STUDIUL MISCARII OSCILATORII CU AJUTORUL PENDULULUI DE TORSIUNE
|
|
- Βαραββᾶς Λύτρας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 STUDIUL MISCRII OSCILTORII CU JUTORUL PENDULULUI DE TORSIUNE 1. Scopul lucrării: I. naliza oscilatiilor libere: 1. determinarea momentului de torsiune prin metoda statică şi prin metoda dinamică;. determinarea frecvenţei proprii a oscilatorului liber amortizat şi a perioadei proprii de oscilaţie, pentru diferite valori ale amortizării şi determinarea momentului de inerţie al pendulului; 3. determinarea coeficientului de amortizare, a timpului de relaxare şi a decrementului logaritmic. II. naliza oscilaţiilor fortate: 1. trasarea curbei de rezonanta a oscilatorului forţat pentru diferite amortizări;. determinarea frecvenţei de rezonanţă; 3. analiza diferenţei de fază dintre oscilator şi forţa exterioară pentru diferite frecvenţe de forţare (foarte mici sau foarte mari comparativ cu frecvenţa de rezonanţă). 4. determinarea factorului de calitate al oscilatorului pentru diferite amortizări. (m) (m) (m) t(s) t(s). Principiul fizic Mişcarea unui pendul de torsiune este descrisă de ecuaţia diferenţială: d ϕ dϕ I + k + Cϕ = fr (1) dt dt unde I momentul de inerţie;ϕ - unghiul de rotaţie; k fr constanta de frecare; C constanta de torsiune. k C Folosind relaţiile uzuale: ω = δ = fr - pulsaţia proprie şi - I I coeficient de amortizare, ecuaţia devine: d ϕ dϕ + δ + ωϕ =. () dt dt În rezolvarea acestei ecuaţii diferenţiale de ordinul doi, liniare, intervin trei situaţii distincte, în funcţie de tipurile de soluţii ale ecuaţiei caracteristice: cazul. ω > δ (regim sub-amortizat Soluţia : ϕ = ϕ e δt cosωt (3) cu - amplitudinea unghiulară la momentul iniţial şi ϕ ω = ω δ - pulsaţia oscilaţiilor amortizate indică o descreştere exponenţială a amplitudinii. Timpul după care t(s) amplitudinea scade de e-ori se numeşte timp de relaxare: Fig. 1 Reprezentarea grafică a ϕ( t) 1 1 amplitudinii () pentru tipuri = τ =. (4) ϕ( t + τ ) e δ diferite de mişcări amortizate: () subamortizată; (B) supraamortizată; De asemenea, în acest regim (reprezentat în Fig.1 ()) se (C) amortizată critic. observă că raportul valorilor amplitudinilor după o perioadă rămâne constant pentru o amortizare dată. Logaritmul acestui raport se numeşte decrement logaritmic şi se defineşte conform relaţiei:
2 ϕ( t) D = ln = δt. (5) ϕ( t + T ) Cazul B: ω < (regim supra-amortizat). Soluţia este aperiodică, de forma: δ δt ωt ωt ϕ = ϕe ( e + e ) (6) Sistemul revine asimptotic spre poziţia de echilibru după o singură oscilaţie. ceastă comportare este ilustrată de cazul (B) din Fig.1, curba de sus. Revenirea este cu atât mai înceată cu cât constanta de amortizare este mai mare. Cazul C: ω = (regim supra-amortizat critic). Soluţia este: δ δt ϕ = ( ϕ + Bt) e. (7) Sistemul revine în poziţia iniţială de unde nu mai pleacă (cazul (C) din Fig.1). cest caz are importanţă practică deoarece sistemul ajunge în timpul cel mai scurt în poziţia de echilibru. Pentru ca mişcarea să nu se amortizeze în timp, fenomenele de frecare responsabile de disiparea energiei trebuie compensate din exterior, prin furnizarea unei energii suplimentare. cest lucru se poate realiza prin aplicarea unei forţe periodice ce produce un moment de torsiune periodic asupra pendulului: M = M cosωt. (8) Ecuaţia de mişcare devine: mare (a) d ϕ dϕ + δ + ωϕ = f cosωt (9) dt dt unde M f = mic I. După regimul tranzitoriu (mai scurt sau mai lung în funcţie de Ω coeficientul de frecare), componenta amortizată (reprezentată de soluţia