca ooca tbu cuoscuta ddta x. I cazul ca tmul d laxa ooc st costat κ vac C 58 ud C Θ / D x x x Θ D 9 N dx 9 N J 4 59 Θ D [x x ] Θ D 4 cu J x x x y dx 6 [x x ] y st caldua scca ooca a tl la volum costat modlul Dby valabla tu osclatl acustc. Ddta caltatva d tmatua a coductvtat tmc oat gasta umatoal cazu: a matu alt: >> Θ D I acst caz umaul oolo d cstal st ootoal cu tmatua: 6 x / cvta coclo oo-oo a tbu sa casca ootoal cu tmatua s tmul d laxa a tbu sa scada ootoal cu tmatua s doac acst gm x << C 9 N Θ D ΘD / x dx N 6 astl cat
CÂMPUL ELECTROSTATIC
CÂMPUL LCTROSTATIC Câmpul lctostatc st stablt d copu mobl a căo patţ d sacă lctcă, spctv sta d polaza st vaablă î tmp ş u st îsoţt d tasfomă d g. Î acst caz, foml lctc s poduc dpdt d cl magtc ş ca uma
Functii de distributie in fizica starii solide
uc sbu zc s sol I cusul zc solulu s- olos c uc sbu -Dc D u sc obbl ocu cu lco l o slo -u l uc sbu Mwll-olz M u sc obbl ocu cu lco slo -u scouco cul u scouco sc uc sbu os-s Plc czul oolo s o uc sbu o cs
TIPURI DE DEZINTEGRĂRI NUCLEARE. Dezintegrarea α
TIPURI D DZINTGRĂRI NUCLR Dzitgaa -mita d căt ul ucl adioactiv, stuctui compact d doi potoi şi doi utoi (ucl d hliu şi a ui catităţi apciabil d gi Q Z X 4 Z Y Q 38 9 4.47 ai U 9 34 9 Th Q (4.7 V s îtâlşt
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Cursul 10 T. rezultă V(x) < 0.
ursul uţol ătrtă V: X R V s lsă stl: ) V st oztv tă ă X u X rzultă V(). ) V st tv tă ă X u X rzultă V()
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
Supplemental file 3. All 306 mapped IDs collected by IPA program. Supplemental file 6. The functions and main focused genes in each network.
LIST OF SUPPLEMENTAL FILES Supplemental file 1. Primer sets used for qrt-pcr. Supplemental file 2. All 1305 differentially expressed genes. Supplemental file 3. All 306 mapped IDs collected by IPA program.
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r
r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
4.2. Amplificatoare elementare
4.2. Aplfcatoa lnta 4.2.. Conxunl aplfcatoalo n taj al unu aplfcato, ca conţn ca lnt actv un tanzsto, poat f dus la o scă lntaă, splfcată. Atât pntu aplfcatoal cu tanzstoa bpola cât ş pntu aplfcatoal cu
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
TIPURI DE DEZINTEGRĂRI NUCLEARE. Dezintegrarea α
TIPURI D DZINTGRĂRI NUCLR Dzitgaa α -mita d căt ul ucl adioactiv, stuctui compact d doi potoi şi doi utoi (ucl d hliu) şi a ui catităţi apciabil d gi Q α Z X 4 Z Y Q 38 9 4.47 ai U 9 34 9 Th Q (4.7 V)
C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ
»»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε.
ΑΣΚΗΣΗ 1 ΟΜΑ Α 2 Στην ακόλουθη άσκηση σας δίνονται τα έξοδα ανά µαθητή και οι ετήσιοι µισθοί (κατά µέσο όρο) των δασκάλων για 51 πολιτείες της Αµερικής. Τα δεδοµένα είναι για τη χρονιά 1985. Οι µεταβλητές
cz+d d (ac + cd )z + bc + dd c z + d
T (z) = az + b cz + d ; a, b, c, d C, ad bc 0 ( ) a b M T (z) = (z) az + b c d cz + d (T T )(z) = T (T (z) (T T )(z) = az+b a + cz+d b c az+b + = (aa + cb )z + a b + b d a z + b cz+d d (ac + cd )z + bc
Da se podsetimo Algoritam optimizacije. Odrediti vrednosti parametara kola koje će garantovati da odziv F(x, p) ima željenu vrednost F * (x).
Aotam otmzac Da s odstmo Aotam otmzac Aotam otmzac Aotam otmzac : Oddt vdost aamtaa oa [,... ] o ć aatovat da odzv (x, ma žu vdost * (x. Mtod: až mmuma fuc š E(x,; (oma za vattatvu ocu odstuaa dobo od
Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
5. FILTRE ADAPTIVE BAZATE PE MINIMIZAREA ERORII MEDII PATRATICE
5. FILTR ADAPTIV BAZAT P MIIMIZARA RORII MDII PATRATIC Ta ltă ptal ă sluța găs uu ltu pt, î ssul ț u pătat, î țl uu u stața (salul ta ș l t sut psupus stața l puț î ss lag). Daă ast ț u sut îplt, a tu,
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
..., ISBN: :.!". # -. $, %, 1983 &"$ $ $. $, %, 1988 $ $. ## -. $, ', 1989 (( ). '. ') "!$!. $, %, 1991 $ 1. * $. $,.. +, 2001 $ 2. $. $,, 1992 # $!
