Miscarea oscilatorie armonica ( Fisa nr. 2 )
|
|
- Ἀντίπας Πυλαρινός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Miscarea oscilatorie armonica ( Fisa nr. 2 ) In prima fisa publicata pe site-ul didactic.ro ( Miscarea armonica) am explicat parametrii ce definesc miscarea oscilatorie ( perioda, frecventa ) dar nu am definit si alti parametrii precum elongatia, amplitudinea si anumite formule incomplete. Din aceasta cauza am propus o noua lectie completa despre miscarea oscilatorie armonica. *) Definitie: Miscarea oscilatorie este miscarea efectuata de o parte si de alta a pozitiei de echilibru. Ex: pendulul, balansoarul, inima... etc Marimi caracteristice: 1) Perioada ( T ) masurata in secunde : reprezinta timpul in care se efectueaza o oscilatie => 2) Frecventa (ν ) masurata in s^-1 (hertz) sau (Hz) : Reprezinta nr. de oscilatii efectuate in unitatea de timp => [[[ Obs: T* ν = 1 ]]]
2 3) Elongatia (X sau Y) : masurata in metri ( m ) reprezinta departarea fata de pozitia de echilibru la un moment dat. 4) Amplitudinea ( A ) nasurata tot in m reprezinta elongatia maxima => y aparine intervalului inchis [ -A; +A] *) Miscarile oscilatorii care se desfasoara in mod natural sunt amortizate ( datorita fortelor de frecare ) amplitudinea oscilatiei scade pana la oprire. Daca se compenseaza energia pierduta, oscilatia poate fi fortata ( intretinuta ) Am definit toate marimile caracteristice miscarilor oscilatorii si am definit miscarile amortizate sau fortate. Deci putem trece direct la miscarea oscilatorie armonica. De ce armonica? Stim din clasele anterioare ca functiile sinus si cosinus se mai numesc functii armonice. Deoarece In legile miscarii apar in formula functiile sinus si cosinus miscarea se numeste oscilatorie armonica
3 Vom incerca in continuare sa gasim ecuatia miscarea oscilatorie armonice folosind cunostintele de trigonometrie si un mic exemplu. 1) Fie o bila legata de un resort iar resortul se afla in pozitie vertical suspendat de un perete ( fig 1) fig 1 Unde k este constanta resortului iar ΔL elongatia resortului. Formula pentru forta F ce actioneaza asupra resortului este : ( F = -k * ΔL ) Obs: Semnul minus se datoreaza miscarii in sens negativ a resortului dupa ce aplicam forta f asupra resortului, semnul nu se aplica in formula deci mereu ( F > 0 ). Formula trebuie memorata deoarece o vom folosi intr-un alt exeplu.
4 *) Miscarea oscilatorie se studiaza pornind de la miscarea circular uniforma si proiectand marimile caracteristice pe unul din diameter. Pentru inceput proiectam raza ( fig 2 ) Sa folosim deci cunostintele de trigonometrie. Observam un triungi xya si unghiul ( fi ). fig 2 Sinusul in orice triunghi este cateta opusa supra ipotenuza => sin( ) =
5 Din aceasta formula il putem afla pe y si obtinem astfel ecuatia : y = A * sin( ). Dar in fizica, = Ѡ ( omega ) * t + 0, Unde 0 reprezinta faza initiala iar omega reprezinta viteza ungiulara. Inlocuim in formula si obtinem ecuatia miscarii oscilatorie armonice: Formulele pentru viteza si acceleratie sunt : Obtinute dupa proiectarea vectorului forta si prin aplicarea formulei pentru forta centripeta. ( vezi fig 2 si de la extremitatea vectorului A aplica regula de adunarea a vectorilor )
6 Stiind aceste formule putem sa le folosim pentru a define si alte forte sau sa le folosim in problem. Ex: Stiim ca forta f actionata asupra unui resort este: ( F = -k*δl ) unde ΔL reprezinta departarea fata de pozitia de echilibru sau elongatia. Dar fiindca am aflat formula pentru elongatie ( Y) formula poate fi rescrisa astfel: F = -k * sau ( F = -k*y ) Obs: Daca scriem Ѡ = = = 2*π* ν unde ν ( frecventa in Hz ), o formula utila si usor de retinut. Iar pentru constanta elastica K formula este: ( -m* Ѡ * y = K ) In continuare vom afla perioada T astfel: 1) Folosim formula pentru constanta elastica 2) Ridicam la patrat pe Ѡ si obtinem
7 Pentru cei interesati: Incercati sa aflati de ce? T = => perioada pendulului ( perioada proprie ) Exercitii: Am definit toate marimile caracteristice, am aflat ecuatia miscarii oscilatorie armonice si a altor ecuatii. Acum este timpul sa aplicati ecuatiile in exercitii si problem diverse. Ex. 1) Fie o bila de masa m = 2kg atarnata de un resort cu constanta elastic k = 50 N/m. La momentul initial t = 0 corpul se afla la distanta Y0 = 2 cm si are viteza de v0 = 10 cm/s. Calculati T, ν, Ѡ, 0, A. Ex. 2) Fie m = 10 kg si K = 20 N / m. Calculati T.
8
9
FIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE
FIZICĂ Oscilatii mecanice ş.l. dr. Marius COSTACHE 3.1. OSCILAŢII. Noţiuni generale Oscilaţii mecanice Oscilaţia fenomenul fizic în decursul căruia o anumită mărime fizică prezintă o variaţie periodică
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
1,4 cm. 1.Cum se schimbă deformaţia elastică ε = Δ l o. d) nu se schimbă.
.Cum se schimbă deformaţia elastică ε = Δ l o a unei sîrme de oţel dacă mărim de n ori : a)sarcina, b)secţiunea, c) diametrul, d)lungimea? Răspuns: a) creşte de n ori, b) scade de n ori, c) scade de n,
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Lucrul si energia mecanica
Lucrul si energia mecanica 1 Lucrul si energia mecanica I. Lucrul mecanic este produsul dintre forta si deplasare: Daca forta este constanta, atunci dl = F dr. L 1 = F r 1 cos α, unde r 1 este modulul
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
SEMINAR TRANSFORMAREA FOURIER. 1. Probleme
SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
1. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t = 1.
. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t.5t (m/s). Să se calculeze: a) dependența de timp a spațiului străbătut
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Clasa a IX-a, Lucrul mecanic. Energia
1. LUCRUL MECANIC 1.1. Un resort având constanta elastică k = 50Nm -1 este întins cu x = 0,1m de o forță exterioară. Ce lucru mecanic produce forța pentru deformarea resortului? 1.2. De un resort având
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
DETERMINAREA ACCELERAŢIEI GRAVITAŢIONALE CU AJUTORUL UNUI PENDUL FIZIC
DETERMNAREA ACCELERAŢE GRAVTAŢONALE CU AJUTORUL UNU PENDUL FZC 1. Scopul lucrării În lucrare se studiază mişcarea oscilatorie a unui corp, montat astfel încât să constituie un pendul fizic; se determină
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
CURS MECANICA CONSTRUCŢIILOR
CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la
CURS VII-IX. Capitolul IV: Funcţii derivabile. Derivate şi diferenţiale. 1 Derivata unei funcţii. Interpretarea geometrică.
Lect dr Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr Lucian MATICIUC CURS VII-IX Capitolul IV: Funcţii derivabile Derivate şi diferenţiale 1
cateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC
.Masurarea unghiurilor intr-un triunghi dreptunghic sin B= cateta opusa ipotenuza = AC BC cateta alaturata, cos B= AB ipotenuza BC cateta opusa AC cateta alaturata AB tg B=, ctg B= cateta alaturata AB
STUDIUL MISCARII OSCILATORII FORTATE
STUDIUL MISCARII OSCILATORII FORTATE Scopul lucrării: În acestă lucrare se studiază mişcarea oscilatorie forţată a unei coloane de lichid, aflată sub acţiunea unei forţe exterioare periodice. Se determină
I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei
I. Forţa I. 1. Efectul static şi efectul dinamic al forţei Interacţionăm cu lumea în care trăim o lume în care toate corpurile acţionează cu forţe unele asupra altora! Întrebările indicate prin: * 1 punct
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
III. Statica III. Statica. Echilibrul mecanic al corpurilor. 1. Sistem de forțe concurente. Sistemul de forțe
III. Statica III. Statica. Echilibrul mecanic al corpurilor. 1. Sistem de forțe concurente. Sistemul de forțe reprezintă totalitatea forțelor care acționează simultan asupra unui corp, Fig. 1. În Fig.
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
Dinamica. F = F 1 + F F n. si poarta denumirea de principiul suprapunerii fortelor.
Dinamica 1 Dinamica Masa Proprietatea corpului de a-si pastra starea de repaus sau de miscare rectilinie uniforma cand asupra lui nu actioneaza alte corpuri se numeste inertie Masura inertiei este masa
Lucrul mecanic. Puterea mecanică.
1 Lucrul mecanic. Puterea mecanică. In acestă prezentare sunt discutate următoarele subiecte: Definitia lucrului mecanic al unei forţe constante Definiţia lucrului mecanic al unei forţe variabile Intepretarea
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă
Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune. Huţanu Radu, Axinte Constantin Irimescu Luminita
Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune Huţanu Radu, Axinte Constantin Irimescu Luminita 1. Generalităţi Există mai multe metode pentru a determina
COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE
UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICĂ BN - 1 B COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE 004-005 COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE
Probleme oscilaţii. 7. Un pendul gravitaţional efectuează 30 de oscilaţii complete într-un minut. Care este lungimea pendulului?
Problee oscilaţii 1. O pendulă bate secunda (ₒ=s). Câte oscilaţii coplete face această pendulă într-o oră?. Perioada de oscilaţie a unui copil care se dă în leagăn este ₒ=3s. Câte oscilaţii coplete efectuează
Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Curs - programul Electrotehnică Versiunea Ș. L. Mihail-Ioan Pop
Fizică I Curs - programul Electrotehnică Versiunea 4.1.1 Ș. L. Mihail-Ioan Pop 2018 2 Cuprins Introducere 5 1 Mecanică 7 1.1 Opțional: Mărimi și unități de măsură. Sistemul Internațional (SI).... 7 1.2
Lucrul mecanic şi energia mecanică.
ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al
z a + c 0 + c 1 (z a)
1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei
CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi
Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială
Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15
MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()
Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane
Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii
(k= constanta elastică a resortului, = coeficientul de frecare vâscoasă al mediului). Fig.3.1 Oscilaţii amortizate. m 2
CURS 3 OSCILAŢII 3.1 Oscilaţii amortizate Un sistem real aflat în mişcarea oscilatorie întâmpină o anumită rezistenţă din partea mediului în care oscilează efectuează oscilaţii amortizate = amplitudinea
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).
Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y
2CP Electropompe centrifugale cu turbina dubla
2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică
CURS 9 MECANICA CONSTRUCŢIILOR
CURS 9 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA NOŢIUNI DE BAZĂ ÎN CINEMATICA Cinematica studiază mişcările mecanice ale corpurilor, fără a lua în considerare masa acestora şi
Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui
- Introducere Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui Αγαπητέ κύριε, Αγαπητέ κύριε, Formal, destinatar de sex
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)
Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Metoda științifică: Pendulul Matematic
Metoda științifică: Pendulul Matematic Pendulul matematic 1. În știință se folosesc modele și teorii pentru descrierea fenomenelor fizice. După dezvoltarea unui model nou, acesta trebuie testat pentru
STUDIUL OSCILAŢIILOR LIBERE ŞI A OSCILAŢIILOR FORŢATE FOLOSIND PENDULUL POHL
STUDIUL OSCILAŢIILOR LIBERE ŞI A OSCILAŢIILOR FORŢATE FOLOSIND PENDULUL POHL 1. Introducere În acestă lucrare veţi studia caracteristicile mişcării oscilatorii libere şi ale mişcării oscilatorii forţate
Integrale cu parametru
1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul
Ecuatii trigonometrice
Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi
1.3 Baza a unui spaţiu vectorial. Dimensiune
.3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este
Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.
Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Continue. Answer: a. 0,25 b. 0,15 c. 0,1 d. 0,2 e. 0,3. Answer: a. 0,1 b. 0,25 c. 0,17 d. 0,02 e. 0,3
Concurs Phi: Setul 1 - Clasa a VII-a Logout e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a VII-a» Attempt 1 1 Pentru a deplasa uniform pe orizontala un corp de masa m = 18 kg se actioneaza asupra lui
FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar
Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric
Pendulul elastic. Rezolvare dată de propunătorul problemei
Pendulul elastic Rezolvare dată de propunătorul problemei Introducere. În enunţul problemei nu au fost formulate cerinţe, totuşi la prezentarea experimentului s-a dat o idee: este posibil ca rezultatele