Tematska vprašanja za 1. delni izpit

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Tematska vprašanja za 1. delni izpit"

Transcript

1 Tematska vprašanja za 1. delni izpit 1. Definicija kvocienta izpada in stopnje odpovedi komponente KVOCIENT IZPADA=STOPJA ODPOVEDI/ČAS TRAJANJA OBRATOVANJA STOPNJA ODPOVEDI=ŠT.ODPOVEDANIH ELEMENTOV/ŠT.PREIZKUŠANIH EL 2. Izračun MTBF za komponento oz. Napravo MTBF- SR.ČAS MED DVEMA IZPADOMA a i=b/b+c a...obratovalna pripravljenost (za posamezno komponento) b... MTBF- SR.ČAS MED DVEMA IZPADOMA c...mttr- SR.ČAS IZPADA KOMPONENTE 3. Zanesljivost sistema glede na povezavo členov Trije kriteriji:zanesljivost komponente, zanesljivost sistema glede na povezavo posameznih komponent, obratovalna pripravljenost sisstema. Komponente so lahko povezane na različne načina: ZAPOREDNO(zanesljivost je tem manjsa čim večje je število komponent)vzporedno(zanesljivost se praviloma poveča, seveda pa morajo biti povezave narejene tako, da izpad ene vzporedne poti ne povzroči izpad celotnega sistema) 4. Obvladovanje poznavanja označevanja elektronskih komponent -s številkami in črkami (govoreča koda p39=0,39pf in negovoreča koda-marking koda Z11-tukaj potrebujemo kataloge) -z barvno kodo (prvi trije pasovi označujejo mantiso, naslednji pas predstavlja vrednost eksponenta, naslednji pa označuje tolerančno skupino in naslednji vrednost temperaturnega koeficienta) 5. Izračun temperaturne odvisnosti parametrov komponent na podlagi temp. koeficienta R T = R 0 *(1+α(T- T 0 ) Upor ima pri temperaturi 60 C, vrednost 54,4Ω. Kolikšno vrednost ima pri 20 C, če je α=0,004 R T =54,4 T-T 0 =60-20=40 C R 20 =R T /1+ α*40=46,8 Ω 6. Značilnosti realnega kondenzatorja (fazne razmere, frekv. odvisnost, izgubni faktor, ) Izgubni faktor tgδ=1/rp*ω*c Fazni kot je negativen, ker tok prehiteva napetost Kapacitivna upornost: Xc=1/ω*C Časovna konstanta: τ=r*c Ohmov zakon za trenutne in maks. Vrednosti Ne velja, velja le za efektivne vrednosti.

2 7. Značilnosti realne tuljave ( fazne razmere, frekv. odvisnost, vrste izgub, ) Izgubni faktor: tgδ=r L /X L Induktivna upornoist:xl=ωl Časovna konstanta: τ=l/r Kvaliteta: Q=X L /R L Fazni kot je pozitiven, napetost prehiteva tok. FAZNE RAZMERE:Velikost inducirane napetosti u i v tuljavi je odvisna od hitrosti spreminjanja toka skozi tuljavo in od velikosti induktivnosti.glede na sinusno obliko se tok najhitreje spreminja pri prehodu skozi ničelni nivo zato je takrat ui najvišja. Obratno velja da v trenutku ko se tok ne spreminja ni inducirane napetosti. To je vzrok za fazni premik med napetostjo u L in tokom i L. 8. Značilnosti zaporednega nihajnega kroga (frekv. potek impendance in faze, praktični pomen kvalitete Q, kazalčni diagram, izračun f 0, ) 9. Značilnosti vzporednega nihajnega kroga ( frekv. potek impendance in faze, pasovna širina B, kvaliteta Q, )