exponenţială) devine neglijabilă şi se instalează regimul staţionar, cu mare soluţia de forma: (b) ϕ ( t) = cos( Ωt φ). (1) mplitudinea depinde de frecvenţa forţei exterioare conform mic relaţiei 1 : f Ω =, (11) ( ω Ω ) + (δω) Fig. Dependenţa de care poate fi scrisă şi sub forma: frecvenţa forţei exterioare a f / ω (a) amplitudinii; (b) a =. (1) diferenţei de fază Ω Ω 1 δ + ω ω ω Se pot formula următoarele concluzii: creşte direct proporţional cu valoarea forţării exterioare, f ; atinge o valoare maximă (fenomen numit rezonanţa amplitudinii ) pentru o anumită valoare a frecvenţei forţării, care se determină din relaţia: d / dω =. Se obţine frecvenţa de rezonanţă Ω r = ω δ. Pentru amortizări mici, relaţia se poate aproxima sub forma Ω r ω. scade odată cu creşterea valorii amortizării δ ; În caz ideal, pentru amortizare nulă ( δ =), dacă = ω. Ωr 1 Din verificarea matematică a faptul că (1) este soluţie pentru ecuaţia (9). cest fenomen este diferit de cel al rezonanţei energiei, care implică un transfer maxim al energiei atunci când frecvenţa forţei exterioare coincide cu frecvenţa de rezonanţă. şadar, rezonanţa amplitudinii şi rezonanţa energiei se obţin la valori diferite ale frecvenţei de forţare. Pentru frecări mici, cele două frecvenţe de rezonanţă coincid.
3 Pentru diferenţa de fază apărută între mişcarea oscilatorului şi forţa exterioară se obţine relaţia: δω tg φ =. (13) ω Ω Rezultă: δω φ = arctg, (14) ω Ω ceea ce înseamnă că întârzierea în mişcarea oscilatorului depinde de coeficientul de amortizare şi de frecvenţa forţei exterioare, şi anume: Pentru ω >> Ω φ, adică pendulul oscilează aproape în fază cu sursa; Pentru ω << Ω φ π, adică pendulul oscilează aproape în opoziţie de fază (antifază) cu sursa; Pentru ω = Ω φ /. π 3. Dispozitivul experimental Oscilatorul mecanic numit pendul de torsiune Pohl constă dintr-o roată metalică, cu moment de inerţie I, cuplată de un resort elicoidal, având constanta de torsiune C. tunci când resortul este deformat cu unghiul ϕ, apare un moment de torsiune care tinde să-l readucă la forma iniţială, acţionând, evident, în sens invers creşterii unghiului de deformare: Fig. 3 Modul de generare al momentului de frânare M el = Cϕ. (15) Datorită fenomenului de frecare, legat de cuplajele mecanice existente sau alte cauze, există o disipare a energiei totale a oscilatorului, astfel că amplitudinea oscilaţiilor libere scade în timp. De cele mai multe ori (în special în cazul mişcării cu viteze mici), se consideră că momentul forţelor de frecare este proporţional cu viteza, conform relaţiei : dϕ M fr = k fr. (16) dt În cazul oscilatorului de torsiune Pohl, momentul de frecare poate fi controlat prin deplasarea roţii metalice în interiorul unui electromagnet. Electronii liberi din metal, acţionaţi de forţa Lorentz, se vor deplasa în interiorul şi în afara câmpului electromagnetic, generând curenţi circulari închişi, numiţi curenţi turbionari. Partea roţii metalice în care apar aceşti curenţi circulari este echivalentă cu un conductor în mişcare asupra căruia, câmpul magnetic acţionează cu forţa F orientată în sens contrar sensului de mişcare a roţii (V) (Fig.3). ceastă forţă determină momentul de frânare, proporţional cu valoarea câmpului magnetic deci a intensităţii curenţilor electrici prin bobină (I). 4. Modul de lucru Se urmăreşte realizarea montajul experimental arătat în Fig. 3. La începerea măsurătorilor se aduce reperul notat (3a) în poziţia de zero a scării marcate pe roată, prin rotirea reperului de pe sistemul bielămanivelă (3e).
4 Fig.4 Montajul experimental () cu detalii asupra conexiunilor electrice (B) TENTIE! Nu depăşiţi valoarea de 1.8 pentru curenţii din electromagnet! Evitaţi supraîncălzirea bobinelor prin măsurători prea lungi la valori ale curenţilor mai mari de 1. naliza oscilaţiilor amortizate 1. determinarea constantei de torsiune prin metoda statică; montajul experimental corespunde cazului oscilaţiilor libere; se fac achiziţii ale valorilor unghiurilor de torsiune produse de diferite mase marcate si apoi se determina panta dependenţei ϕ = ϕ(m). se încarcă fişierul numit cst_torsiune din directorul Studiul mişcării oscilatorii; se şterg valorile numerice cu F4; se exercită un moment static asupra roţii prin atârnarea unei mase etalonate şi se aşteaptă echilibrarea poziţiei; se introduce manual valoarea masei în coloana corespunzătoare; se apasă butonul de pornire a înregistării (sau tasta F9) pentru înregistrarea automată a unghiului de deviere în poziţia corespunzătoare a tabelului; se repetă procedeul şi pentru alte mase marcate. se reprezintă grafic (prin apăsarea mouse dreapta) aproximând cu o funcţie liniară (Fit function şi Best Fit Streight Line) şi se obţine valoarea pantei.. determinarea momentului de inerţie prin metoda dinamică ; montajul experimentalcorespunde cazului ; în locul maselor marcate se foloseşte o masă uşoară (de exemplu un mic şurub sau agrafă de birou); se încarcă fişierul mom_inertie din directorul lucrării; se şterg valorile numerice cu F4;
5 se apasă butonul de pornire a înregistării sau tasta F9 pentru înregistrarea oscilaţiilor de torsiune; Mometul de inerţie se poate determina din expresia perioadei oscilaţiilor libere. În fereastra Evaluation a softului Cassy Lab, se ilustrează două posibilităţi: o combinaţia lt-d şi apoi apasând pe maxime adiacente se afişează direct C CT perioada; folosind formula ω = I = se determină I. I 4π o din reprezentarea spectrului FFT al oscilaţiilor, se foloseşte opţiunea Evaluation/Calculate Peak Center şi se afişează frecvenţa corespunzătoare C maximului folosind combinaţia lt-t apoi se calculează I =. 4π f 3. determinarea coeficientului de amortizare se încarcă fişierul coef_amortiz din directorul lucrării; se şterg valorile numerice cu F4; se fixează valoarea curentului prin electromagnet la o valoare mică - de exemplu I =.18. se apasă butonul de pornire a înregistării sau tasta F9 pentru înregistrarea oscilaţiilor de torsiune; În fereastra Evaluation se aproximează anvelopa oscilaţiei cu o funcţie exponenţial scăzătoare (Fit function şi Envelope e x ) şi se obţin parametrii de fitare (timpul de relaxare). se calculează decrementul logaritmic cu relaţia (5); se repetă acelaşi lucru şi pentru alte valori ale amortizării (I=.5,.4,.55); se caută regimul amortizat critic şi cel supra-amortizat. B. naliza oscilaţiilor forţate a. Se introduce şi sursa de forţare periodică prin deschiderea întrerupătorului sursei. b. Se fixează valoarea curentului prin electromagnet la o valoare medie; de exemplu I =.4. c. Se porneşte de la o valoare mică a frecvenţei sursei externe (de exemplu, circa.1hz) şi apoi se creşte treptat prin ajustarea tensiunii aplicate 3. d. Se şterg valorile numerice cu F4 ale fişierului coef_amortiz din directorul lucrării; 4 e. Se citeste amplitudinea oscilaţiilor forţate după un regim tranzitoriu (câteva minute), după care această valoare rămâne constantă în timp, pentru oricare oscilaţii succesive şi se determină valoarea frecvenţei oscilaţiilor conform metodelor prezentate anterior; f. Se completează prima linie (T, ) de valori experimentale în tabelul de date. g. Se schimbă frecvenţa sursei externe modificând în mod corespunzător tensiunea aplicată şi se fac noi măsurători pentru T şi. În regiunea de creştere rapidă a amplitudinii, citirile se fac mult mai des (în paşi mici de frecvenţă). TENŢIE! Este recomandat ca, după fiecare citire a amplitudinii în regim staţionar, adică după terminarea măsurătorilor pentru o anume valoare a frecvenţei de forţare, oscilaţiile să fie complet oprite. În acest fel, timpul de intrare în regim staţionar este minimizat. h. Se compară mişcările zonelor marcate pe roata de forţare şi pe oscilator şi se fac observaţii de ordin calitativ asupra relaţiilor de fază dintre ele. i. Se repetă experimentul pentru valori mici (I=) şi mari (I=.7) ale amortizării. 3 Măsurarea tensiunii aplicate cu ajutorul voltmetrului montat în circuit are doar caracter orientativ. 4 Timpul de stabilire al regimului permanent (staţionar) creşte proporţional cu timpul de relaxare; cu cât amortizarea este mai mică (curenţi prin bobină mai mici) acest timp creşte.
6 Nr. Det I=.4 I= I=.7 T(s) ν (1/s) T(s) ν (1/s) T(s) ν (1/s) j. Se reprezintă grafic curbele de rezonanţă (=(ν )) pentru cele trei situaţii experimentale. k. Se determină frecvenţele corespunzătoare maximelor curbelor de rezonanţă şi frecvenţa oscilaţiilor libere. l. Folosind expresia frecvenţei de rezonanţă ( Ω r = ω δ ), se află coeficienţii de amortizare pentru cele trei situaţii experimentale analizate. m. Se calculează factorul de calitate cu ajutorul formulei Q = ω / Δω unde Δω este lărgimea curbei de rezonanţă măsurată la valoarea amplitudinii /. max
FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar
Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric
Διαβάστε περισσότεραSTUDIUL OSCILAŢIILOR LIBERE ŞI A OSCILAŢIILOR FORŢATE FOLOSIND PENDULUL POHL
STUDIUL OSCILAŢIILOR LIBERE ŞI A OSCILAŢIILOR FORŢATE FOLOSIND PENDULUL POHL 1. Introducere În acestă lucrare veţi studia caracteristicile mişcării oscilatorii libere şi ale mişcării oscilatorii forţate
Διαβάστε περισσότεραSTUDIUL MISCARII OSCILATORII FORTATE
STUDIUL MISCARII OSCILATORII FORTATE Scopul lucrării: În acestă lucrare se studiază mişcarea oscilatorie forţată a unei coloane de lichid, aflată sub acţiunea unei forţe exterioare periodice. Se determină
Διαβάστε περισσότερα5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Διαβάστε περισσότεραa. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)
Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului
Διαβάστε περισσότεραFIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE
FIZICĂ Oscilatii mecanice ş.l. dr. Marius COSTACHE 3.1. OSCILAŢII. Noţiuni generale Oscilaţii mecanice Oscilaţia fenomenul fizic în decursul căruia o anumită mărime fizică prezintă o variaţie periodică
Διαβάστε περισσότεραCurs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Διαβάστε περισσότεραSisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Διαβάστε περισσότεραCurs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότεραDeterminarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune. Huţanu Radu, Axinte Constantin Irimescu Luminita
Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune Huţanu Radu, Axinte Constantin Irimescu Luminita 1. Generalităţi Există mai multe metode pentru a determina
Διαβάστε περισσότεραAnaliza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Διαβάστε περισσότερα10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
Διαβάστε περισσότερα5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότεραAplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότεραMetode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Διαβάστε περισσότεραMiscarea oscilatorie armonica ( Fisa nr. 2 )
Miscarea oscilatorie armonica ( Fisa nr. 2 ) In prima fisa publicata pe site-ul didactic.ro ( Miscarea armonica) am explicat parametrii ce definesc miscarea oscilatorie ( perioda, frecventa ) dar nu am
Διαβάστε περισσότεραa. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Διαβάστε περισσότερα(k= constanta elastică a resortului, = coeficientul de frecare vâscoasă al mediului). Fig.3.1 Oscilaţii amortizate. m 2
CURS 3 OSCILAŢII 3.1 Oscilaţii amortizate Un sistem real aflat în mişcarea oscilatorie întâmpină o anumită rezistenţă din partea mediului în care oscilează efectuează oscilaţii amortizate = amplitudinea
Διαβάστε περισσότεραFig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Διαβάστε περισσότεραAnaliza sistemelor liniare şi continue
Paula Raica Departamentul de Automatică Str. Dorobanţilor 7, sala C2, tel: 0264-40267 Str. Bariţiu 26, sala C4, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea
Διαβάστε περισσότεραPlanul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότεραCurs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Διαβάστε περισσότεραSEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Διαβάστε περισσότεραProblema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
Διαβάστε περισσότεραV O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Διαβάστε περισσότεραErori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
Διαβάστε περισσότεραMARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Διαβάστε περισσότεραStabilizator cu diodă Zener
LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator
Διαβάστε περισσότεραComponente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Διαβάστε περισσότεραDISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Διαβάστε περισσότεραCurs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Διαβάστε περισσότερα4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice
4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.
Διαβάστε περισσότεραIV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
Διαβάστε περισσότεραDETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE CU AJUTORUL UNUI PENDUL FIZIC
DETERMNAREA ACCELERAŢE GRAVTAŢONALE CU AJUTORUL UNU PENDUL FZC 1. Scopul lucrării În lucrare se studiază mişcarea oscilatorie a unui corp, montat astfel încât să constituie un pendul fizic; se determină
Διαβάστε περισσότεραSeminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Διαβάστε περισσότεραCircuite electrice in regim permanent
Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este
Διαβάστε περισσότεραSTUDIUL EFECTULUI HALL ÎN SEMICONDUCTORI
UIVERSITATEA "POLITEICA" DI BUCURESTI DEPARTAMETUL DE FIZICĂ LABORATORUL DE FIZICA ATOMICA ŞI FIZICA CORPULUI SOLID B-03 B STUDIUL EFECTULUI ALL Î SEMICODUCTORI STUDIUL EFECTULUI ALL Î SEMICODUCTORI Efectul
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότεραRĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Διαβάστε περισσότεραDefiniţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Διαβάστε περισσότερα1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
Διαβάστε περισσότερα7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL
7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in
Διαβάστε περισσότερα1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
Διαβάστε περισσότεραIV. OSCILAŢII ŞI UNDE. OPTICĂ ONDULATORIE
Alexandru RUSU Spiridon RUSU CURS DE FIZICĂ IV. OSCILAŢII ŞI UNDE. OPTICĂ ONDULATORIE Ciclu de prelegeri Chişinău 6 UNIVERSITATEA TEHNICĂ A MOLDOVEI Facultatea Inginerie şi Management în Electronică şi
Διαβάστε περισσότεραVII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Διαβάστε περισσότεραLucrarea 3 : Studiul efectului Hall la semiconductori
Lucrarea 3 : Studiul efectului Hall la semiconductori 1 Consideraţii teoretice În această lucrare vom studia efectul Hall intr-o plăcuţă semiconductoare de formă paralelipipedică, precum cea din Figura
Διαβάστε περισσότερα4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Διαβάστε περισσότεραComponente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
Διαβάστε περισσότεραV.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Διαβάστε περισσότεραSeminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Διαβάστε περισσότεραTEORIA CIRCUITELOR ELECTRICE
TEOA TEO EETE TE An - ETT S 9 onf. dr.ing.ec. laudia PĂA e-mail: laudia.pacurar@ethm.utcluj.ro TE EETE NAE ÎN EGM PEMANENT SNSODA /8 EZONANŢA ÎN TE EETE 3/8 ondiţia de realizare a rezonanţei ezonanţa =
Διαβάστε περισσότερα5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Διαβάστε περισσότεραLaborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Διαβάστε περισσότεραLucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)
ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic
Διαβάστε περισσότεραIntegrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Διαβάστε περισσότεραL1. DIODE SEMICONDUCTOARE
L1. DIODE SEMICONDUCTOARE L1. DIODE SEMICONDUCTOARE În lucrare sunt măsurate caracteristicile statice ale unor diode semiconductoare. Rezultatele fiind comparate cu relaţiile analitice teoretice. Este
Διαβάστε περισσότεραFig. 1 A L. (1) U unde: - I S este curentul invers de saturaţie al joncţiunii 'p-n';
ELECTRONIC Lucrarea nr.3 DISPOZITIVE OPTOELECTRONICE 1. Scopurile lucrării: - ridicarea caracteristicilor statice ale unor dispozitive optoelectronice uzuale (dioda electroluminiscentă, fotodiodă, fototranzistorul);
Διαβάστε περισσότεραCurs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Διαβάστε περισσότεραEcuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)
Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.
Διαβάστε περισσότεραLUCRAREA NR. 1 STUDIUL SURSELOR DE CURENT
LUCAEA N STUDUL SUSELO DE CUENT Scopul lucrării În această lucrare se studiază prin simulare o serie de surse de curent utilizate în cadrul circuitelor integrate analogice: sursa de curent standard, sursa
Διαβάστε περισσότεραLucrul mecanic. Puterea mecanică.
1 Lucrul mecanic. Puterea mecanică. In acestă prezentare sunt discutate următoarele subiecte: Definitia lucrului mecanic al unei forţe constante Definiţia lucrului mecanic al unei forţe variabile Intepretarea
Διαβάστε περισσότεραA1. Valori standardizate de rezistenţe
30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea
Διαβάστε περισσότερα1,4 cm. 1.Cum se schimbă deformaţia elastică ε = Δ l o. d) nu se schimbă.
.Cum se schimbă deformaţia elastică ε = Δ l o a unei sîrme de oţel dacă mărim de n ori : a)sarcina, b)secţiunea, c) diametrul, d)lungimea? Răspuns: a) creşte de n ori, b) scade de n ori, c) scade de n,
Διαβάστε περισσότεραREDRESOARE MONOFAZATE CU FILTRU CAPACITIV
REDRESOARE MONOFAZATE CU FILTRU CAPACITIV I. OBIECTIVE a) Stabilirea dependenţei dintre tipul redresorului (monoalternanţă, bialternanţă) şi forma tensiunii redresate. b) Determinarea efectelor modificării
Διαβάστε περισσότεραMetode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy
Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,
Διαβάστε περισσότεραM. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1.
Curentul alternativ 1. Voltmetrele din montajul din figura 1 indică tensiunile efective U = 193 V, U 1 = 60 V și U 2 = 180 V, frecvența tensiunii aplicate fiind ν = 50 Hz. Cunoscând că R 1 = 20 Ω, să se
Διαβάστε περισσότεραOSCILAŢII ŞI UNDE Dumitru Luca Cristina Stan Universitatea Al. I. Cuza Iaşi Universitatea Politehnica Bucureşti 11 februarie 2007
OSCILAȚII ŞI UNDE Dumitru Luca Universitatea Al. I. Cuza Iaşi Cristina Stan Universitatea Politehnica Bucureşti 11 februarie 2007 Cuprins 1 Mişcarea oscilatorie 1 1.1 Oscilații liniare libere.................................
Διαβάστε περισσότεραExemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni
Problema 1. Se dă circuitul de mai jos pentru care se cunosc: VCC10[V], 470[kΩ], RC2,7[kΩ]. Tranzistorul bipolar cu joncţiuni (TBJ) este de tipul BC170 şi are parametrii β100 şi VBE0,6[V]. 1. să se determine
Διαβάστε περισσότεραCAPITOLUL I OSCILATII
OSCILTII CPITOLUL I Una din iscãrile iportante întâlnite în naturã este iscarea oscilatorie. Ex: o particulã oscileazã când se deplaseazã periodic în jurul unei pozitii de echilibru; iscarea unui pendul;
Διαβάστε περισσότεραLucrul si energia mecanica
Lucrul si energia mecanica 1 Lucrul si energia mecanica I. Lucrul mecanic este produsul dintre forta si deplasare: Daca forta este constanta, atunci dl = F dr. L 1 = F r 1 cos α, unde r 1 este modulul
Διαβάστε περισσότεραL2. REGIMUL DINAMIC AL TRANZISTORULUI BIPOLAR
L2. REGMUL DNAMC AL TRANZSTRULU BPLAR Se studiază regimul dinamic, la semnale mici, al tranzistorului bipolar la o frecvenţă joasă, fixă. Se determină principalii parametrii ai circuitului echivalent natural
Διαβάστε περισσότεραOvidiu Gabriel Avădănei, Florin Mihai Tufescu,
vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se
Διαβάστε περισσότεραIII. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Διαβάστε περισσότεραConice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Διαβάστε περισσότεραTranzistoare bipolare şi cu efect de câmp
apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine
Διαβάστε περισσότεραMăsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor
4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda
Διαβάστε περισσότεραCapitolul 4 Amplificatoare elementare
Capitolul 4 mplificatoare elementare 4.. Etaje de amplificare cu un tranzistor 4... Etajul emitor comun V CC C B B C C L L o ( // ) V gm C i rπ // B // o L // C // L B ro i B E C E 4... Etajul colector
Διαβάστε περισσότερα2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Διαβάστε περισσότεραElectronică STUDIUL FENOMENULUI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE
STDIL FENOMENLI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE Energia electrică este transportată şi distribuită la consumatori sub formă de tensiune alternativă. În multe aplicaţii este însă necesară utilizarea
Διαβάστε περισσότεραTransformări de frecvenţă
Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.
Διαβάστε περισσότεραEsalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Διαβάστε περισσότεραProiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
Διαβάστε περισσότεραClasa a IX-a, Lucrul mecanic. Energia
1. LUCRUL MECANIC 1.1. Un resort având constanta elastică k = 50Nm -1 este întins cu x = 0,1m de o forță exterioară. Ce lucru mecanic produce forța pentru deformarea resortului? 1.2. De un resort având
Διαβάστε περισσότεραBARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Διαβάστε περισσότεραAsupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Διαβάστε περισσότεραR R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Διαβάστε περισσότεραCircuite cu diode în conducţie permanentă
Circuite cu diode în conducţie permanentă Curentul prin diodă şi tensiunea pe diodă sunt legate prin ecuaţia de funcţionare a diodei o cădere de tensiune pe diodă determină valoarea curentului prin ea
Διαβάστε περισσότεραEcuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Διαβάστε περισσότεραEcuatii trigonometrice
Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos
Διαβάστε περισσότεραL.2. Verificarea metrologică a aparatelor de măsurare analogice
L.2. Verificarea metrologică a aparatelor de măsurare analogice 1. Obiectul lucrării Prin verificarea metrologică a unui aparat de măsurat se stabileşte: Dacă acesta se încadrează în limitele erorilor
Διαβάστε περισσότεραSubiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Διαβάστε περισσότεραCapitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
Διαβάστε περισσότεραLucrul mecanic şi energia mecanică.
ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al
Διαβάστε περισσότεραAnaliza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener
Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare
Διαβάστε περισσότεραAmplitudinea sau valoarea de vârf a unui semnal
Amplitudinea sau valoarea de vârf a unui semnal În curent continuu, unde valoarea tensiunii şi a curentului sunt constante în timp, exprimarea cantităńii acestora în orice moment este destul de uşoară.
Διαβάστε περισσότεραValori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili
Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru
Διαβάστε περισσότερα