FIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE
|
|
- Πρίσκιλλα Κοσμόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 FIZICĂ Oscilatii mecanice ş.l. dr. Marius COSTACHE
2 3.1. OSCILAŢII. Noţiuni generale Oscilaţii mecanice Oscilaţia fenomenul fizic în decursul căruia o anumită mărime fizică prezintă o variaţie periodică sau pseudoperiodică Mărimea care variază în timpul fenomenului ν oscilator se numeşte mărime caracteristică. Valoarea la un moment dat a acestei mărimi poartă denumirea de elongaţie, iar valoarea maximă a elongaţiei se numeşte amplitudine Durata minimă în decursul căreia se efectuează o oscilaţie completă se numeşte perioadă (T). [ T ] SI 1 s ν Frecvenţa( ) numărul de oscilaţii efectuate în timp de 1 s. ν 1 T 1 1 [ν ] SI s s Hz
3 Oscilaţii mecanice 3.1. OSCILAŢII. Noţiuni generale Pulsaţia: ω π T [ω] SI rad s OSCILAŢII elastice, mecanice electromagnetice ideală, neamortizată reală, amortizată Def: Oscilaţia se numeşte armonică dacă se desfăşoară sub acţiunea unei forţe elastice care tinde să readucă sistemul în poziţia de echilibru de energie potenţială minimă. r F e r k k e constantă elastică e Obs: Mărimile caracteristice oscilaţiilor armonice se exprimă prin funcţii sin, cos sau funcţii exponenţiale de argument complex. 3
4 Oscilaţii mecanice 3.. Mişcarea oscilatorie armonică ideală (oscilaţii libere neamortizate) Oscilaţii libere nemortizate se produc în absenţa unor forţe de frecare sau de disipare a energiei > energia totală a oscilatorului este constantă în timp. Obs: Oscilaţiile libere neamortizate sunt oscilaţii ideale. 4
5 3.. Mişcarea oscilatorie armonică ideală (oscilaţii libere neamortizate) Oscilator mecanic: resort elastic (de constantă elastică k) şi un PM de masă m. În absenţa frecărilor (oscilaţii ideale) > mişcare periodică în jurul poziţiei de echilibru r r m a R m a > F e & y& k + y m Notăm: (pulsaţia proprie a oscilatorului) 5
6 3.. Mişcarea oscilatorie compusă armonică ideală (oscilaţie liberă neamortizate) Ecuaţia diferenţială a mişcării corpului: && y + ω y Soluţiile particulare sunt de forma: ± iωo t y( t) Soluţia generală este: y A amplitudinea mişcării, φ faza iniţială a mişcării, ω t ϕ o e Asin( ω t + ) ϕ (t ) ϕ + o (faza oscilaţiei) Obs: Cunoscând condiţiile iniţiale (poziţia şi viteza iniţială) se pot determina A şi φ 6
7 3.. Mişcarea oscilatorie compusă armonică ideală (oscilaţie liberă neamortizate) Viteza oscilatorului: v( t ) y& ( t) ω Acos( ωt + ϕ) Obs: Viteza maximă v max se obţine dacă cos( ω t + ϕ) 1 ωt + ϕ sin( ω t + ϕ) y Acceleraţia oscilatorului: r a( t) v( & t) & y ( t) ω Asin( ωt + ϕ) ω Obs: Acceleraţia maximă a max se obţine dacă sin( ω t +ϕ ) 1 y max A y 7
8 Reprezentarea grafică a elongaţiei, vitezei şi acceleraţiei oscilatorului ideal în funcţie de timp Reprezentarea fazorială a oscilaţiei Fazor vector rotitor în sens trigonometric, cu viteza unghiulară ω Lungimea fazorului modulul vectorului pe care-l reprezintă 8
9 Energia mecanică a oscilatorului ideal E mv ky + mω A cos ( ω t + ϕ ) ka + sin ( ωt + ϕ) ka const. Obs: energia mecanică a oscilatorului ideal se conservă Graficul energiei mecanice totale E şi al energiei potenţiale U 9
10 3.3 Compunerea mişcărilor oscilatorii armonice 1. Compunerea oscilaţiilor paralele Oscilaţiile armonice independente: Oscilaţia armonică rezultantă: y(t) y 1 + y Not: Se obţine: y(t) a(t) sinωt + b(t) cosωt Elongaţia oscilaţiei rezultante va fi de forma: y(t) A(t) sin(ωt+φ(t)) > y(t) A(t) sin(ωt+φ(t))a sinωt cosφ + A cosωt sinφ 1
11 1. Compunerea oscilaţiilor paralele a(t) A cos φ b(t) A sin φ a (t) + b (t) A > Cazuri particulare: a) Dacă ω 1 ω > ω > tgφ Pentru φ 1 - φ n. π > AA 1 +A (oscilaţiile sunt în fază) Pentru ω şi φ 1 - φ (n+1)π > A l A 1 -A l (oscilaţiile sunt în opoziţie de fază) 11
12 1. Compunerea oscilaţiilor paralele b) Dacă ω 1 ω dar ω << ω (ω 1 +ω )/ şi φ 1 φ > A A1 + A + A1 A cos( ω t) Pentru A 1 A A > Obs: amplitudinea este modulată şi ia valori cuprinse între + A şi - A Elongaţia oscilaţiei rezultante: y(t) A sin(ωt) y( t) A cos( ωt) sin( ωt) 1
13 1. Compunerea oscilaţiilor paralele y( t) A cos( ωt) sin( ωt) Def: Succesiunea în timp a valorilor max şi min ale amplitudinii mişcării periodice, rezultată prin compunerea a oscilaţii armonice cu pulsaţii apropiate constituie fenomenul de bătăi. 13
14 1. Compunerea oscilaţiilor paralele Pulsaţia şi perioada bătăilor : ω π T T b b π ω π ω 1 ω Frecvenţa bătăilor : Pulsaţia şi perioada oscilaţiei rezultante: π ω T T π ω π ω 1 + ω > T << T b 14
15 3.3 Compunerea mişcărilor oscilatorii armonice. Compunerea oscilaţiilor perpendiculare de aceeaşi frecvenţă Ecuaţiile elongaţiilor pe cele direcţii: Determinăm traiectoria PM Ecuaţia traiectoriei PM: 15
16 3.3 Compunerea mişcărilor oscilatorii armonice. Compunerea oscilaţiilor perpendiculare de aceeaşi frecvenţă Traiectoria este o elipsă rotită faţă de axele de coordonate şi înscrisă într-un dreptunghi de laturi A 1 şi A Cazuri particulare: a) > > Ecuaţia elongaţiei mişcării rezultante: 16
17 3.3 Compunerea mişcărilor oscilatorii armonice. Compunerea oscilaţiilor perpendiculare de aceeaşi frecvenţă Cazuri particulare: b) > > (traiectoria este o dreaptă) c) > (traiectoria este o elipsă nerotită faţă de axe) > Dacă: (traiectoria este un cerc de rază A o ) 17
18 BIBLIOGRAFIE F. BARVINSCHI Fizică Generală, Ed. Orizonturi Universitare, Timişoara, 4 M. CRISTEA, D. POPOV, F. BARVINSCHI, I. DAMIAN, I. LUMINOSU, I. ZAHARIE Fizică. Elemente fundamentale, Ed. Politehnica, Timişoara, 6 I. LUMINOSU Fizică. Elemente fundamentale Ed. Politehnica, Timişoara,4 S. PRETORIAN, M. COSTACHE, V. CHIRIŢOIU Fizică. Elemente fundamentale. Aplicaţii, Ed. Politehnica, Timişoara, 6 Luminosu I., Pop N., Chiritoiu V., COSTACHE Marius Fizică. Teorie, probleme şi teste grilă, Ed. Politehnica, Timişoara, 1 18
Miscarea oscilatorie armonica ( Fisa nr. 2 )
Miscarea oscilatorie armonica ( Fisa nr. 2 ) In prima fisa publicata pe site-ul didactic.ro ( Miscarea armonica) am explicat parametrii ce definesc miscarea oscilatorie ( perioda, frecventa ) dar nu am
1,4 cm. 1.Cum se schimbă deformaţia elastică ε = Δ l o. d) nu se schimbă.
.Cum se schimbă deformaţia elastică ε = Δ l o a unei sîrme de oţel dacă mărim de n ori : a)sarcina, b)secţiunea, c) diametrul, d)lungimea? Răspuns: a) creşte de n ori, b) scade de n ori, c) scade de n,
COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE
UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICĂ BN - 1 B COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE 004-005 COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
FIZICĂ. Bazele fizice ale mecanicii cuantice. ş.l. dr. Marius COSTACHE
FIZICĂ Bazele fizice ale mecanicii cuantice ş.l. d. Maius COSTACHE 1 BAZELE FIZICII CUANTICE Mecanica cuantică (Fizica cuantică) studiază legile de mişcae ale micoaticulelo (e -, +,...) şi ale sistemelo
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
STUDIUL MISCARII OSCILATORII FORTATE
STUDIUL MISCARII OSCILATORII FORTATE Scopul lucrării: În acestă lucrare se studiază mişcarea oscilatorie forţată a unei coloane de lichid, aflată sub acţiunea unei forţe exterioare periodice. Se determină
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Lucrul mecanic şi energia mecanică.
ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al
(k= constanta elastică a resortului, = coeficientul de frecare vâscoasă al mediului). Fig.3.1 Oscilaţii amortizate. m 2
CURS 3 OSCILAŢII 3.1 Oscilaţii amortizate Un sistem real aflat în mişcarea oscilatorie întâmpină o anumită rezistenţă din partea mediului în care oscilează efectuează oscilaţii amortizate = amplitudinea
IV. OSCILAŢII ŞI UNDE. OPTICĂ ONDULATORIE
Alexandru RUSU Spiridon RUSU CURS DE FIZICĂ IV. OSCILAŢII ŞI UNDE. OPTICĂ ONDULATORIE Ciclu de prelegeri Chişinău 6 UNIVERSITATEA TEHNICĂ A MOLDOVEI Facultatea Inginerie şi Management în Electronică şi
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
FIZICĂ. Oscilatorul amortizat si oscilatorul fortat. ş.l. dr. Marius COSTACHE
FIZICĂ Oscilarul amriza si scilarul fra ş.l. dr. Marius COSACHE 3.4 Mişcara scilari amrizaă Oscilarii rali frţ d frcar > amliudina scilaţiilr scad în im Oscilar rsr k, PM d masă m şi frţă d frcar F f rrţinală
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
OSCILAŢII ŞI UNDE Dumitru Luca Cristina Stan Universitatea Al. I. Cuza Iaşi Universitatea Politehnica Bucureşti 11 februarie 2007
OSCILAȚII ŞI UNDE Dumitru Luca Universitatea Al. I. Cuza Iaşi Cristina Stan Universitatea Politehnica Bucureşti 11 februarie 2007 Cuprins 1 Mişcarea oscilatorie 1 1.1 Oscilații liniare libere.................................
FIZICĂ. Elemente de termodinamica. ş.l. dr. Marius COSTACHE
FIZICĂ Elemente de termodinamica ş.l. dr. Marius COSTACHE 1 ELEMENTE DE TERMODINAMICĂ 1) Noţiuni introductive sistem fizic = orice porţiune de materie, de la o microparticulă la întreg Universul, porţiune
1. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t = 1.
. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t.5t (m/s). Să se calculeze: a) dependența de timp a spațiului străbătut
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
DETERMINAREA MODULULUI DE ELASTICITATE LA SOLIDE FOLOSIND O METODA DINAMICA
DETERMINAREA MODULULUI DE ELASTICITATE LA SOLIDE FOLOSIND O METODA DINAMICA Scopul lucrării În această lucrare se va determina modulul de elasticitate logitudinală (modulul Young) al unei bare, folosind
CURS MECANICA CONSTRUCŢIILOR
CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la
CAPITOLUL I OSCILATII
OSCILTII CPITOLUL I Una din iscãrile iportante întâlnite în naturã este iscarea oscilatorie. Ex: o particulã oscileazã când se deplaseazã periodic în jurul unei pozitii de echilibru; iscarea unui pendul;
STUDIUL OSCILAŢIILOR LIBERE ŞI A OSCILAŢIILOR FORŢATE FOLOSIND PENDULUL POHL
STUDIUL OSCILAŢIILOR LIBERE ŞI A OSCILAŢIILOR FORŢATE FOLOSIND PENDULUL POHL 1. Introducere În acestă lucrare veţi studia caracteristicile mişcării oscilatorii libere şi ale mişcării oscilatorii forţate
Curs - programul Electrotehnică Versiunea Ș. L. Mihail-Ioan Pop
Fizică I Curs - programul Electrotehnică Versiunea 4.1.1 Ș. L. Mihail-Ioan Pop 2018 2 Cuprins Introducere 5 1 Mecanică 7 1.1 Opțional: Mărimi și unități de măsură. Sistemul Internațional (SI).... 7 1.2
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
CURS 9 MECANICA CONSTRUCŢIILOR
CURS 9 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA NOŢIUNI DE BAZĂ ÎN CINEMATICA Cinematica studiază mişcările mecanice ale corpurilor, fără a lua în considerare masa acestora şi
OSCILATII SI UNDE UNDE
OSCILATII SI UNDE Cursul nr. 8-9-10 UNDE Cursul Nr.8 8.1. Introducere Undele sunt unele din cele mai raspandite fenomene naturale cu o importanta deosebita in stiinta si tehnica. Prin notiunea de unda
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
1. Introducere in Fizică
FIZICA se ocupă cu studiul proprietăţilor şi naturii materiei, a diferitelor forme de energie şi a metodelor prin care materia şi enegia interacţionează în lumea în care ne înconjoară.. Introducere in
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
15. Se dă bara O 1 AB, îndoită în unghi drept care se roteşte faţă de O 1 cu viteza unghiulară ω=const, axa se rotaţie fiind perpendiculară pe planul
INEMTI 1. Se consideră mecanismul plan din figură, compus din manivelele 1 şi 2, respectiv biela legate intre ele prin articulaţiile cilindrice şi. Manivela 1 se roteşte cu viteza unghiulară constantă
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Lucrul si energia mecanica
Lucrul si energia mecanica 1 Lucrul si energia mecanica I. Lucrul mecanic este produsul dintre forta si deplasare: Daca forta este constanta, atunci dl = F dr. L 1 = F r 1 cos α, unde r 1 este modulul
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
OSCILAÞII ªI UNDE MECANICE
Oscilaþii ºi unde mecanice 7 OSCILAÞII ªI CAPITOLUL 1 UNDE MECANICE A 0 T/4 v v λ = V t Sunt convins cã, dacã vreun om de ºtiinþã din orice domeniu ºi-a adjudecat binemeritata recunoaºtere a colectivitãþii
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Probleme oscilaţii. 7. Un pendul gravitaţional efectuează 30 de oscilaţii complete într-un minut. Care este lungimea pendulului?
Problee oscilaţii 1. O pendulă bate secunda (ₒ=s). Câte oscilaţii coplete face această pendulă într-o oră?. Perioada de oscilaţie a unui copil care se dă în leagăn este ₒ=3s. Câte oscilaţii coplete efectuează
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar
Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric
Clasa a IX-a, Lucrul mecanic. Energia
1. LUCRUL MECANIC 1.1. Un resort având constanta elastică k = 50Nm -1 este întins cu x = 0,1m de o forță exterioară. Ce lucru mecanic produce forța pentru deformarea resortului? 1.2. De un resort având
CUPRINS 1. OPERAŢII CU VECTORI MECANICĂ CLASICĂ TEORIA RELATIVITĂŢII (RELATIVITATE RESTRÂNSĂ) TERMODINAMICĂ...
Mulţumiri Mulţumesc domnului Conf Dr asile Dorobanţu pentru atenta citire şi corectare a scăpărilor ce au apărut la redactare Mulţumesc domnului Conf Dr Duşan Popo pentru sugestiile priitoare la eidenţierea
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
ENUNŢURI ŞI REZOLVĂRI 2013
ENUNŢURI ŞI REZOLVĂRI 8. Un conductor de cupru ( ρ =,7 Ω m) are lungimea de m şi aria secţiunii transversale de mm. Rezistenţa conductorului este: a), Ω; b), Ω; c), 5Ω; d) 5, Ω; e) 7, 5 Ω; f) 4, 7 Ω. l
Lucrul mecanic. Puterea mecanică.
1 Lucrul mecanic. Puterea mecanică. In acestă prezentare sunt discutate următoarele subiecte: Definitia lucrului mecanic al unei forţe constante Definiţia lucrului mecanic al unei forţe variabile Intepretarea
3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
STUDIUL MISCARII OSCILATORII CU AJUTORUL PENDULULUI DE TORSIUNE
STUDIUL MISCRII OSCILTORII CU JUTORUL PENDULULUI DE TORSIUNE 1. Scopul lucrării: I. naliza oscilatiilor libere: 1. determinarea momentului de torsiune prin metoda statică şi prin metoda dinamică;. determinarea
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă
Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a
CURS 1 oct Prof.univ.dr.ing Iulian Lupea
Oct. 1 Extrase: Iulian Lupea, Roboţi şi Vibraţii, Ed. Dacia, 1996 VIBRATII -> SISTEME DISCRETE CU UN GRAD DE LIBERTATE CURS 1 oct. 1 Prof.univ.dr.ing Iulian Lupea 1.1. Modelarea şi analiza vibraţiilor
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Analiza sistemelor liniare şi continue
Paula Raica Departamentul de Automatică Str. Dorobanţilor 7, sala C2, tel: 0264-40267 Str. Bariţiu 26, sala C4, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune. Huţanu Radu, Axinte Constantin Irimescu Luminita
Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune Huţanu Radu, Axinte Constantin Irimescu Luminita 1. Generalităţi Există mai multe metode pentru a determina
I. NOŢIUNI FUNDAMENTALE DIVIZIUNILE MECANICII. PRINCIPIILE MECANICII CLASICE SISTEME ŞI UNITĂŢI DE MĂSURĂ
I. NOŢIUNI FUNDAMENTALE DIVIZIUNILE MECANICII. PRINCIPIILE MECANICII CLASICE SISTEME ŞI UNITĂŢI DE MĂSURĂ 1.1 Noţiuni fundamentale Mecanica este una dintre ştiinţele fundamentale ale naturii, având ca
Acustică. Sistemul auditiv
Acustică. Sistemul auditiv Undele elastice reprezintă modalitatea de comunicare poate cel mai frecvent întâlnită în lumea animală. Acest capitol îşi propune în primul rând să prezinte mărimile şi legile
Algebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
EDITURA FUNDAŢIEI MOISE NICOARĂ
EDITURA FUNDAŢIEI MOISE NICOARĂ ARSENOV BRANCO MAJOR CSABA ARSENOV SIMONA ŞTEFAN ALEXANDRU PROBLEME DE FIZICĂ PENTRU CLASELE XI-XII ARAD 2013 Descrierea CIP a Bibliotecii Naţionale a României Probleme
Prof. Dochia Șerpar ISBN
Prof. Dochia Șerpar ISBN 978-606-67-995-7 Editura Sfântul Ierarh Nicolae 05 OSCILAȚII ȘI UNDE MECANICE Mişcarea circulară uniformă Traiectoria descrisă de punctul material este un cerc. Viteza unghiulară
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei
I. Forţa I. 1. Efectul static şi efectul dinamic al forţei Interacţionăm cu lumea în care trăim o lume în care toate corpurile acţionează cu forţe unele asupra altora! Întrebările indicate prin: * 1 punct