3 10. Medsebojni vpliv dveh tuljav ( medsebojna induktivnost, sklopni faktor vpliv lege, navijanja) Pri pravokotni medsebojni legi dveh tuljav magnetnega sklopa teoretično ni, v praksi pa je najmanjši. 11. Temperaturna odvisnost PN spoja Temperaturna odvisnost PN spoja= -2mV/ C (če temperatura raste se za vsako C prevodna U na PN spoju zniža!!!) 12. Vrste diod in glavne značilnosti posameznih vrst -točkasta (malosignalna z nizko kapacitivnostjo; za usm.vezja v merilnikih in VF za signale) -univerzalna(za večje tokove in napetosti; za omrežno f in NF področje) -schotthy (odzivni čas praktično nič!; za VF usmernike) -zener ( zenerjev efekt,preboj; za stabilizacijo U) supresor dioda; hitra zener -kapacitivna-varikap (za oscilatorje in v VF krogih) -PIN (tokovno krmiljen VF upor; za VF področje) -tunelska (ima območje negativne dif. Upornosti; za hitra VF stikala) -foto, led, laserska 13. Kaj definira SOA diagram pri aktivnih polprevodniških komponentah *SOA DIAGRAM-nam prikaže mejne vrednosti v katerih bo polprevodnik zanesljivo deloval 14. Kaj predstavlja šumno število pri transistorju ŠUMNO ŠTEVILO TRAZISTORJA-predstavlja razmerje šumne moči na izh. tranzistorja in šumne moči notranje upornosti generatorja F= Pr tr/pr rg ŠUMNA MERA F'=10dB Log F in je podana v db. Pri kompleksnih upornostih šumna mera zavisi le od ohmskega dela impendance.

4 15. Nastavitev in stabilizacija delovne točke transistorja v orientaciji CE in izračun vezja IZRAČUN DELOVNE TOČKE v orientaciji CE, delovna točka A Tokovni ojačevalni faktor α=ic/ie Tokovni ojačevalni faktor β=ic/ib β=α/1-α U A I I = 12V = 100 C max B max Statističt e razmere Delovna točoč Arazred U I I B C R CC C I U CC = = 6V 2 = 300µ A CE = 30mA U = I = 10Ma = 100µ A CC C = 200Ω Pojasnitev sprememb toka Ic in napetosti UCE v odvisnosti od krmiljenja z baznim tokom(orientacija CE in ohmsko breme). 16. Nevarna področja pri induktivni in kapacitivni obremenitvi transistorja (možne zaščite) Tu sta dva omejitvena faktorja:-povprečna tmeperatura spoja in sekundarni preboj ali preboj drugega reda. Za kontrolo teh omejitev obstajajo posebno še za močnostne tranzistorje SOAR diagrami iz katerih so razvidne napetostne in tokovne omejitve. Možne zaščite: -vzp.vežemo antiparalelno diodo -zaporedno RC vezje(dobimo iznihavanje-za izmenične) -vzp. k TR ZD(omejevanje nap.nivoja konice) 17. Poznavanje značilnih karakteristik FET, MOSFET transistorjev in metod preizkušanja

5 18. Poznavanje značilnih karakteristik tiristorja, diaca in triac-a, ter metod preizkušanja DIAC TRIAC TRIAC dva načina krmiljenja: horizontalni( pri kateri koli napetosti) vertikalni (s tokom spreminjamo Uv)Zanesljivejši način vžiga je hotizontalni. Tiristor 19. Značilnosti krmiljenja triac-a v posameznih kvadrantih

6 Štiri kvadrantno krmiljenje triaca: I/III kvadrant večja občutljivost, II/IV slaba občutljivost 20. Posebnosti GTO in IGBT GTO -stalna prisotnost Ig -Ig v reverzni smeri 3~5 večji -v ugasnjenem stanju zaradi zanesljivosti potrebuje Ugr IGTB -je sestavljen iz MOSFET in bipolarnega tranzistorja; velika Rvh, mala Rizh, visoka prebojna napetost, velika tokovna obremenitev 21. Značilnosti Hallovega generatorja -ploščica polprevodnika, skozi katerega teče tok in ga prebadajo magnetne silnice, da na stranskih priključkih napetost U h. U H =R h /d*i*b R h konstanta materiala B magnetna gostota d debelina ploščice 22. Razumevanje značilnih parametrov operacijskega ojačevalnika -veliko nap.ojačanje, velika Rvh, mala Rizh, diferenčni vh., enosmerno in izmenično ojačanje, relativno visoka frekvenčno področje, CMRR -protifazno ojačanje čim večje, sofazno čim manjše-razmerje CMRR=20logAp/As(dB) 23. Razumevanje delovanja operacijskega ojačevalnika glede na vrsto pov. vezave (primeri) INVERTIRAJOČI NEIVERTIRAJOČI A=(R2+R1)+1 A=Auo/1+Auo(R1/R!+R2) A=-R1/R1 A=Auo/1+Auo*(R1/R2*R1) SEŠTEVALNIK ODŠTEVALNIK -U2=U11(R2/R11)+U12(R2/R12)+U13(R2/R13) -U2=(U11-U12)R2/R1

7 DIFERENCIATOR INTEGRATOR LIMITER(ima dve obratni diodi vzp. z R2) KOMPARATOR 24. Poznavanje in razumevanje pravil Boolove algebre Bolova algebra pozna samo dve spremenljivki (0,1)nad katerim lahko ob upoštevanju pravil izvajamo sledeče osnovne operacije: IN, ALI, negacija sopremenljivke 25. Poznavanje osnovnih logičnih funkcij(simboli, enačbe, definicije) De-Morganov izrek x=a*b = x= a+b x= a+b = x=a*b enostavnejšega logičnega vezja Zapis priblema v obliki diagrama stanj Zapis tabele prehajanja stanj spominskih celic Izbrati primerno število in tip flip flopov Zapis log. Enačb Zapis minimizirane oblike log.enačb Zasnova vezja na simbolni ravni Konstrukcija vezja na osnovi izbranih integriranih vezij Preizkus vezja 26. Analiziranje oz. sinteza

8 27. Poznavanje karakterističnih tabel za flip-flope in razumevanje pomena posam. Vhodov 28. Razumevanje delovanja značilnejših sekvenčnih vezij( pom. register, števec, delilnik) POMIKALNI REGISTER

9 RIPLE ŠTEVEC BINARNI DELILNIK FREKVENCE 29. Značilnosti GAL vezij: Povezave med posameznimi logičnimi operatorji so realizirane z MOSfet tranzistorji, ki jim pri programiranju definiramo prevodno oz. neprevodno stanje. Posebna lastnost GAL-ov so makro celice, ki jim lahko definiramo funkcijo, izhode pa po potrebi lahko programiramo kot vhode. Gal vezja omogočajo da zaščitimo vsebino pred branjem. Omogoča večkratno programiranje Omogoča registrirani in kontrolirani izhod ter krmiljenje izhoda 30. Razlika med SRAM in DRAM spominskimi vezji SRAM : zgrajen je iz FF. Vpisati en bit pomeni ustrezno preklopiti 1 FF. DRAM : osnovna celica je zgrajena iz enega MOS-a. Podatek se shrani na parazitni kapac med B in C. Potrebno je osveževanje. razlike : Pri Sram-mu naslovimo podatek v eni potezi, pri Dram-u pa moramo dvakrat naslovit (prvo RAS potem se CAS). Dram lahko osvežujemo na različne načine: 31. Načini osveževanja DRAM-ov Osveževanje z bralnimi cikli(potrebno je zagotoviti da se vsebina prebere vsaj enkrat v vsaki osvezevalni periodi Osveževanje s pomočjo periodičnimi vpisovalnimi cikli (kadar v Dram vpisujemo nenehno nove podatke, kateri povozijo stare podatke) Z periodičnim naslavljanjem vrstic RAS ( DMA krmilnik skrbi, da se pri vseh lokacijah naslovi RAS signal. Z naslavljanjem stolpcev pred vrsticami (cas pred ras) (kadar pride CAS signal prvi se v Dramu aktivira osvezevalni vezje, katero poskrbi za osveževanje ustrezne vrstice. 32. Poznavanje značilnih podatkov za digitalna integr. vezja in izračun dovoljenih povezav glede na FAN IN in FAN OUT FAN IN : je število, ki definira enoto obremenitve, to je obremenitev izhoda z enim vhodom log. vezja v okviru iste družine FAN OUT : je število, ki definira največje dovoljeno število vhodov logičnih vezij, ki se lahko priključijo na en izhod v okviru iste družine

10 33. DAC-digitalno analogni pretvornik z lestvičastim vezjem 34. ADC- analogno digitalni pretvornik na osnovi postopne pretvorbe (blokovna shema in razumevanje delovanja) 35. ADC- analogno digitalni pretvornik na osnovi dvojne rampe (blokovna shema in razumevanje delovanja)

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

VSŠ Velenje - Elektronska vezja in naprave

VSŠ Velenje - Elektronska vezja in naprave Bipolarni tranzistor 1.5.3 BIPOLARNI TRANZISTOR Bipolarni tranzistor predstavlja najbolj značilno aktivno komponento med polprevodniki. Glede na strukturo ločimo PNP in NPN tip bipolarnega tranzistorja,

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Zaporedna in vzporedna feroresonanca

Zaporedna in vzporedna feroresonanca Visokonapetostna tehnika Zaporedna in vzporedna feroresonanca delovanje regulacijskega stikala T3 174 kv Vaja 9 1 Osnovni pogoji za nastanek feroresonance L C U U L () U C () U L = U L () U C = ωc V vezju

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

1.5 POLPREVODNIŠKE KOMPONENTE

1.5 POLPREVODNIŠKE KOMPONENTE Polprevodniške komponente 1.5 POLPREVODNIŠKE KOMPONENTE Polprevodniške komponente lahko delimo glede na način delovanja oz. tehnologijo izdelave na bipolarno in unipolarno (MOS- Metal Okside Silicon )

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

VSŠ Velenje Elektromehanski elementi in sistemi

VSŠ Velenje Elektromehanski elementi in sistemi VSŠ Velenje Elektromehanski elementi in sistemi FET tranzistorji 1.5.4 UNIPOLARNI TRANZISTORJI FET (Field Effect Tranzistor) Splošno Za FET tranzistorje je značilno, da so za razliko od bipolarnih krmiljeni

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Stabilizirani usmernik 0-30 V, A

Stabilizirani usmernik 0-30 V, A Univerza v Ljubljani Fakulteta za elektrotehniko Igor Knapič Stabilizirani usmernik 0-30 V, 0.02-4 A Seminarska naloga pri predmetu Elektronska vezja Vrhnika 2006 1. Uvod Pri delu v domači delavnici se

Διαβάστε περισσότερα

ELEKTRONSKI ELEMENTI (ELE)

ELEKTRONSKI ELEMENTI (ELE) VIŠJEŠOLSKI STROKOVNI PROGRAM ELEKTRONIKA ELEKTRONSKI ELEMENTI (ELE) (DELOVNI OSNUTEK GRADIVA) FRANC ŠTRAVS Višješolski strokovni program: Elektronika Učbenik: Elektronski elementi - ELE (delovni osnutek

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

TŠC Kranj _ Višja strokovna šola za mehatroniko

TŠC Kranj _ Višja strokovna šola za mehatroniko KRMILNI POLPREVODNIŠKI ELEMENTI Krmilni polprevodniški elementi niso namenjeni ojačanju, anju, temveč krmiljenju tokov v vezju. Narejeni so tako, da imajo dve stanji: vključeno in izključeno. Enospojni

Διαβάστε περισσότερα

Stikalni pretvorniki. Seminar: Načrtovanje elektronike za EMC Boštjan Glažar

Stikalni pretvorniki. Seminar: Načrtovanje elektronike za EMC Boštjan Glažar Stikalni pretvorniki Seminar: Načrtovanje elektronike za EMC 9. 3. 2016 Boštjan Glažar niverza v Ljubljani Fakulteta za elektrotehniko Tržaška cesta 25, SI-1000 Ljubljana Vsebina Prednosti stikalnih pretvornikov

Διαβάστε περισσότερα

Vzporedne, zaporedne, kombinirane in kompleksne vezave led diod in njihova zanesljivost

Vzporedne, zaporedne, kombinirane in kompleksne vezave led diod in njihova zanesljivost Vzporedne, zaporedne, kombinirane in kompleksne vezave led diod in njihova zanesljivost Led dioda LED dioda je sestavljena iz LED čipa, ki ga povezujejo priključne nogice ter ohišja led diode. Glavno,

Διαβάστε περισσότερα

Bipolarni tranzistor je trielektrodni polprevodniški elektronski sestavni del, ki je namenjen za ojačevanje

Bipolarni tranzistor je trielektrodni polprevodniški elektronski sestavni del, ki je namenjen za ojačevanje TRANZISTOR Bipolarni tranzistor je trielektrodni polprevodniški elektronski sestavni del, ki je namenjen za ojačevanje električnih signalov. Zgrajen je iz treh plasti polprevodnika (silicija z različnimi

Διαβάστε περισσότερα

USMERNIKI POLVALNI USMERNIK:

USMERNIKI POLVALNI USMERNIK: USMERNIKI POLVALNI USMERNIK: polvalni usmernik prevaja samo v pozitivni polperiodi enosmerni tok iz usmernika ni enakomeren, temveč močno utripa, zato tak način usmerjanja ni posebno uporaben V pozitivni

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

2. Pri 50 Hz je reaktanca kondenzatorja X C = 120 Ω. Trditev: pri 60 Hz znaša reaktanca tega kondenzatorja X C = 100 Ω.

2. Pri 50 Hz je reaktanca kondenzatorja X C = 120 Ω. Trditev: pri 60 Hz znaša reaktanca tega kondenzatorja X C = 100 Ω. Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Trditev: idealni enosmerni tokovni vir obratuje z močjo

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

Predstavitev informacije

Predstavitev informacije Predstavitev informacije 1 polprevodniki_tranzistorji_3_0.doc Informacijo lahko prenašamo, če se nahaja v primerni obliki. V elektrotehniki se informacija lahko nahaja v analogni ali digitalni obliki (analogni

Διαβάστε περισσότερα

Državni izpitni center *M * SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 29. maj 2008 SPLOŠNA MATURA

Državni izpitni center *M * SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 29. maj 2008 SPLOŠNA MATURA Š i f r a k a n d i d a t a : Državni izpitni center *M877* SPOMLADANSK ZPTN ROK ELEKTROTEHNKA NAVODLA ZA OCENJEVANJE Četrtek, 9 maj 8 SPLOŠNA MATRA RC 8 M8-77-- A zračunajte gostoto toka v vodniku s presekom

Διαβάστε περισσότερα

Električno polje. Na principu električnega polja deluje npr. LCD zaslon, fotokopirni stroj, digitalna vezja, osciloskop, TV,...

Električno polje. Na principu električnega polja deluje npr. LCD zaslon, fotokopirni stroj, digitalna vezja, osciloskop, TV,... 1 Električno polje Vemo že, da: med elektrinami delujejo električne sile prevodniki vsebujejo gibljive nosilce elektrine navzven so snovi praviloma nevtralne če ima telo presežek ene vrste elektrine, je

Διαβάστε περισσότερα

LASTNOSTI FERITNEGA LONČKA. 330 kω. 3400pF

LASTNOSTI FERITNEGA LONČKA. 330 kω. 3400pF Ime in priimek: Šolsko leto: Datum: ASTNOSTI FEITNEGA ONČKA Za tuljavo s feritnim lončkom določite: a) faktor induktivnosti A in kvaliteto izdelane tuljave z meritvijo resonance nihajnega kroga. b) vrednosti

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Metering is our Business

Metering is our Business Metering is our Business REŠTVE ZA PRHODNOST UČNKOVTO UPRAVLJANJE ENERGJE STROKOVNE STORTVE POTROŠNKOM PRJAZNE REŠTVE Metering is our Business 1 Načrtovanje zapornega pretvornika Od tehničnih zahtev Do

Διαβάστε περισσότερα

Elektronski elementi so osnovni gradniki vsakega vezja. Imajo bodisi dva, tri ali več priključkov.

Elektronski elementi so osnovni gradniki vsakega vezja. Imajo bodisi dva, tri ali več priključkov. Elementi in vezja Elektronski elementi so osnovni gradniki vsakega vezja. Imajo bodisi dva, tri ali več priključkov. kov. Zaprti so v kovinska, plastična ali keramična ohišja, na katerih so osnovne označbe

Διαβάστε περισσότερα

Gradniki elektronskih sistemov laboratorijske vaje. Vaja 1 Lastnosti diode. Ime in priimek: Smer:.. Datum:... Pregledal:...

Gradniki elektronskih sistemov laboratorijske vaje. Vaja 1 Lastnosti diode. Ime in priimek: Smer:.. Datum:... Pregledal:... Gradniki elektronskih sistemov laboratorijske vaje Vaja 1 Lastnosti diode Ime in priimek:. Smer:.. Datum:... Pregledal:... Naloga: Izmerite karakteristiko silicijeve diode v prevodni smeri in jo vrišite

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Osnovni pojmi pri obravnavi periodičnih signalov

Osnovni pojmi pri obravnavi periodičnih signalov Periodični signali, osnovni poji 7. Osnovni poji pri obravnavi periodičnih signalov Vsebina: Opis periodičnih signalov z periodo, frekvenco, krožno frekvenco. Razlaga pojov aplituda, faza, haronični signal.

Διαβάστε περισσότερα

1. Merjenje toka in napetosti z AVO metrom

1. Merjenje toka in napetosti z AVO metrom 1. Merjenje toka in napetosti z AVO metrom Cilj: Nariši karakteristiko Zenerjeve diode in določi njene parametre, pri delu uporabi AVO metre za merjenje napetosti in toka ter vir spremenljive napetosti

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Državni izpitni center *M * JESENSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 27. avgust 2009 SPLOŠNA MATURA

Državni izpitni center *M * JESENSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 27. avgust 2009 SPLOŠNA MATURA Š i f r a k a n d i d a t a : Državni izpitni center *M097711* ELEKTROTEHNIKA JESENSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Četrtek, 7. avgust 009 SPLOŠNA MATURA RIC 009 M09-771-1- A01 Z galvanizacijskim

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

PRILOGA VI POTRDILO O SKLADNOSTI. (Vzorci vsebine) POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA

PRILOGA VI POTRDILO O SKLADNOSTI. (Vzorci vsebine) POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA PRILOGA VI POTRDILA O SKLADNOSTI (Vzorci vsebine) A POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA Stran 1 POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA (1) (številka potrdila o skladnosti:)

Διαβάστε περισσότερα

) produkta toka z vektorjem diferen razdalje v smeri. d - Sila je pravokotna na tokovni element in mag.polje

) produkta toka z vektorjem diferen razdalje v smeri. d - Sila je pravokotna na tokovni element in mag.polje 1.MAGNETOSTATIKA 1.1 Amperov zakon mag.sile: Sila med dvema vzporednima vodnikoma je sorazmerna produktu toka v obeh vodnikih in njuni dolžini in nasprotno sorazmerna razdalji med vodnikoma - Tokovni element

Διαβάστε περισσότερα

March 6, tuljava in električna. napetost in. padanjem. Potrebujete. torej 8,8µF. priključen. napetosti. in ustrezen

March 6, tuljava in električna. napetost in. padanjem. Potrebujete. torej 8,8µF. priključen. napetosti. in ustrezen DELAVNICA SSS: POSKUSI Z NIHANJEM V ELEKTRONIKI March 6, 2009 DUŠAN PONIKVAR: POSKUSI Z NIHANJEM V ELEKTROTEHNIKI Vsi smo poznamo električni nihajni krog. Sestavljataa ga tuljava in kondenzator po sliki

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

OM3 (Obvezni modul 3) ELN, test2 Električne naprave

OM3 (Obvezni modul 3) ELN, test2 Električne naprave Ime in PRIIMEK: Letnik: Datum: OM3 (Obvezni modul 3) ELN, test2 Električne naprave Število točk/ocena: Teme preverjanja 1 test ELN, Osnovna temeljna znanja, el. veličine, delilniki, osnovni zakoni, kondenzator,

Διαβάστε περισσότερα

Elektrotehnika. Študijsko gradivo za študente Pedagoške fakultete UL. Študijsko leto 2009/2010. Slavko Kocijančič

Elektrotehnika. Študijsko gradivo za študente Pedagoške fakultete UL. Študijsko leto 2009/2010. Slavko Kocijančič Elektrotehnika Študijsko gradivo za študente Pedagoške fakultete UL Slavko Kocijančič Študijsko leto 2009/2010 Ljubljana, marec 2010 Vsebina 1. OSNOVE ELEKTROTEHNIKE...1 OHMOV ZAKON...1 PRVI KIRCHHOFFOV

Διαβάστε περισσότερα

TEHNOLOGIJA MATERIALOV

TEHNOLOGIJA MATERIALOV Naslov vaje: Nastavljanje delovne točke trajnega magneta Pri vaji boste podrobneje spoznali enega od možnih postopkov nastavljanja delovne točke trajnega magneta. Trajne magnete uporabljamo v različnih

Διαβάστε περισσότερα

Elektrotehnika in elektronika

Elektrotehnika in elektronika Elektrotehnika in elektronika 1. Zapišite pogoj zaporedne resonance, ter pogoj vzporedne resonance. a) Katera ima minimalno impedanco, katera ima minimalno admitanco? b) Pri kateri je pri napetostnem vzbujanju

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

zakasnitev širjenja ali zakasnitev pulza 3. Prerez MOS Tranzistorja z vgrajenim p-kanalom.(izhodna karakteristika)

zakasnitev širjenja ali zakasnitev pulza 3. Prerez MOS Tranzistorja z vgrajenim p-kanalom.(izhodna karakteristika) VPRAŠANJA IN ODGOVORI NA SMOLETOVA VPRAŠANJA: 1.skop: 1. pn spoj v termičnem ravnovesju (enerijski nivoji, difuzijska napetost) Potencialna razlika ali difuzijska napetost, je napetost, ki se izpostavi

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

1. Enosmerna vezja. = 0, kar zaključena

1. Enosmerna vezja. = 0, kar zaključena 1. Enosmerna vezja Vsebina polavja: Kirchoffova zakona, Ohmov zakon, električni viri (idealni realni, karakteristika vira, karakteristika bremena matematično in rafično, delovna točka). V enosmernih vezjih

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

1.6 POLPREVODNIKI ZA KRMILJENJE MOČI

1.6 POLPREVODNIKI ZA KRMILJENJE MOČI VSŠ Velenje - Elektronska vezja in naprave Polprevodniki za krmiljenje moči 1.6 POLPREVODNIKI ZA KRMILJENJE MOČI Med polprevodnike za krmiljenje moči spadajo vse močnostne polprevodniške komponente, vendar

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

starejši zapiski OSNOVE NELINEARNIH ELEM. 2 kolokvijske naloge

starejši zapiski OSNOVE NELINEARNIH ELEM. 2 kolokvijske naloge stromar.si starejši zapiski OSNOVE NELINEARNIH ELEM. 2 kolokvijske naloge UNI Šolsko leto 2008 / 2009 Izvajalec Franc Smole Avtor dokumenta Skeniranje UREJANJE DOKUMENTA VERZIJA 01 REVIZIJA 02 DATUM 5.

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Merilniki gostote magnetnega polja na osnovi Lorentzove sile

Merilniki gostote magnetnega polja na osnovi Lorentzove sile Merilniki gostote magnetnega polja na osnovi Lorentzove sile Lorentzova sila je temelj tako allovega kot tudi magnetoupornostnega efekta v polprevodniških strukturah. Zgradba in osnovni princip delovanja

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

1.6 POLPREVODNIKI ZA KRMILJENJE MOČI

1.6 POLPREVODNIKI ZA KRMILJENJE MOČI Diak, tiristor, triak 1.6 POLPREVODNIKI ZA KRMILJENJE MOČI Med polprevodnike za krmiljenje moči spadajo vse močnostne polprevodniške komponente, vendar pa se v ta namen, posebno pri izmeničnih napajalnih

Διαβάστε περισσότερα

13. Umerjanje izvora šuma s plazovno diodo

13. Umerjanje izvora šuma s plazovno diodo 13. Umerjanje izvora šuma s plazovno diodo Kot izvor šuma lahko uporabimo vsak upor, ki se nahaja na temperaturi, različni od absolutne ničle. Dva različna izvora šuma omogočata bistveno natančnejšo meritev

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Regulacija manjših ventilatorjev

Regulacija manjših ventilatorjev Univerza v Ljubljani Fakulteta za elektrotehniko Regulacija manjših ventilatorjev Seminarska naloga pri predmetu Elektronska vezja V Ljubljani, maj 2008 Kazalo. Ideja... 2. Realizacija... 2. Delovanje

Διαβάστε περισσότερα

Arduino-FPGA vremenska postaja

Arduino-FPGA vremenska postaja Laboratorij za načrtovanje integriranih vezij Univerza v Ljubljani Fakulteta za elektrotehniko Arduino-FPGA vremenska postaja DES 2013/14 - razvoj vgrajenega sistema Arduino grafični vmesnik Arduino Leonardo

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

- Geodetske točke in geodetske mreže

- Geodetske točke in geodetske mreže - Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano

Διαβάστε περισσότερα

INDUCIRANA NAPETOST (11)

INDUCIRANA NAPETOST (11) INDUCIRANA NAPETOST_1(11d).doc 1/17 29.3.2007 INDUCIRANA NAPETOST (11) V tem poglavju bomo nadgradili spoznanja o magnetnih pojavih v stacionarnih razmerah (pri konstantnem toku) z analizo razmer pri časovno

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Polnilnik Ni-MH/Ni-Cd baterij

Polnilnik Ni-MH/Ni-Cd baterij Univerza v Ljubljani Fakulteta za elektrotehniko Matej Antonijevič Polnilnik Ni-MH/Ni-Cd baterij Seminarska naloga pri predmetu Elektronska vezja Ljubljana, julij 2011 Matej Antonijevič Polnilnik Ni-MH/Ni-Cd

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Električne lastnosti varikap diode

Električne lastnosti varikap diode Električne lastnosti varikap diode Vsaka polprevodniška dioda ima zaporno plast, debelina katere narašča z zaporno napetostjo. Dioda se v zaporni smeri obnaša kot nelinearen kondenzator, ki mu z višanjem

Διαβάστε περισσότερα

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija. 1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R.

Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R. II. FUNKCIJE 1. Osnovni pojmi 2. Sestavljanje funkcij 3. Pregled elementarnih funkcij 4. Zveznost Kaj je funkcija? Definicija Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi

Διαβάστε περισσότερα

OSNOVNA ŠOLA MIHE PINTARJA TOLEDA KIDRIČEVA CESTA 21, 3320 VELENJE MLADI RAZISKOVALCI ZA RAZVOJ ŠALEŠKE DOLINE

OSNOVNA ŠOLA MIHE PINTARJA TOLEDA KIDRIČEVA CESTA 21, 3320 VELENJE MLADI RAZISKOVALCI ZA RAZVOJ ŠALEŠKE DOLINE OSNOVNA ŠOLA MIHE PINTARJA TOLEDA KIDRIČEVA CESTA 21, 3320 VELENJE MLADI RAZISKOVALCI ZA RAZVOJ ŠALEŠKE DOLINE RAZISKOVALNA NALOGA PRIMERJAVA NELINEARNIH ELEKTROTEHNIŠKIH STIKALNIH ELEMENTOV Tematsko področje:

Διαβάστε περισσότερα

Izmenični signali kompleksni račun

Izmenični signali kompleksni račun zenicni_signali-kopleksni_racun(8).doc /7.6.6 zenični signali kopleksni račun Kopleksni račun e poebno orode za analizo vezi z izeničnii haroničnii signali. V osnovi diferencialne enačbe lahko z uporabo

Διαβάστε περισσότερα

3. Uporaba Biot-Savartovega zakona. Tokovna daljica: Premica: Tokovna zanka:

3. Uporaba Biot-Savartovega zakona. Tokovna daljica: Premica: Tokovna zanka: 1. Magnetostatika 1. Amperov zakon magnetne sile (med tokovnima elementoma) Pravilno predvideva, da če električni tok povzroča magnetno polje in s tem odklon magnetne igle, mora obstajati tudi sila med

Διαβάστε περισσότερα

Pretvorniki, sestavni deli: ojačevalniki, filtri, modulatorji, oscilatorji, integrirana

Pretvorniki, sestavni deli: ojačevalniki, filtri, modulatorji, oscilatorji, integrirana Sestava merilnega inštrumenta: 1. Analogni pretvornik (pretvorimo električne (napetost, tok, upornost...) in neelektrične veličine (tlak, temperaturo,...) v enosmerno napetost. 2. Analogno-digitalni pretvornik

Διαβάστε περισσότερα