!! " 007 : ISBN: # $! % :!" # - $ % 983 &"$ $ $ $ % 988 $ $ ## - $ ' 989 (( ) ' ') "!$! $ % 99 $ * $ $ + 00 $ $ $ 99!! " 007 -!" % $ 006 ---- $ 87 $ (( %( %(! $!$!" -!" $ $ %( * ( *!$ "!"!* "$!$ (!$! "
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
A 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx
m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =
CALCULUL IZOLAŢIILOR FRIGORIFICE
CALCULUL IZOLAŢIILOR FRIGORIFICE Gosma saulu d maal mozola cu ca su pvăzu spaţl fgofc fluţază două pu d chlul: - Chlull cu maalul zolao spcv cu maopa d moa a acsua; - Chlull pu poduca fgulu csa î vda compsă
). = + U = -U U= mgy (y= H) =0 = mgh. y=0 = U=0
3761 5226 9585 ). = + U = -U U= mgy (y= H) =0 = mgh. y=0 = U=0 y = mgh mgy, 3761 5226 ) ) =mg 2 F=ma F-B=ma Fmg=m.2g F=3mg F=3B B = F/3 3763 5208 ) ) W 1 = -mgh W 2 =mgh W = W 1 + W 2 = -mgh + mgh=0 3763
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.
Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH
SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia
SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
Reflection & Transmission
Rflc & Tasmss 4 D. Ray Kw Rflc & Tasmss - D. Ray Kw Gmc Opcs (M wavs flc fac - asmss cdc.. Sll s Law: s s 3. Ccal agl: s c / 4. Tal flc wh > c ly f > Rflc & Tasmss - D. Ray Kw Pla Wav λ wavfs λ λ. < ;
MICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
Η νέα προσέγγιση στην ταχεία προγεννητική διάγνωση των χρωµοσωµατικών ανωµαλιών του εµβρύου
Αµνιο-PCR Η νέα προσέγγιση στην ταχεία προγεννητική διάγνωση των χρωµοσωµατικών ανωµαλιών του εµβρύου Αγγελική Χατζάκη, PhD Γεωργία Χριστοπούλου, MSc Τµήµα Γενετικής και Μοριακής Βιολογίας Μαιευτήριο «ΜΗΤΕΡΑ»
B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
TIPURI DE DEZINTEGRĂRI NUCLEARE. Dezintegrarea α
TIPURI D DZINTGRĂRI NUCLAR Dzitgaa α -mita d căt ul ucl adioactiv, stuctui compact d doi potoi şi doi utoi (ucl d hliu) şi a ui catităţi apciabil d gi Q α A Z X A4 Z Y Q 38 9 4.47 ai U 9 34 9 Th Q (4.7
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate
Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z
5ppm/ SOT-23 AD5620/AD5640/AD5660. nanodac AD5660 16 AD5640 14 AD5620 12 12 1.25V/2.5V 5ppm/ 8 SOT-23/MSOP 480nA 5V 200nA 3V 3V/5V 16 DAC.
5ppm/ SOT-23 12/14/16nanoDAC AD562/AD564/AD566 nanodac AD566 16 AD564 14 AD562 12 12 1.25V/2.5V 5ppm/ 8SOT-23/MSOP 48nA 5V 2nA 3V 3V/5V 16 DAC 3 to SYNC 1. 1212/14/16nanoDAC 2. 1.25V/2.5V 5ppm/ 3. 8SOT-23
Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ
Γενική και Ανόργανη Χημεία Περιοδικές ιδιότητες των στοιχείων. Σχηματισμός ιόντων. Στ. Μπογιατζής 1 Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Π Δ Χειμερινό εξάμηνο 2018-2019 Π
! " # " $ #% $ "! #&'() '" ( * / ) ",. #
Ψ ƒ! " # " $ #% $ "! #&'() '" ( * +",-.'!( / ) ",. # 0# $"!"#$%# Ψ 12/345 6),78 94. ƒ 9)")1$/):0;3;::9 >'= ( ? 9 @ '&( % A! &*?9 '( B+)C*%++ &*%++C 0 4 3'+C( D'+C(%E $B B - " % B
2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s
( ) 03/0 - o l P z o M l =.P S. ( ) m' Z l=m m=kg m =,5Kg g=0/kg : : : : Q. (A) : V= (B) : V= () : V= (D) : V= (): : V :Q. (A) :4m/s (B) :0,4 m/s () :5m/s (D) :0,5m/s (): : M T : Q.3 (A) : T=(-z).g (B)
x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1)
x sin x cosx e x lnx x3 + (sin x)/x e x {}}{ (f(g(x))) = f ( g(x)) g (x). }{{}}{{} f(g(x)) 3x cos(x 3 ). 3x cos(x 3 ) x 3 3x sin(x 3 ) (sin(x3 )) = cos(x 3 ) (3x ). 3x cos(x 3 ) = sin(x 3 ) + C. e ( +).
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Batigoal_mathscope.org ñược tính theo công thức
SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa
692.66:
1 69.66:6-83 05.05.05 -,, 015 .. 7... 8 1.... 19 1.1.,.. 19 1.. 8 1.3.. 1.4... 1.4.1.... 33 36 40 1.4.. 44 1.4.3. -... 48.. 53.,.. 56.1., -....... 56..... 6.3.... 71.. 76 3.,.... 77 3 3.1.... 77 3.1.1....
Cursul 3 Capitolul 3. Structura atomului Modele atomice Modelul cozonac al lui Thomson (1904)
Cusul 3 Capitlul 3. Stuctua atului 3.. Mdl atic 3... Mdlul czac al lui Ts (90) Ts atul = czac: - aluatul = sfă cu saciă pzitivă uifă, - stafidl = lctii, cu sacia gativă, distibuiţi atic. Mdlul czac al
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής Κατεύθυνσης Βιολογία Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΚΩΣΤΑΣ ΓΚΑΤΖΕΛΑΚΗΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Κατεύθυνσης Βιολογία Γ Λυκείου Επιμέλεια: ΚΩΣΤΑΣ ΓΚΑΤΖΕΛΑΚΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1 TO 1. µ, : i µ µ DNA ii µ DNA iii
!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-
!"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
ρ ρ s ::= sd sd ::= K x sk xotse se sk ::= K (sk x) se ::= x K se se se x = se xotse se xotse se x sp se se l lo sp ::= x l K sp x(x ) l ::= char number lo ::= se (+ = = < > ) se se se ot ::= τ ɛ τ
..,..,.. ! " # $ % #! & %
..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ
ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ
Supplementary Table 1. Primers used for RT-qPCR analysis of striatal and nigral tissue.
Supplementary Table 1. Primers used for RT-qPCR analysis of striatal and nigral tissue. Gene Forward Primer (5-3 ) Reverse Primer (5-3 ) Dopaminergic Markers TH CTG GCC ATT GAT GTA CTG GA ACA CAC ATG GGA
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic
Platformă d -larg ș crrclă -tt tr îvățămâtl sror thc lmt d lctrocă Aalogcă 6. Trazstoar bolar (TBIP Trazstorl bolar-rocs fzc Itrodcr Smdctor trog dotat c mrtăţ astfl îcât s formază doă ocţ : rga d mloc
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
L A TEX 2ε. mathematica 5.2
Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica
ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2
ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του
CAPITOLUL 1 BAZELE TEORIEI MACROSCOPICE A ELECTROMAGNETISMULUI
CAPITOLUL BAZELE TEORIEI MACROSCOPICE A ELECTROMAGNETISMULUI.. MĂRIMI PRIMITIVE ŞI MĂRIMI DERIVATE Stăl ş foml fzc s cctzză cu jutoul mămlo fzc c s clsfcă î ouă ctgo: măm pmtv - s touc p cl xpmtlă, câ
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
2. Sisteme de ecuaţii neliniare
Ssteme de ecuaţ elare 9 Ssteme de ecuaţ elare Î acest catol abordăm roblema reolvăr umerce a sstemelor de ecuaţ alebrce elare Cosderăm următorul sstem de ecuaţ î care cel uţ ua d ucţle u este lară Sub
Υπεραγωγιμότητα. Βασικά Φαινόμενα: Ηλεκτροδυναμική: Επιφανειακή Ενέργεια: Κβαντικά Φαινόμενα: Μικροσκοπική Θεωρία :
Βασικά Φαινόμενα: Ηλεκτροδυναμική: Επιφανειακή Ενέργεια: Κβαντικά Φαινόμενα: Μικροσκοπική Θεωρία : Υπεραγωγιμότητα Μηδενική Αντίσταση Missn, Κρίσιμο Πεδίο, Θερμοδυναμική Κρίσιμο Ρεύμα Εξισώσεις London,
( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]
1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter
Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2011.. 42.. 2 Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ 636 ˆ ˆ Šˆ Œ ˆŸ ˆŒˆ - Šˆ Œ Š ˆ ˆ 638 Š ˆ ˆ ˆ : ˆ ˆŸ 643 ˆ ˆ Šˆ Š 646 Œ ˆ Šˆ 652 Œ ˆ Šˆ Š ˆ -2 ˆ ˆ -2Œ 656 ˆ ˆ Šˆ Š œ Š ˆ Œ
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
Wb/ Μ. /Α Ua-, / / Βζ * / 3.3. Ηλεκτρομαγνητισμός Ι Μ. 1. Β = k. 3. α) Β = Κ μ Π 2. B-r, 2 10~ ~ 2 α => I = ~ } Α k M I = 20Α
ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.3 39 3.3. Ηλεκτρομαγνητισμός 1. Β = k 21 9 1Π 2 β = 10 " ίιτκ τ^β = 2 10 " τ 3. α) Β = Κ μ 21 B-r, 2 10~ 5 20 10~ 2 α => I = ~ } Α k M -2 2-10 I = 20Α ϊ)β 2 2Ι = Κ ψ- _ 10' 10^40 7 2
!"#$%#&'(#)*+,$-.#/ 0%%&%#)*2!1/&%3) 0&/(*+"45 64.%*)52(/7
!"#$%#&'(#)*+,$-.#/ 0%%&%#)*2!1/&%3) 0&/(*+"45 64.%*)52(/7 2010 2012 !"#$%!&'()$!!"#$% &!#'()* +(, $-(./!'$% $+0 '$ 1!")& '(, 2,3!4#*'& '&5 67µ3(, 0'$# (%!)%/µ(" '&5 $+849!:5 ()(-)&4:;(.# -$% & +4
UNIVERSITÀ DEGLI STUDI DI BOLOGNA. DIPARTIMENTO DI INGEGNERIA ELETTRICA Viale Risorgimento n BOLOGNA (ITALIA) FOR THE CURRENT DISTRIBUTION
UVERSÀ DEG SUD D BOOGA DPAREO D GEGERA EERCA Vl Rogo - 36 BOOGA (AA AAYCA SOUOS FOR HE CURRE DSRBUO A RUHERFORD CABE WH SRADS. F. Bch Ac h gocl o of h ol co coffc og h of Rhfo cl vg. h olo fo h gl l c
εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B
4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε
DISPLAY SUPPLY: FILTER STANDBY
ircuit iagrams and PW Layouts. ircuit iagrams and PW Layouts J.0 P. 0 isplay Supply P: ilter Standby MNS NPUT -Vac 00 P-V- V_OT 0 0 0 0 0 0 0 0 SPLY SUPPLY: LT STNY 0 M0 V 0 T,/0V MSU -VOLTS NOML... STNY
SERII RADIOACTIVE. CINETICA DEZINTEGRĂRILOR Serie radioactivă- ansamblu de elemente radioactive care derivă unele din altele prin dezintegrări α şi β
SERII RDIOTIVE. IETI DEZITEGRĂRILOR Sr radoacvă- ansamblu d lmn radoacv car drvă unl dn all prn dzngrăr α ş β ca rzula al lg ransmuaţ radoacv -prn dzngrar α, numărul d masă scad cu 4 unăţ ş numărul aomc
Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA
I. Vcto không gian Chương : VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯ BA PHA I.. Biể diễn vcto không gian cho các đại lượng ba pha Động cơ không đồng bộ (ĐCKĐB) ba pha có ba (hay bội ố của ba) cộn dây tato bố
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
Teorema Rezidurilor şi Bucuria Integralelor Reale
Torma Ridurilor şi Bucuria Intgrallor Ral Prntar d Alandru Ngrscu Intgral cu funcţii raţional c dpind d sin t şi cos t u notaţia it, avm: cos t ( + sin t ( i dt d i, iar intgrara s va fac d-a lungul crcului
( 0) q =, p =, i = 1, 2,..., sn (1.2) i p i q. H q. H p. + = i i
- - IV. FIZIA STATISTIĂ. oţun fundamntal.. Stara macroscocă ş stara mcroscocă a unu sstm. Saţul fazlor Fzca statstcă ar ca sco dducra lglor fzc macroscoc ornnd d la lgl mcanc. Stara macroscocă a unu sstm
SONATA D 295X245. caza
SONATA D 295X245 caza 01 Γωνιακός καναπές προσαρμόζεται σε όλα τα μέτρα σε όλους τους χώρους με μηχανισμούς ανάκλησης στα κεφαλάρια για περισσότερή αναπαυτικότητα στην χρήση του-βγαίνει με κρεβάτι η χωρίς
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
Seminar 6.Integrarea ecuațiilor diferențiale
Sema.Iegaea ecațlo deețale Resosabl: Maela Vasle maela.a.vasle@gmal.com Cosm-Șea Soca cosm.soca9@gmal.com Obecve Î ma acge aces laboao sdel va caabl să: ezolve ssem de eca deeale dee meode. să ezolve obleme
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø