2. Vlak vozi s hitrostjo 2 m/s po ovinku z radijem 20 m. V vagonu je na vrvici obešena luč. Kolikšen kot z navpičnico tvori vrvica (slika 1)?

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2. Vlak vozi s hitrostjo 2 m/s po ovinku z radijem 20 m. V vagonu je na vrvici obešena luč. Kolikšen kot z navpičnico tvori vrvica (slika 1)?"

Transcript

1 1. pisni test (KOLOKVIJ) iz Fizike 1 (UNI), Kako visoko nad ekvatorjem bi se nahajala zemeljska geostacionarna orbita, če bi bil dan na Zemlji dvakrat krajši, kot je sedaj? Polmer Zemlje je približno 6400 km. Geostacionarna orbita je krožnica po kateri kroži satelit, da je ves čas nad isto točko na površini Zemlje. 2. Vlak vozi s hitrostjo 2 m/s po ovinku z radijem 20 m. V vagonu je na vrvici obešena luč. Kolikšen kot z navpičnico tvori vrvica (slika 1)? 3. Navzgor po klancu z nagibom 30 0 se giblje kilogramska klada. V trenutku, ko se giblje s hitrostjo 10 m/s, se vanjo v nasprotni smeri zapiči izstrelek s hitrostjo 300 m/s in z maso 1 g. Koliko poti napravi klada po trku preden se ustavi, če je koeficient trenja med klado in podlago 0.1? 4. S konstantno silo 10 N vlečemo po vodi čoln z maso 100 kg. Pri gibanju skozi vodo na čoln deluje sila upora, ki je sorazmerna s hitrostjo: F u = k v (kjer je k = 1.5 kg/s). Kolikšna je hitrost čolna po desetih sekundah vlečenja, če je pred tem miroval? Konstante: g 10 m/s 2? Slika 1:

2

3

4

5

6 1. pisni test (KOLOKVIJ) iz Fizike 1 (VSŠ), Po vodoravni podlagi se brez trenja giblje 6 kilogramska klada s hitrostjo 5 m/s. Koliko izstrelkov s hitrostjo 300 m/s in z maso 1 g moramo izstreliti v klado v nasprotni smeri, da se ta ustavi? Izstrelki se v klado zapičijo. 2. Na klancu z nagibom 30 0 držimo breme z maso 0.5 kg. Breme je povezano s kilogramsko utežjo z lahko in neraztegljivo vrvico, ki je napeljana preko zelo lahkega škripca, kot kaže slika 1. S kakšnim pospeškom se začne gibati breme, ko ga spustimo, če je koeficient trenja med bremenom in podlago 0.1? 3. Kako visoko nad ekvatorjem bi se nahajala zemeljska geostacionarna orbita, če bi bil dan na Zemlji trikrat daljši, kot je sedaj? Polmer Zemlje je približno 6400 km. Geostacionarna orbita je krožnica po kateri kroži satelit, da je ves čas nad isto točko na površini Zemlje. 4. Tovornjak vozi s hitrostjo 3 m/s po ovinku z radijem 20 m. Najmanj kolikšen mora biti koeficient lepenja med tovorom in prikolico, da tovor na prikolici ne zdrsne? Konstante: g 10 m/s 2 Slika 1:

7

8

9 Drugi pisni test iz Fizike I (UNI) ( ) 1. Iz podvodne baze s sonarjem oddajajo zvok s frekvenco Hz. Zvok se odbija od bližajoče se podmornice. V bazi ugotovijo, da je frekvenca odbitega zvoka Hz. S kolikšno hitrostjo se podmornica približuje bazi? Hitrost zvoka v vodi je 1420 m/s. 2. Raven, tanek, homogen drog je dolg 1 m in je vrtljiv okoli vodoravne osi, ki gre skozi njegovo zgornje krajišče. Na drog pritrdimo majhno utež, ki ima dvakrat večjo maso, kot drog. Nihajni čas tako nastalega nihala pri majhnih odmikih je 1.57 sekunde. Kako daleč od osi vrtenja smo pritrdili utež? Naloga ima 2 rešitvi, najti morate vsaj eno od obeh! 3. Dva m dolga, ravna, tanka homogena palica ima maso na dolžinsko enoto 0.02 kg/cm. Majhna utež z maso 0.4 kg miruje v točki, ki je 1.5 m oddaljena od vsakega od obeh krajišč droga. Koliko dela moramo najmanj opraviti, če jo želimo spraviti v točko, ki je 2.2 m oddaljena od vsakega od obeh krajišč droga? Drog in utež sta v breztežnem prostoru. 4. Pokončna posoda z velikim prečnim presekom je do višine 2 m napolnjena z vodo, ki ima gostoto 1 g/cm 3, stoji pa na vodoravnih tleh. Na kolikšni višini moramo izvrtati luknjico v stransko steno posode, da bo domet iztekajočega curka največji? Pri tem vodno gladino pritiskamo navzdol z batom, ki ustvarja dodatni tlak 4000 N/m 2 (slika 1). Konstante: g = 9.81 m/s 2, R = 8314 J/kmolK, N A = kmol 1, κ = Nm 2 kg 2 Slika 1:

10

11

12

13

14 Drugi pisni test iz Fizike I (VSS) ( ) 1. Mož sedi na vrtljivem stolu, v rokah pa ima 2 enaki uteži. Če drži roke v odročenju, je vztrajnostni moment stola, moža in uteži skupaj 2.4 kgm 2. Če drži roke v priročenju, pa je vztrajnostni moment 1.8 kgm 2. V začetku drži roke v odročenju, stol pa se vrti s kotno hitrostjo 4 rad/s. Za koliko Joulov se spremeni njegova kinetična energija, ko priroči? 2. Raven, tanek, homogen drog je dolg 1 m in je vrtljiv okoli vodoravne osi, ki gre skozi njegovo zgornje krajišče. Na drog pritrdimo dve enaki majhni uteži, od katerih ima vsaka enako maso, kot drog. Prvo utež pritrdimo 25 cm, drugo pa 50 cm od osi vrtenja. Kolikšen je nihajni čas tako nastalega nihala pri majhnih odmikih? 3. Motor začne vrteti mirujoč vztrajnik, ki ima vztrajnostni moment 10 kgm 2. Moč motorja s časom narašča po enačbi P = kt 1/2, kjer je t čas in k = 2Ws 1/2. Kolikšna je kotna hitrost vrtenja vztrajnika po 15 sekundah? Predpostavite, da se vse opravljeno delo motorja spremeni v kinetično energijo vztrajnika! 4. Kroglica z maso 5.36 mg in polmerom 0.8 mm v neki tekočini pada s konstantno hitrostjo 21 mm/s. Druga kroglica s polmerom 0.5 mm in maso 1 mg pa v tej tekočini pada s hitrostjo 5.45 mm/s. Kolikšni sta gostota in viskoznost te tekočine? Predpostavite, da za obe kroglici velja linearni zakon upora! Konstante: g = 9.81 m/s 2, R = 8314 J/kmolK, N A = kmol 1, κ = Nm 2 kg 2

15 Fiz 1 - VSS

16

17 Pisni izpit iz Fizike 1 (UNI), Med dvema planetoma leži točka, kjer se gravitacijski sili obeh planetov ravno odštejeta, na eni četrtini razdalje med težiščema planetov (merjeno od planeta z manjšo maso). Kolikšno je razmerje mas planetov? 2. Na vrhu 50 m visoke stolpnice zavrtimo kamen po krožnici, ki ima radij en meter in leži v vodoravni ravnini. Najmanj s kakšno frekvenco moramo kamen zavrteti, da bo, ko ga spustimo, padel na streho 20 m visoke hiše, ki je oddaljena 15 m (slika 1)? 3. Zvočnik, pritrjen na obalo, oddaja zvok s frekvenco 4000 Hz. Kakšno frekvenco zvoka zaznava poslušalec na ladji, ki se zvočniku in obali približuje s hitrostjo 10 m/s, če iz obale proti ladji piha konstanten veter s hitrostjo 30 m/s? Hitrost zvoka v zraku je 333 m/s. 4. Biljardno kroglo z maso 0.2 kg in radijem 3 cm udarimo s sunkom sile 0.5 Ns v vodoravni smeri, pol radija krogle pod težiščem (glej sliko 2). Udarec je kratkotrajen, tako da lahko med udarcem zanemarimo sunek sile trenja med kroglo in podlago. Kolikšna je 0.5 s po udarcu kotna hitrost krogle? Koeficient trenja med kroglo in podlago je 0.2. Konstante: g 10 m/s 2 50m 15m 20m Slika 1: Slika 2: Udarec biljardne krogle. Pogled od strani (levo) in v smeri udarca (desno).

18

19

20 Pisni izpit iz Fizike 1 (VSS), Najmanj s kakšno hitrostjo moramo vreči kamen v vodoravni smeri z vrha 50 m visoke stolpnice, da bo padel na streho 20 m visoke hiše, ki je oddaljena 15 m (slika 1)? 2. Z velike višine skoči padalec z maso 85 kg in takoj odpre padalo. Padalo ima obliko polkrogle z radijem 5 m in koeficientom upora C u = 0.5. S kakšno hitrostjo pade padalec na tla? Predpostavite, da velja kvadratni zakon upora. Gostota zraka je 1 kg/m Homogena krogla se zakotali brez podrsavanja navzdol po klancu z nagibom V kolikšnem času opravi pot 10 m, če je na začetku mirovala? (Vztrajnostni moment krogle okoli njene težiščne osi je 2mR 2 /5) 4. Kocka z gostoto K = 0.7 g/cm 3 in stranico a = 8 cm plava v vodi z gostoto V = 1 g/cm 3. Kocko pritisnemo od zgoraj tako, da jo malo potopimo v vodo in spustimo, da zaniha. Kolikšen je nihajni čas t 0? Upor tekočine zanemarite. Konstante: g 10 m/s 2 50m 15m 20m Slika 1:

21

22

23 Pisni izpit iz Fizike I (UNI) ( ) 1. Dve uteži z masam 2 kg in 5 kg sta povezani z zelo lahko neraztegljivo vrvico. Vrvica teče preko škripca, ki ima obliko valja z maso 4 kg in se vrti okoli svoje vodoravne geometrijske osi. S kolikšnim pospeškom se gibljeta uteži, če vrvica na škripcu ne podrsava? (slika 1). 2. Kolikšen je nihajni čas nihala na sliki 2 pri majhnih odmikih od ravnovesja? Prečki sta dolgi 1 m in 0.5 m in imata zanemarljivo majhno maso. Majhna utež na koncu daljše prečke ima maso 0.4 kg, koeficient vzmeti pa je 14 N/m. 3. V vesolju sta dva planeta, katerih središči sta med seboj oddaljeni km. Prvi planet ima maso kg, drugi pa kg. Izstrelek se giblje po zveznici med planetoma v smeri od težjega proti lažjemu planetu. Na sredini poti ima hitrost 2 km/s v smeri proti lažjemu planetu. Kolikšna je hitrost tega izstrelka, ko opravi 2/3 poti med središčema planetov? Predpostavite, da se ohranjata kinetična in gravitacijska potencialna energija izstrelka! 4. Lokostrelec strelja puščico na m visoko ploščad. Začetna hitrost puščice je 70 m/s. Pod kolikšnim kotom glede na vodoravnico mora izstreliti puščico in kako daleč od vznožja ploščadi se mora postaviti, da bo puščica letela najdlje preko roba ploščadi? (slika 3) Konstante: g 0 = 9.81 m/s 2, R = 8314 J/kmolK, N A = kmol 1, κ = Nm 2 kg 2 Slika 1: Slika 2: Slika 3:

24

25

26

27

28 Pisni izpit iz Fizike I (VSS) ( ) 1. Z vrha stolpa spustimo kamen, da prosto pade. Za pot od osmega nadstropja na višini 24 m do sedmega nadstropja na višini 21 m porabi kamen čas 0.2 s. S kolikšne višine smo kamen spustili? 2. Osno simetrično telo z maso 1 kg in polmerom 5 cm se kotali brez podrsavanja navzdol po klancu z nagibom 40 o. Težišče telesa se giblje s pospeškom 5 m/s 2. Kolikšen je vztrajnostni moment telesa glede na njegovo simetrijsko os, ki gre skozi težišče? 3. Navpična cev je dolga 3 m. Na spodnjem koncu ima presek 80 cm 2, na zgornjem pa 20 cm 2, vmes pa se presek zvezno spreminja (slika 1). Vodo, ki ima gostoto 1 g/cm 3 poganja navzgor po cevi tlačna razlika N/m 2. Kolikšna je hitrost vodnega toka na zgornjem krajišču cevi? Predpostavite, da za pretok vode po cevi velja Bernoullijeva enačba! 4. Voziček z maso 3 kg se giblje brez trenja s hitrostjo 2 m/s po vodoravnem tiru. Trči v mirujoč voziček z maso 2 kg. Trk je idealno prožen. S kolikšno hitrostjo se po trku gibljeta vozička? Za prvi voziček podajte nedvoumen odgovor o tem, ali se voziček po trku giblje v isto ali v nasprotno smer kot pred trkom! Konstante: g 0 = 9.81 m/s 2, R = 8314 J/kmolK, N A = kmol 1, κ = Nm 2 kg 2 Slika 1:

29

30

31 Pisni izpit iz Fizike 1 (UNI), Po cevi potiskamo vodo na višino 2 m s tlačno razliko p = N/m 2. Na spodnjem krajišču ima cev presek 200 cm 2, na zgornjem pa 100 cm 2. Kolikšna je hitrost vode na zgornjem krajišču cevi? Predpostavite, da veljata Bernoullijeva in kontinuitetna enačba. Gostota vode je 1000 kg/m Luna ima polmer R = 1740 km in težni pospešek na površini g 0 = 1.6 m/s 2. Ocenite, najmanj s kakšno hitrostjo moramo s površine Lune izstreliti sondo napično navzgor, da bo dosegla višino 2000 km. 3. Na spodnje krajišče ravne tanke homogene palice z maso 1 kg pritrdimo utež z maso 0.5 kg. Palica je prosto vrtljiva okoli zgornjega krajišča. Takšno nihalo uporabimo kot merilec časa, tako da jo malenkost izmaknemo iz ravnovesne lege in spustimo, da zaniha. Kolikšna mora biti dolžina palice, da je nihajni čas 1 s? 4. Na klancu z nagibom 30 0 držimo breme z maso 3 kg. Breme je povezano s kilogramsko utežjo z lahko in neraztegljivo vrvico, ki je napeljana preko škripca, kot kaže slika 1. Škripec ima obliko homogenega valja z maso 2 kg in radijem 1 m. V kateri smeri in s kakšnim pospeškom se začne gibati breme, ko ga spustimo? Koeficient trenja med bremenom in podlago je 0.1, trenje v osi škripca pa prispeva še dodaten navor 1 Nm. Vrvica po valju ne zdrsuje. Konstante: g 10 m/s 2 Slika 1:

32

33

34

35

36 Pisni izpit iz Fizike 1 (VSŠ), Ravna tanka homogena palica je prosto vrtljiva okoli zgornjega krajišča. Palico uporabimo kot merilec časa, tako da jo malenkost izmaknemo iz ravnovesne lege in spustimo, da zaniha. Kolikšna mora biti dolžina palice, da je nihajni čas 1 s? 2. Luna ima polmer R = 1740 km in težni pospešek na površini g 0 = 1.6 m/s 2. Ocenite, najmanj s kakšno hitrostjo moramo s površine Lune izstreliti sondo napično navzgor, da bo dosegla višino 2000 km. Upoštevajte, da se z višino težni pospešek spreminja! 3. Po cevi potiskamo vodo na višino 2 m s tlačno razliko p = N/m 2. Na spodnjem krajišču ima cev presek 200 cm 2, na zgornjem pa 100 cm 2. Kolikšna je hitrost vode na zgornjem krajišču cevi? Predpostavite, da veljata Bernoullijeva in kontinuitetna enačba. Gostota vode je 1000 kg/m Na klancu z nagibom 30 0 držimo breme z maso 3 kg. Breme je povezano s kilogramsko utežjo z lahko in neraztegljivo vrvico, ki je napeljana preko škripca, kot kaže slika 1. Škripec ima obliko homogenega valja z maso 2 kg. V kateri smeri (!) in s kakšnim pospeškom se začne gibati breme, ko ga spustimo? Koeficient trenja med bremenom in podlago je 0.1. Trenje v osi škripca zanemarimo. Vrvica po valju ne zdrsuje. Konstante: g 10 m/s 2 Slika 1:

37

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI),

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI), Prvi pisni test (kolokvij) iz Fizike I (UNI), 5. 12. 2003 1. Dve kladi A in B, ki sta povezani z zelo lahko, neraztegljivo vrvico, vlečemo navzgor po klancu z nagibom 24 o s konstantno silo 170 N tako,

Διαβάστε περισσότερα

45 o. Prvi pisni test (KOLOKVIJ) iz Fizike I (UNI),

45 o. Prvi pisni test (KOLOKVIJ) iz Fizike I (UNI), Prvi pisni test (KOLOKVIJ) iz Fizike I (UNI), 26. 11. 2004 1. Letalo leti na višini 200 m v vodoravni smeri s hitrostjo 100 m/s. V trenutku, ko je letalo nad opazovalcem na tleh, iz letala izpustimo paket.

Διαβάστε περισσότερα

1. kolokvij iz predmeta Fizika 1 (UNI)

1. kolokvij iz predmeta Fizika 1 (UNI) 0 0 0 4 0 0 8 0 0 0 0 0 0 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: 1. kolokvij iz predmeta Fizika 1 (UNI) 3.1.010 1. Po vodoravni ledeni ploskvi se brez

Διαβάστε περισσότερα

Vaje iz fizike 1. Andrej Studen January 4, f(x) = C f(x) = x f(x) = x 2 f(x) = x n. (f g) = f g + f g (2) f(x) = 2x

Vaje iz fizike 1. Andrej Studen January 4, f(x) = C f(x) = x f(x) = x 2 f(x) = x n. (f g) = f g + f g (2) f(x) = 2x Vaje iz fizike 1 Andrej Studen January 4, 2012 13. oktober Odvodi Definicija odvoda: f (x) = df dx = lim f(x + h) f(x) h 0 h Izračunaj odvod funkcij po definiciji: (1) f(x) = C f(x) = x f(x) = x 2 f(x)

Διαβάστε περισσότερα

DELO IN ENERGIJA, MOČ

DELO IN ENERGIJA, MOČ DELO IN ENERGIJA, MOČ Dvigalo mase 1 t se začne dvigati s pospeškom 2 m/s 2. Izračunaj delo motorja v prvi 5 sekunda in s kolikšno močjo vleče motor dvigalo v tem časovnem intervalu? [ P mx = 100kW ( to

Διαβάστε περισσότερα

TEMELJI KLASIČNE FIZIKE Bonus naloge 1-12

TEMELJI KLASIČNE FIZIKE Bonus naloge 1-12 TEMELJI KLASIČNE FIZIKE Bonus naloge 1-12 Program: STROJNIŠTVO UN-B + GING UN-B Štud. leto 2008/09 Datum razpisa: 21.11.2008 Rok za oddajo: 19.12.2008 1. naloga Graf v = v(t) prikazuje spreminjanje hitrosti

Διαβάστε περισσότερα

Pisni izpit iz Mehanike in termodinamike (UNI), 9. februar 07. Izpeljite izraz za kinetično energijo polnega homogenega valja z maso m, ki se brez podrsavanja kotali po klancu navzdol v trenutku, ko ima

Διαβάστε περισσότερα

FIZIKA 1 (2013/14) Predavanja. prof. dr. Anton Ramšak soba: 426, Jadranska 19. torek: od do 13 h (VFP)

FIZIKA 1 (2013/14) Predavanja. prof. dr. Anton Ramšak   soba: 426, Jadranska 19. torek: od do 13 h (VFP) Predavanja FIZIKA 1 (2013/14) prof. dr. Anton Ramšak e-mail: anton.ramsak@fmf.uni-lj.si soba: 426, Jadranska 19 torek: od 10 15 do 13 h (VFP) Tekoča snov na predavanjih in obvestila profesorja http://www-f1.ijs.si/

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Vsebina MERJENJE. odstopanje 271,2 273,5 274,0 273,3 275,0 274,6

Vsebina MERJENJE. odstopanje 271,2 273,5 274,0 273,3 275,0 274,6 Vsebina MERJENJE... 1 GIBANJE... 2 ENAKOMERNO... 2 ENAKOMERNO POSPEŠENO... 2 PROSTI PAD... 2 SILE... 2 SILA KOT VEKTOR... 2 RAVNOVESJE... 2 TRENJE IN LEPENJE... 3 DINAMIKA... 3 TLAK... 3 DELO... 3 ENERGIJA...

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za strojništvo. Računske vaje iz fizike

Univerza v Ljubljani Fakulteta za strojništvo. Računske vaje iz fizike Univerza v Ljubljani Fakulteta za strojništvo Darja Horvat, Rok Petkovšek, Andrej Jeromen, Peter Gregorčič, Tomaž Požar, Vid Agrež Računske vaje iz fizike Ljubljana, 2014 1 Kazalo 1 Uvod 2 Premo gibanje

Διαβάστε περισσότερα

VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič.

VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič. VAJE IZ NIHANJA Izberi pravilen odgovor in fizikalno smiselno utemelji svojo odločitev. I. OPIS NIHANJA 1. Slika kaže nitno nihalo v ravnovesni legi in skrajnih legah. Amplituda je razdalja: a. Od 1 do

Διαβάστε περισσότερα

VEKTORJI GIBANJE V ENI DIMENZIJI. a (t) 0 0 a 0

VEKTORJI GIBANJE V ENI DIMENZIJI. a (t) 0 0 a 0 VEKTORJI 1. Mlad jadralec se uči jadrati. Najprej naredi 180 m proti vzhodu, nato se obrne in naredi 80 m v smeri 330º glede na sever. Ponovno spremeni smer in naredi 150 m v smeri jugozahoda, ko se odloči,

Διαβάστε περισσότερα

Fakulteta za matematiko in fiziko 10. december 2001

Fakulteta za matematiko in fiziko 10. december 2001 Naloge iz fizike I za FMT Aleš Mohorič Fakulteta za matematiko in fiziko 10. december 2001 1 Meritve 1. Izrazi svojo velikost v metrih, centimetrih, čevljih in inčah. 2. Katera razdalja je daljša, 100

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700

Διαβάστε περισσότερα

1. kolokvij iz Fizike za študente FKKT Ljubljana,

1. kolokvij iz Fizike za študente FKKT Ljubljana, 1. kolokvij iz Fizike za študente FKKT Ljubljana, 16. 11. 2015 1. Majhen vzorec na dnu epruvete vstavimo v ultracentrifugo in jo enakomerno pospešimo do najvišje hitrosti vrtenja, pri kateri se vzorec

Διαβάστε περισσότερα

Slika 5: Sile na svetilko, ki je obešena na žici.

Slika 5: Sile na svetilko, ki je obešena na žici. 4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno

Διαβάστε περισσότερα

Teorijska fizika I (FMF, Pedagoška fizika, 2009/10)

Teorijska fizika I (FMF, Pedagoška fizika, 2009/10) dr. Andreja Šarlah Teorijska fizika I (FMF, Pedagoška fizika, 2009/10) kolokviji in izpiti Vsebina Mehanika in elastomehanika 2 1. kolokvij 2 2. kolokvij 3 1. izpit 4 2. izpit 5 3. izpit (2011) 6 4. izpit

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Merske enote. Računanje z napakami.

Merske enote. Računanje z napakami. Vaje Merske enote. Računanje z napakami. tb 1. Enačba x= Ae sin ( at + α ) je dimenzijsko homogena. V kakšnih merskih enotah so x, a, b in α, če je A dolžina in t čas?. V dimenzijsko homogeni enačbi w

Διαβάστε περισσότερα

ZBRIKA KOLOKVIJSKIH IN IZPITNIH NALOG IZ FIZIKE ZA ŠTUDENTE NARAVOSLOVNO TEHNIŠKE FAKULTETE. Matej Komelj

ZBRIKA KOLOKVIJSKIH IN IZPITNIH NALOG IZ FIZIKE ZA ŠTUDENTE NARAVOSLOVNO TEHNIŠKE FAKULTETE. Matej Komelj ZBRIKA KOLOKVIJSKIH IN IZPITNIH NALOG IZ FIZIKE ZA ŠTUDENTE NARAVOSLOVNO TEHNIŠKE FAKULTETE Matej Komelj Ljubljana, oktober 2013 Kazalo 1 Uvod 2 2 Mehanika 3 2.1 Kinematika....................................

Διαβάστε περισσότερα

Matej Komelj. Ljubljana, september 2013

Matej Komelj. Ljubljana, september 2013 VAJE IZ FIZIKE ZA ŠTUDENTE FARMACIJE Matej Komelj Ljubljana, september 2013 Kazalo 1 Uvod 2 2 Kinematika v eni razsežnosti, enakomerno kroženje 3 3 Kinematika v dveh razsežnostih, statika, dinamika 5 4

Διαβάστε περισσότερα

Kinematika, statika, dinamika

Kinematika, statika, dinamika Kinematika, statika, dinamika 0. december 016 1 Gibanje v eni dimenziji 1.1 Količine in osnovne enačbe Osnovna naloga kinematike je opis lege (pozicije) telesa x v odvisnosti od časa t s funkcijo x(t).

Διαβάστε περισσότερα

1. kolokvij iz fizike za študente kemije Ljubljana,

1. kolokvij iz fizike za študente kemije Ljubljana, 1. kolokvij iz fizike za študente kemije Ljubljana, 4. 12. 2008 1. Dve kroglici sta obešeni na enako dolgih vrvicah. Prvo kroglico, ki ima maso 0.4 kg, dvignemo za 9 cm in spustimo, da se zaleti v drugo

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Pisni izpit iz predmeta Fizika 2 (UNI)

Pisni izpit iz predmeta Fizika 2 (UNI) 0 0 0 0 3 4 0 0 0 0 0 0 5 Pisni izpit iz predmeta Fizika (UNI) 301009 1 V fotocelici je električni tok posledica elektronov, ki jih svetloba izbija iz negativne elektrode (katode) a) Kolikšen električni

Διαβάστε περισσότερα

DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE

DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE Seinarska naloga iz fizike DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE Maja Kretič VSEBINA SEMINARJA: - Delo sile - Kinetična energija - Potencialna energija - Zakon o ohraniti

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Nihanje in valovanje, zbirka kolokvijskih nalog

Nihanje in valovanje, zbirka kolokvijskih nalog Barbara Rovšek Nihanje in valovanje, zbirka kolokvijskih nalog z rešitvami 1 Nihanje 11 Kinematika (nedušenega) nihanja 1 Nihalo niha z nihajnim časom 4 s V nekem trenutku je njegov odmik od mirovne lege

Διαβάστε περισσότερα

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike. Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J.

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike. Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J. Zbirka rešenih nalog s kolokvijev in izpitov iz fizike Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J. Kotar Prosim, da kakršnekoli vsebinske ali pravopisne napake sporočite

Διαβάστε περισσότερα

Govorilne in konzultacijske ure 2014/2015

Govorilne in konzultacijske ure 2014/2015 FIZIKA Govorilne in konzultacijske ure 2014/2015 Tedenske govorilne in konzultacijske ure: Klemen Zidanšek: sreda od 8.00 do 8.45 ure petek od 9.40 do 10.25 ure ali po dogovoru v kabinetu D17 Telefon:

Διαβάστε περισσότερα

NALOGE ZA SKUPINE A, C, E, G, I, K

NALOGE ZA SKUPINE A, C, E, G, I, K Fizioterapija ESM FIZIKA - VAJE NALOGE ZA SKUPINE A, C, E, G, I, K 1.1 Drugi Newtonov zakon podaja enačba F = m a. Pokažite, da je N, enota za silo, sestavljena iz osnovnih enot. 1.2 2.1 Krogla z maso

Διαβάστε περισσότερα

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike 1 Zbirka rešenih nalog s kolokvijev in izpitov iz fizike Naravoslovnotehniška fakulteta, šolsko leto 2004/05 in 2005/06 Avtorji: S. Fratina, A. Gomboc in J. Kotar Verzija: 6. februar 2007 Prosim, da kakršnekoli

Διαβάστε περισσότερα

Jan Kogoj. . Ko vstavimo podano odvisnost pospeška od hitrosti, moramo najprej ločiti spremenljivke - na eno stran denemo v, na drugo pa v(t)

Jan Kogoj. . Ko vstavimo podano odvisnost pospeška od hitrosti, moramo najprej ločiti spremenljivke - na eno stran denemo v, na drugo pa v(t) Naloge - Živilstvo 2013-2014 Jan Kogoj 18. 4. 2014 1. Plavamo čez 5 m široko reko, ki teče s hitrostjo 2 m/s. Hitrost našega plavanja je 1 m/s. (a) Pod katerim kotom glede na tok reke moramo plavati, da

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica drugega telesa, ki nanj učinkuje.

Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica drugega telesa, ki nanj učinkuje. 2. Dinamika 2.1 Sila III. PREDNJE 2. Dinamika (sila) Grška beseda (dynamos) - sila Gibanje teles pod vplivom zunanjih sil 2.1 Sila Telo samo po sebi ne spremeni svoje lege ali oblike. To je lahko le posledica

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

1. kolokvij iz predmeta Fizika 2 (UNI)

1. kolokvij iz predmeta Fizika 2 (UNI) 0 0 0 2 7 1 5 0 0 0 0 0 9 vpisna št: 1 kolokvij iz predmeta Fizika 2 (UNI) 16042010 1 Kvadratni žičnati okvir s stranico 2 cm in upornostjo 007 Ω se enakomerno vrti okoli svoje diagonale tako da naredi

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Naloge in seminarji iz Matematične fizike

Naloge in seminarji iz Matematične fizike Naloge in seminarji iz Matematične fizike Odvodi, Ekstremi, Integrali 1. Za koliko % se povečata površina in prostornina krogle, če se radij poveča za 1 %? 2. Za koliko se zmanjša težni pospešek, če se

Διαβάστε περισσότερα

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2.

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2. ENOTE IN MERJENJA Fizika temelji na merjenjih Vsa važnejša fizikalna dognanja in zakoni temeljijo na ustreznem razumevanju in interpretaciji meritev Tudi vsako novo dognanje je treba preveriti z meritvami

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok. 1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.

Διαβάστε περισσότερα

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2): ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Dinamika togih teles

Dinamika togih teles Univerza v Ljubljani Fakulteta za strojništvo LADISK Laboratorij za dinamiko strojev in konstrukcij Dinamika togih teles Rešeni kolokviji in izpiti Dr Janko Slavič 5 oktober 01 Zadnja različica se nahaja

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

1. kolokvij iz predmeta Fizika 2 (VSŠ)

1. kolokvij iz predmeta Fizika 2 (VSŠ) 0 0 0 4 2 5 9 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: 1. kolokvij iz predmeta Fizika 2 (VSŠ) 4.4.2013 1. Kolikšen je napetost med poljubno

Διαβάστε περισσότερα

Če se telo giblje, definiramo še vektorja hitrosti v in pospeška a:

Če se telo giblje, definiramo še vektorja hitrosti v in pospeška a: FIZIKA 1. poglavje: Mehanika - B. Borštnik 1 MEHANIKA(prvi del) Kinematika Obravnavamo gibanje točkastega telesa. Izberemo si pravokotni desni koordinatni sistem (sl. 1), to je takšen, katerega os z kaže

Διαβάστε περισσότερα

4. HIDROMEHANIKA trdno, kapljevinsko in plinsko tekočine Hidrostatika Tlak v mirujočih tekočinah - pascal

4. HIDROMEHANIKA trdno, kapljevinsko in plinsko tekočine Hidrostatika Tlak v mirujočih tekočinah - pascal 4. HIDROMEHANIKA V grobem ločimo tri glana agregatna stanja snoi: trdno, kapljeinsko in plinsko. V trdni snoi so atomi blizu drug drugemu in trdno poezani med seboj ter ne spreminjajo sojega relatinega

Διαβάστε περισσότερα

3. MEHANIKA Telesa delujejo drugo na drugo s silami privlačne ali odbojne enake sile povzročajo enake učinke Enota za silo ( F ) je newton (N),

3. MEHANIKA Telesa delujejo drugo na drugo s silami privlačne ali odbojne enake sile povzročajo enake učinke Enota za silo ( F ) je newton (N), 3. MEHANIKA Telesa delujejo drugo na drugo s silami. Sile so lahko prilačne ali odbojne, lahko delujejo ob dotiku ali na daljao. Silo merimo po principu, ki prai, da enake sile pozročajo enake učinke.

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Pregled klasične fizike

Pregled klasične fizike dr. Andreja Šarlah gradivo za vaje Vsebina 1 Matematični pripomočki 3 2 Od atomov do vesolja 5 3 Lagrangeov in Hamiltonov formalizem 5 3.1 Gibanje v sferno simetričnem potencialu................ 10 3.2

Διαβάστε περισσότερα

1.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti!

1.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti! UNI: PISNI IZPIT IZ Atomike in optike, 3. junij, 7.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti!.naloga:

Διαβάστε περισσότερα

Tokovi v naravoslovju za 6. razred

Tokovi v naravoslovju za 6. razred Tokovi v naravoslovju za 6. razred Bojan Golli in Nada Razpet PeF Ljubljana 7. december 2007 Kazalo 1 Fizikalne osnove 2 1.1 Energija in informacija............................... 3 2 Projekti iz fizike

Διαβάστε περισσότερα

UPOR NA PADANJE SONDE V ZRAKU

UPOR NA PADANJE SONDE V ZRAKU UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži

Διαβάστε περισσότερα

ZAKLJU^NO PREVERJANJE IN OCENJEVANJE ZNANJA

ZAKLJU^NO PREVERJANJE IN OCENJEVANJE ZNANJA Š i f r a u ~ e n c a: r`avni izpitni center *N0414111* RENI ROK FIZIK PISNI PREIZKUS ^etrtek, 6. maj 004 / 45 minut ovoljeno gradivo in pripomo~ki: u~enec prinese s seboj modro ali ~rno nalivno pero oziroma

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

3.letnik - geometrijska telesa

3.letnik - geometrijska telesa .letnik - geometrijska telesa Prizme, Valj P = S 0 + S pl S 0 Piramide, Stožec P = S 0 + S pl S0 Pravilna -strana prizma P = a a + av 1 Pravilna -strana prizma P = a + a a Pravilna 6-strana prizma P =

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

SEMINARSKA NALOGA IZ FIZIKE NIHANJE VZMETNO, MATEMATIČNO IN FIZIČNO NIHALO

SEMINARSKA NALOGA IZ FIZIKE NIHANJE VZMETNO, MATEMATIČNO IN FIZIČNO NIHALO SEMINARSKA NALOGA IZ FIZIKE NIHANJE VZMETNO, MATEMATIČNO IN FIZIČNO NIHALO Katjuša Reja Mozetič Politehnia Nova Gorica Šola za znanost o oolju, študjsi progra Oolje 1 Nihanje je v naravi zelo pogost pojav.

Διαβάστε περισσότερα

PRIPRAVA ZA NACIONALNO PREVERJANJE ZNANJA IZ FIZIKE. NALOGE IZ 8. in 9. razreda. + PREGLED NARAVOSLOVJA iz 7. razreda

PRIPRAVA ZA NACIONALNO PREVERJANJE ZNANJA IZ FIZIKE. NALOGE IZ 8. in 9. razreda. + PREGLED NARAVOSLOVJA iz 7. razreda PRIPRAVA ZA NACIONALNO PREVERJANJE ZNANJA IZ FIZIKE NALOGE IZ 8. in 9. razreda + PREGLED NARAVOSLOVJA iz 7. razreda Pregled za NPZ iz FIZIKE Stran 2 Fizikalna količina čas dolžina pot višina PREGLED FIZIKALNIH

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

NALOGE K PREDMETU DELOVNO OKOLJE -PRAH

NALOGE K PREDMETU DELOVNO OKOLJE -PRAH NALOGE K PREDMETU DELOVNO OKOLJE -PRAH 1. Kakšna je povprečna hitrost molekul CO 2 pri 25 C? 2. Kakšna je povprečna hitrost molekul v zraku pri 25 C, kakšna pri 100 C? M=29 g/mol 3. Pri kateri temperaturi

Διαβάστε περισσότερα

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

VAJE IN NAVODILA ZA DELO FIZIKA, 9. RAZRED

VAJE IN NAVODILA ZA DELO FIZIKA, 9. RAZRED VAJE IN EKSPERIMENTI FIZIKA 9 OŠ Brezovica pri Ljubljani Fizikalno interno gradivo VAJE IN NAVODILA ZA DELO FIZIKA, 9. RAZRED Naloge rešuj tako, da jih najprej dobro prebereš in premisliš. Kljub temu,

Διαβάστε περισσότερα

Mehanika fluidov. Statika tekočin. Tekočine v gibanju. Lastnosti tekočin, Viskoznost.

Mehanika fluidov. Statika tekočin. Tekočine v gibanju. Lastnosti tekočin, Viskoznost. Mehanika fluidov Statika tekočin. Tekočine v gibanju. Lastnosti tekočin, Viskoznost. 1 Statika tekočin Če tekočina miruje, so vse sile, ki delujejo na tekočino v ravnotežju. Masne volumske sile: masa tekočine

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Fizika (BF, Biologija)

Fizika (BF, Biologija) dr. Andreja Šarlah Fizika (BF, Biologija) gradivo za vaje 2009/10 Vsebina 1. vaje: Matematični uvod: funkcije, vektorji & Newtnovi zakoni gibanja: kinematika, sile, navori, energija 2 2. vaje: Coulombov

Διαβάστε περισσότερα

Seznam domačih nalog - Matematična fizika 1

Seznam domačih nalog - Matematična fizika 1 Seznam domačih nalog - Matematična fizika 1 2016/2017 V {zavitih oklepajih} so številke nalog, ki so relevantne za rezervacijo. dopolnjeval, ko bo to potrebno. Seznam nalog se bo Spletna stran za rezervacije:

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

TRDNOST (VSŠ) - 1. KOLOKVIJ ( )

TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem

Διαβάστε περισσότερα

OSNOVE HIDROSTATIKE. - vede, ki preučuje mirujoče tekočine

OSNOVE HIDROSTATIKE. - vede, ki preučuje mirujoče tekočine OSNOVE HIDROSTATIKE - vede, ki preučuje mirujoče tekočine HIDROSTATIKA Značilnost, da je sila na katero koli točko v tekočini enaka iz vseh smeri. Če ta pogoj o ravnovesju sil ne velja, se tekočina premakne

Διαβάστε περισσότερα

Statično in kinetično trenje

Statično in kinetično trenje Sila enja Sila enja: povzoči paske na koži, vpliva na speminjanje oblike elesa,... Po dugi sani pa nam omogoči, da hodimo po povšini, vozimo avomobile, plezamo po vveh,... Lasnosi sile enja: Sila enja

Διαβάστε περισσότερα

Zbirka nalog iz Matematične fizike za VSŠ

Zbirka nalog iz Matematične fizike za VSŠ Zbirka nalog iz Matematične fizike za VSŠ Borut Paul Kerševan Dostopno na http://www-f9.ijs.si/ kersevan/ COBISS ID: [COBISS.SI-ID 242144000] ISBN: 978-961-92548-1-3 Naslov: Zbirka nalog iz Matematične

Διαβάστε περισσότερα

Regijsko tekmovanje srednješolcev iz fizike v letu 2004

Regijsko tekmovanje srednješolcev iz fizike v letu 2004 Regijsko tekmovanje srednješolcev iz fizike v letu 004 c Tekmovalna komisija pri DMFA 7. marec 004 Kazalo Skupina I Skupina II 4 Skupina III 6 Skupina I rešitve 8 Skupina II rešitve 11 Skupina III rešitve

Διαβάστε περισσότερα

Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Ponedeljek, 30. avgust 2010 SPLOŠNA MATURA

Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Ponedeljek, 30. avgust 2010 SPLOŠNA MATURA Š i f r a k a n d i d a t a : Državni izpitni center *M07* MEHNIK JESENSKI IZPITNI ROK NVODIL Z OCENJEVNJE Ponedeljek, 0. avgust 00 SPLOŠN MTUR RIC 00 M0-7-- PODROČJE PREVERJNJ Pretvorite podane veličine

Διαβάστε περισσότερα

1. Newtonovi zakoni in aksiomi o silah:

1. Newtonovi zakoni in aksiomi o silah: 1. Newtonovi zakoni in aksiomi o silah: A) Telo miruje ali se giblje enakomerno, če je vsota vseh zunanjih sil, ki delujejo na telo enaka nič. B) Če rezultanta vseh zunanjih sil, ki delujejo na telo ni

Διαβάστε περισσότερα

Fizika (BF, Biologija)

Fizika (BF, Biologija) dr. Andreja Šarlah Fizika (BF, Biologija) gradivo za vaje 2013/14 Vsebina 1. vaje: Velikostni redi, leče, mikroskop 2 2. vaje: Newtnovi zakoni gibanja: kinematika, sile, navori, energija 4 3. vaje: Gravitacija,

Διαβάστε περισσότερα

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.

Διαβάστε περισσότερα

Fizikalne osnove. Uvod. 1. Fizikalne količine Fizikalne spremenljivke, enote, merjenje Zapis količin, natančnost

Fizikalne osnove. Uvod. 1. Fizikalne količine Fizikalne spremenljivke, enote, merjenje Zapis količin, natančnost Fizikalne osnove Uvod V prvih dveh poglavjih ponovimo nekaj osnovnih fizikalnih pojmov, ki jih bomo kasneje srečevali pri obravnavi tako snovnih kot električnih in toplotnih tokov. V prvem poglavju obravnavamo

Διαβάστε περισσότερα

LADISK Laboratorij za dinamiko strojev in konstrukcij. Višja dinamika. Rešene naloge iz analitične mehanike. Dr. Janko Slavič. 22.

LADISK Laboratorij za dinamiko strojev in konstrukcij. Višja dinamika. Rešene naloge iz analitične mehanike. Dr. Janko Slavič. 22. Univerza v Ljubljani Fakulteta za strojništvo LADISK Laboratorij za dinamiko strojev in konstrukcij Višja dinamika Rešene naloge iz analitične mehanike Dr. Janko Slavič 22. avgust 2012 Zadnja različica

Διαβάστε περισσότερα

*M * FIZIKA. Izpitna pola 2. Sreda, 1. september 2004 / 105 minut. [ifra kandidata: JESENSKI ROK

*M * FIZIKA. Izpitna pola 2. Sreda, 1. september 2004 / 105 minut. [ifra kandidata: JESENSKI ROK [ifra kandidata: Dr `avni i zpitni center *M4411* JESENSKI ROK FIZIKA Izpitna pola Sreda, 1. september 4 / 15 minut Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj nalivno pero ali kemi~ni

Διαβάστε περισσότερα

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N. Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu

Διαβάστε περισσότερα

To so neobnovljivi viri energije.

To so neobnovljivi viri energije. Pogosto govorimo o električni energiji, toplotni, vodni, sončni, jedrski in drugih energijah. Voda v strugi potoka, voda za jezom, morski valovi, veter, les, premog, nafta, zemeljski plin, geotermalna

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

= 3. Fizika 8. primer: s= 23,56 m, zaokroženo na eno decimalno vejico s=23,6 m. Povprečna vrednost meritve izračuna povprečno vrednost meritve

= 3. Fizika 8. primer: s= 23,56 m, zaokroženo na eno decimalno vejico s=23,6 m. Povprečna vrednost meritve izračuna povprečno vrednost meritve Fizika 8 Merjenje Pojasniti namen in pomen meritev pri fiziki našteje nekaj fizikalnih količin in navede enote zanje, ter priprave s katerimi jih merimo Merska Merska enota Merska priprava količina Dolžina

Διαβάστε περισσότερα