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
FIZICĂ. Câmpul magnetic. ş.l. dr. Marius COSTACHE 1
FIZICĂ Câmpul magnetic ş.l. d. Maius COSTACHE 1 CÂMPUL MAGNETIC Def Câmpul magnetic: epezentat pin linii de câmp închise caacteizat pin vectoul inducţie magnetică Intensitatea câmpului magnetic H, [ H
Capitolul 1. Noțiuni Generale. 1.1 Definiții
Capitolul 1 Noțiuni Generale 1.1 Definiții Forța este acțiunea asupra unui corp care produce accelerația acestuia cu condiția ca asupra corpului să nu acționeze şi alte forțe de sens contrar primeia. Forța
T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
x 1 = x x 2 + t, x 2 = 2 x 1 + x 1 + e t, x 1 (0) = 1, x 2 (0) = 1; (c) Să se studieze stabilitatea soluţiei nule pentru sistemul
Seminar mecanică 1. Să se găsească soluţiile următoarelor probleme Cauchy şi să se indice intervalul maxim de existenţă a soluţiei: (a) x = 1 x, t 0, x(1) = 0; t (b) (1 t x) x = t + x, t R, x(0) = 0; (c)
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
3.5. Forţe hidrostatice
35 oţe hidostatice 351 Elemente geneale lasificaea foţelo hidostatice: foţe hidostatice e suafeţe lane Duă foma eeţilo vasului: foţe hidostatice e suafeţe cube deschise foţe hidostatice e suafeţe cube
( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)
Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
TEST GRILĂ DE VERIFICARE A CUNOŞTINŢELOR LA MATEMATICĂ-FIZICĂ VARIANTA 1 MATEMATICĂ
ROMÂNIA MINISTERUL APĂRĂRII NAŢIONALE ŞCOALA MILITARĂ DE MAIŞTRI MILITARI ŞI SUBOFIŢERI A FORŢELOR TERESTRE BASARAB I Concurs de admitere la Programul de studii postliceale cu durata de 2 ani (pentru formarea
Stabilitatea circuitelor cu reacţie
Lucrarea 21 Stabilitatea circuitelor cu reacţie Scopul lucrării: prezentarea schemei bloc, a terminologiei şi a criteriilor de stabilitate specifice circuitelor cu reacţie, exemplificarea acestora folosind
DETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE CU AJUTORUL UNUI PENDUL FIZIC
DETERMNAREA ACCELERAŢE GRAVTAŢONALE CU AJUTORUL UNU PENDUL FZC 1. Scopul lucrării În lucrare se studiază mişcarea oscilatorie a unui corp, montat astfel încât să constituie un pendul fizic; se determină
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)
Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului
III. Statica III. Statica. Echilibrul mecanic al corpurilor. 1. Sistem de forțe concurente. Sistemul de forțe
III. Statica III. Statica. Echilibrul mecanic al corpurilor. 1. Sistem de forțe concurente. Sistemul de forțe reprezintă totalitatea forțelor care acționează simultan asupra unui corp, Fig. 1. În Fig.
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
A1. Valori standardizate de rezistenţe
30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea
DETERMINAREA EXPONENTULUI ADIABATIC AL AERULUI FOLOSIND OSCILATORUL FLAMMERSFELD
DEERMINAREA EXPONENULUI ADIABAIC AL AERULUI FOLOSIND OSCILAORUL FLAMMERSFELD 1. Scopul lucrării Scopul acestei lucrări este determinarea exponentului adiabatic al aerului folosind oscilatorul Flammersfeld.
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede
2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind