NALOGE K PREDMETU DELOVNO OKOLJE -PRAH
|
|
- Κητώ Λαμπρόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 NALOGE K PREDMETU DELOVNO OKOLJE -PRAH 1. Kakšna je povprečna hitrost molekul CO 2 pri 25 C? 2. Kakšna je povprečna hitrost molekul v zraku pri 25 C, kakšna pri 100 C? M=29 g/mol 3. Pri kateri temperaturi bo povprečna hitrost atomov Cs (v peči) enaka hitrosti molekul v zraku pri 25 C? 4. Kakšna je najbolj verjetna hitrost molekul v zraku pri 25 C, kakšna pri 100 C? Primerjajte z rezultatom pri nalogi 1. M=29 g/mol 5. Katero razdaljo predstavlja srednja prosta pot molekul v plinu? 6. Kakšna je srednja prosta pot molekul v zraku pri p= Pa in 20 C. Kakšna je srednja prosta pot molekul v zraku nekje v npr. gorah, kjer pade zračni tlak na 50 % vrednosti? 7. Izračunajte difuzijski koeficient za molekule v zraku pri 20 C in a) p=0.1 Pa b) p= Pa c) p= Pa. 8. Kakšen je tok plina zaradi difuzije, če je v cevi gradient tlaka Pa/cm? 9. Izračunajte viskoznost zraka, kot jo napoveduje kinetična teorija plinov pri: a) 273 K b) 298 K c) 1000 K. 1
2 10. V tabeli ste zasledili podatek, da je MDK za pare metanola v zraku 200 ppm. Koliko mg metanola je dovoljeno v m 3 zraka pri p= Pa in 293 K. 11. Pokončno valjasto posodo s polmerom 5 cm in višino 150 cm do roba napolnimo s tekočino (ρ=1.6 kg/dm 3 ), ki ji želimo določiti viskoznost. Vanjo spustimo jekleno kroglico (ρ=7.8 kg/dm 3 ) s premerom 10 mm in ji izmerimo čas padanja v tekocini 23 s. Kakšna je viskoznost tekočine, ce predpostavimo, da je padanje kroglice enakomerno. 12. S kakšno stalno hitrostjo pada padalec z maso 70 kg, ki visi na kupolastem padalu s polmerom r=2m? Cu padala =1.4, ρ zraka =1.29 kg/m Izračunajte premer delca kremena (ρ = 2.6 kg/dm 3 ), ki v zraku pada s sedimentacijsko hitrostjo 2m/s.(η = Pa s) 14. Kakšno sedimentacijsko hitrost ima delec (ρ = 2.6 kg/dm 3, r=5 µ m) v zraku? 15. Za kocko z robom 10 µm izračunajte: a) premer ekvivalentne projecirane površine b) premer ekvivalentne površine c) premer ekvivalentnega volumna. 16. Za delec, ki ima obliko kvadra z roboma a=5 µm in b=8 µm izračunajte: a) premer ekvivalentne projecirane površine b) premer ekvivalentne površine c) premer ekvivalentnega volumna. 17. Izračunajte premer ekvivalentnega volumna za cilindrično vlakno z dolžino 50 µm in premerom 2 µm. 18. Izračunajte aerodinamični premer za delec z gostoto 2.6 kg/dm 3 in premer ekvivalentnega volumna 150 µm. 19. Izračunajte aerodinamični premer za delec z gostoto 2.6 kg/dm 3 in premer ekvivalentnega volumna 20 µm. 20. Izračunajte aerodinamični premer za kocko z gostoto 2.6 kg/dm 3 in robom 15 µm. 2
3 21. Izračunajte koeficient Brownove difuzije D B = ktc Cun 6πrη C Cun = 1 + ( e 0.44 d λ ) λ d za kroglast delec s premerom: a) d=0.01 µm b) d=1 µm v zraku pri T=293 K. Srednja prosta pot molekul v zraku pri teh pogojih je µm. η= Pa s, k= J/K 22. Delec s premerom 0.01 µm se nahaja v zraku pri T=293 K na dnu sferične jame s premerom 300 µm. Izračunajte najbolj verjeten čas, v katerem bo delec dosegel rob jame z Brownovo difuzijo. 23. Izračunajte kritični premer delca, ki sedimentacijsko hitrost enako hitrosti Brownovega gibanja. 24. Telo enakomerno kroži po krožnici s polmerom 10 cm. V eni minuti naredi 120 obhodov. Kakšni sta obodna in kotna hitrost, kakšen je radialni pošpesek? Za kakšen kot se zavrti radij v 0.5 sekunde? 25. Izračunajte hitrost odmikanja prašnih delcev (ρ=2.6 kg/dm 3 ) v ciklonu s polmerom 25 cm, kjer prašni zrak kroži s hitrostjo 15 m/s za kroglaste delce (Cu=0.5) s premerom a) 10 µm b) 100 µm. 26. Prašne delce (d=5 µm) nabijemo, da nosijo 500 e naboja. Vodimo jih skozi električno polje z jakostjo 20 MV/cm. Kakšn je hitrost delcev pod vplivom električnega polja? 27. Ugotovili so, da delci kremena nosijo mnogokratnik osnovnega naboja e, ki je najbližje celo stevilo izraza A d n,a = 11,n = 1.2. Kakšna je hitrost delcev kremena pod vplivom električnega polja z jakostjo 20 MV/cm za kroglaste delce s premerom: a) 5 µm b) 50 µm. 3
4 Za katere bo izločanje iz zraka bolj učinkovito? 28. Izračunajte separacijski koeficient za ciklon s premerom 50 cm, če v njem zaprašeni zrak kroži s hitrostjo 20 m/s? 29. Kakšen je separacijski koeficient elektrofiltra (E=15 MV/cm), če delce s premerom 2 µm naelektrimo, da nosijo 200e naboja? 30. Intenziteta svetlobnega žarka se na 14.8 m dolgi poti zaradi zaprašenosti zmanjša za 92.3 %. Kakšna je koncentracija prahu v zarku, če je ekstinkcijski koeficient tega prahu m 2 /g? 31. Intenziteta svetlobnega žarka se na 15.2 m dolgi poti zaradi zaprašenosti zmanjša na 5.3 %. Kakšna je koncentracija prahu v zarku, če je ekstinkcijski koeficient tega prahu 0.6 m 2 /g? 32. Koliko prahu vdihne delavec tekom delavnika (8 ur), če je povprečna koncentracija prahu v zraju 3 mg/m 3 in fizični napor zahteva minutno ventilacijo 24 l/min? 33. Delavec dela 8 ur v okolju s prahom, kjer je glavna škodljiva sestavina svinec in sicer 4 ure pri koncentraciji 2.8 mg/m 3, 2 uri pri koncentraciji 6.3 mg/m 3 in 2 uri pri koncentraciji 3.2 mg/m 3. Ali povprečna koncentracija presega MDK (4 mg/m 3 ). Kakšna je povprečna prekoracitev? 34. V peskokopu ste izmerili naslednje vrednosti koncentracij prahu, ki so mu delavci izpostavljeni: kremen : 1 mg/m3 (MDK=0.15 mg/m3), apnenec: 3 mg/m3 (MDK=5 mg/m3), prah rastlinskega izvora brez toksicnih snovi: 2 mg/m3 (MDK=3 mg/m3). Ali je delovno okolje varno v smislu predpisov? vce ne, katere varnostne ukrepe bi predlagali? 35. Kakšen naj bo razmak med ploščami horizontalnega elutriatorja v ustju merilnika, če zelimo meriti samo koncentracijo alveolarne frakcije svinčrpamo s hitrostjo 1.25 m/s, gostota svinca je kg/m 3 in viskoznost zraka Pa s! 36. Na razdalji 5 cm od pnevmatskega kladiva, kjer nastajajo delci prahu s hitrostjo vp=1 m/s, postavimo okroglo odsesevalno šobo brez prirobnice s premerom 6 cm. Kolikšna mora biti hitrost zraka na ustju šobe, da bo lovilna hitrost na tej razdalji 2x večja od v p? 37. V eni uri se v vrečastem filtru nabere 8.76 kg prahu. 4
5 Izračunaj koncentracijo prahu v vstopnem zraku, ce je pretok zaprašenega zraka skozi filter 6.8 m 3 /s in je stopnja odpraševanja filtra Zaprašeni zrak teče (laminarno) skozi 2.0 m dolgo in 20 cm visoko usedalno komoro s hitrostjo 1.0 m/s. Izračunaj premer najmanjšega delca prahu, ki ga komora še zadrži! (η zraka = Ns/m 2, ρ delcev = 2.6g/cm 3 ) 39. V vrečastem filtru za prah se v 1 uri nabere 83.1 kg prahu. Koncentracija prahu v vstopnem zraku je 4.8 g/m 3. Izračunaj stopnjo odpraševanja filtra, če je pretok zaprašenega zraka skozi filter 5.2 m 3 /s! 40. V eni uri se v vrečastem filtru nabere 9.53 kg prahu. Izračunaj koncentracijo prahu v vstopnem zraku, če je pretok zaprašenega zraka skozi filter 7.5 m 3 /s in je stopnja odpraševanja filtra 90 %! 41. Odprašeni zrak vračamo v delovni prostor pri pogoju, da koncentracija prahu v vrnjenem zraku ne sme presegati 10 % MDK. Stopnja odpraševanja odpraševalnika, ki nam je na razpolago, je 98 %. Kolikšna je lahko vstopna koncentracija prahu v zraku (MDK je 5 mg/m3), da še zadostimo temu pogoju? 42. Za odsesavanje zraka iz prostora namestimo v strop okroglo cev s prirobnico s premerom 250 mm (k = 0.75). Ventilator zagotavlja na ustju šobe hitrost zraka 15.0 m/s. Kako daleč od delavca mora biti nameščena odsesovalna cev, da hitrost gibanja zraka pri delavcu ne bo presegla 0.1 m/s? 5
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):
ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Fazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
Vsebina MERJENJE. odstopanje 271,2 273,5 274,0 273,3 275,0 274,6
Vsebina MERJENJE... 1 GIBANJE... 2 ENAKOMERNO... 2 ENAKOMERNO POSPEŠENO... 2 PROSTI PAD... 2 SILE... 2 SILA KOT VEKTOR... 2 RAVNOVESJE... 2 TRENJE IN LEPENJE... 3 DINAMIKA... 3 TLAK... 3 DELO... 3 ENERGIJA...
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
3.letnik - geometrijska telesa
.letnik - geometrijska telesa Prizme, Valj P = S 0 + S pl S 0 Piramide, Stožec P = S 0 + S pl S0 Pravilna -strana prizma P = a a + av 1 Pravilna -strana prizma P = a + a a Pravilna 6-strana prizma P =
Izpit iz predmeta Fizika 2 (UNI)
0 0 0 4 1 4 3 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: Izpit iz predmeta Fizika 2 (UI) 26.1.2012 1. Svetloba z valovno dolžino 470 nm pada
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Pisni izpit iz predmeta Fizika 2 (UNI)
0 0 0 0 3 4 0 0 0 0 0 0 5 Pisni izpit iz predmeta Fizika (UNI) 301009 1 V fotocelici je električni tok posledica elektronov, ki jih svetloba izbija iz negativne elektrode (katode) a) Kolikšen električni
Tokovi v naravoslovju za 6. razred
Tokovi v naravoslovju za 6. razred Bojan Golli in Nada Razpet PeF Ljubljana 7. december 2007 Kazalo 1 Fizikalne osnove 2 1.1 Energija in informacija............................... 3 2 Projekti iz fizike
UPOR NA PADANJE SONDE V ZRAKU
UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži
Delavno okolje-aerosoli PRAH
Delavno okolje-aerosoli PRAH P R A V I L N I K o varovanju delavcev pred tveganji zaradi izpostavljenosti kemičnim snovem pri delu 4. člen (mejne vrednosti za poklicno izpostavljenost in biološke mejne
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
ARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
TEMELJI KLASIČNE FIZIKE Bonus naloge 1-12
TEMELJI KLASIČNE FIZIKE Bonus naloge 1-12 Program: STROJNIŠTVO UN-B + GING UN-B Štud. leto 2008/09 Datum razpisa: 21.11.2008 Rok za oddajo: 19.12.2008 1. naloga Graf v = v(t) prikazuje spreminjanje hitrosti
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
NALOGE ZA SKUPINE A, C, E, G, I, K
Fizioterapija ESM FIZIKA - VAJE NALOGE ZA SKUPINE A, C, E, G, I, K 1.1 Drugi Newtonov zakon podaja enačba F = m a. Pokažite, da je N, enota za silo, sestavljena iz osnovnih enot. 1.2 2.1 Krogla z maso
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
1. kolokvij iz predmeta Fizika 2 (UNI)
0 0 0 2 7 1 5 0 0 0 0 0 9 vpisna št: 1 kolokvij iz predmeta Fizika 2 (UNI) 16042010 1 Kvadratni žičnati okvir s stranico 2 cm in upornostjo 007 Ω se enakomerno vrti okoli svoje diagonale tako da naredi
Teorijska fizika I (FMF, Pedagoška fizika, 2009/10)
dr. Andreja Šarlah Teorijska fizika I (FMF, Pedagoška fizika, 2009/10) kolokviji in izpiti Vsebina Mehanika in elastomehanika 2 1. kolokvij 2 2. kolokvij 3 1. izpit 4 2. izpit 5 3. izpit (2011) 6 4. izpit
Mehanika fluidov. Statika tekočin. Tekočine v gibanju. Lastnosti tekočin, Viskoznost.
Mehanika fluidov Statika tekočin. Tekočine v gibanju. Lastnosti tekočin, Viskoznost. 1 Statika tekočin Če tekočina miruje, so vse sile, ki delujejo na tekočino v ravnotežju. Masne volumske sile: masa tekočine
Osnovne stehiometrijske veličine
Osnovne stehiometrijske veličine Stehiometrija (grško: stoiheion snov, metron merilo) obravnava količinske odnose pri kemijskih reakcijah. Fizikalne veličine, s katerimi kemik najpogosteje izraža količino
Termodinamika vlažnega zraka. stanja in spremembe
Termodinamika vlažnega zraka stanja in spremembe Termodinamika vlažnega zraka Najpogostejši medij v sušilnih procesih konvektivnega sušenja je VLAŽEN ZRAK Obravnavamo ga kot dvokomponentno zmes Suhi zrak
F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI),
Prvi pisni test (kolokvij) iz Fizike I (UNI), 5. 12. 2003 1. Dve kladi A in B, ki sta povezani z zelo lahko, neraztegljivo vrvico, vlečemo navzgor po klancu z nagibom 24 o s konstantno silo 170 N tako,
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
OSNOVE HIDROSTATIKE. - vede, ki preučuje mirujoče tekočine
OSNOVE HIDROSTATIKE - vede, ki preučuje mirujoče tekočine HIDROSTATIKA Značilnost, da je sila na katero koli točko v tekočini enaka iz vseh smeri. Če ta pogoj o ravnovesju sil ne velja, se tekočina premakne
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
DELO IN ENERGIJA, MOČ
DELO IN ENERGIJA, MOČ Dvigalo mase 1 t se začne dvigati s pospeškom 2 m/s 2. Izračunaj delo motorja v prvi 5 sekunda in s kolikšno močjo vleče motor dvigalo v tem časovnem intervalu? [ P mx = 100kW ( to
1.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti!
UNI: PISNI IZPIT IZ Atomike in optike, 3. junij, 7.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti!.naloga:
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N
I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)
Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700
Simbolni zapis in množina snovi
Simbolni zapis in množina snovi RELATIVNA MOLEKULSKA MASA ON MOLSKA MASA Relativna molekulska masa Ker so atomi premajhni, da bi jih merili z običajnimi tehtnicami, so ugotovili, kako jih izračunati. Izražamo
1. kolokvij iz Fizike za študente FKKT Ljubljana,
1. kolokvij iz Fizike za študente FKKT Ljubljana, 16. 11. 2015 1. Majhen vzorec na dnu epruvete vstavimo v ultracentrifugo in jo enakomerno pospešimo do najvišje hitrosti vrtenja, pri kateri se vzorec
1. kolokvij iz predmeta Fizika 2 (VSŠ)
0 0 0 4 2 5 9 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: 1. kolokvij iz predmeta Fizika 2 (VSŠ) 4.4.2013 1. Kolikšen je napetost med poljubno
2. Vlak vozi s hitrostjo 2 m/s po ovinku z radijem 20 m. V vagonu je na vrvici obešena luč. Kolikšen kot z navpičnico tvori vrvica (slika 1)?
1. pisni test (KOLOKVIJ) iz Fizike 1 (UNI), 27. 11. 2006 1. Kako visoko nad ekvatorjem bi se nahajala zemeljska geostacionarna orbita, če bi bil dan na Zemlji dvakrat krajši, kot je sedaj? Polmer Zemlje
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Dinamika fluidov. Masne bilance Energijske bilance Bernoullijeva enačba
Dinamika fluido Masne bilance Energijske bilance Bernoullijea enačba Dinamika tekočin V šteilnih procesih se tekočine pretakajo. roblemi pretakanja tekočin se rešujejo z upošteanjem principo ohranite mase
1. kolokvij iz predmeta Fizika 1 (UNI)
0 0 0 4 0 0 8 0 0 0 0 0 0 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: 1. kolokvij iz predmeta Fizika 1 (UNI) 3.1.010 1. Po vodoravni ledeni ploskvi se brez
Jan Kogoj. . Ko vstavimo podano odvisnost pospeška od hitrosti, moramo najprej ločiti spremenljivke - na eno stran denemo v, na drugo pa v(t)
Naloge - Živilstvo 2013-2014 Jan Kogoj 18. 4. 2014 1. Plavamo čez 5 m široko reko, ki teče s hitrostjo 2 m/s. Hitrost našega plavanja je 1 m/s. (a) Pod katerim kotom glede na tok reke moramo plavati, da
SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Φυσικές και χημικές ιδιότητες
Φυσικές και χημικές ιδιότητες Φυσικές ιδιότητες Οι ιδιότητες που προσδιορίζονται χωρίς αλλοίωση της χημικής σύστασης της ουσίας (π.χ. σ. τήξεως, σ. ζέσεως, πυκνότητα, χρώμα, γεύση, σκληρότητα). Χημικές
Zbirka nalog iz Matematične fizike za VSŠ
Zbirka nalog iz Matematične fizike za VSŠ Borut Paul Kerševan Dostopno na http://www-f9.ijs.si/ kersevan/ COBISS ID: [COBISS.SI-ID 242144000] ISBN: 978-961-92548-1-3 Naslov: Zbirka nalog iz Matematične
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
Naloge in seminarji iz Matematične fizike
Naloge in seminarji iz Matematične fizike Odvodi, Ekstremi, Integrali 1. Za koliko % se povečata površina in prostornina krogle, če se radij poveča za 1 %? 2. Za koliko se zmanjša težni pospešek, če se
POPIS DEL IN PREDIZMERE
POPIS DEL IN PREDIZMERE ZEMELJSKI USAD v P 31 - P 32 ( l=18 m ) I. PREDDELA 1.1 Zakoličba, postavitev in zavarovanje prečnih profilov m 18,0 Preddela skupaj EUR II. ZEMELJSKA DELA 2.1 Izkop zemlje II.
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Slika 6.1. Smer električne poljske jakosti v okolici pozitivnega (levo) in negativnega (desno) točkastega naboja.
6. ONOVE ELEKTROMAGNETIZMA Nosilci naboja so: elektroni, protoni, ioni Osnoni naboj: e 0 = 1,6.10-19 As, naboj elektrona je -e 0, naboj protona e 0, naboj iona je (pozitini ali negatini) ečkratnik osnonega
VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič.
VAJE IZ NIHANJA Izberi pravilen odgovor in fizikalno smiselno utemelji svojo odločitev. I. OPIS NIHANJA 1. Slika kaže nitno nihalo v ravnovesni legi in skrajnih legah. Amplituda je razdalja: a. Od 1 do
ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2014/2015
Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2014/2015 1 Temperatura zraka 1. Kako velik (v mm) bi bil razdelek za 1 C na živosrebrnem termometru, ki vsebuje
DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE
Seinarska naloga iz fizike DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE Maja Kretič VSEBINA SEMINARJA: - Delo sile - Kinetična energija - Potencialna energija - Zakon o ohraniti
Matematične metode v fiziki II naloge
Matematične metode v fiziki II naloge 9. september 2014 2 Kazalo 1 Navadne diferencialne enačbe (NDE) 5 1.1 NDE 1.reda....................................... 5 1.2 Homogena NDE 2. reda...............................
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA
2.1. MOLEKULARNA ABSORPCJSKA SPEKTROMETRJA Molekularna absorpcijska spektrometrija (kolorimetrija, fotometrija, spektrofotometrija) temelji na merjenju absorpcije svetlobe, ki prehaja skozi preiskovano
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
17. Električni dipol
17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje
MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
Difuzijsko in kinetično zgorevanje tekočega naftnega plina
Univerza v Ljubljani Fakulteta za strojništvo Aškerčeva 6 1 Ljubljana, Slovenija telefon: 1 477 12 faks: 1 251 85 67 www.fs.uni-lj.si e-mail: dekanat@fs.uni-lj.si Katedra za energetsko strojništvo Laboratorij
4. HIDROMEHANIKA trdno, kapljevinsko in plinsko tekočine Hidrostatika Tlak v mirujočih tekočinah - pascal
4. HIDROMEHANIKA V grobem ločimo tri glana agregatna stanja snoi: trdno, kapljeinsko in plinsko. V trdni snoi so atomi blizu drug drugemu in trdno poezani med seboj ter ne spreminjajo sojega relatinega
Matematične metode v fiziki II seminarji. šolsko leto 2013/14
Matematične metode v fiziki II seminarji šolsko leto 2013/14 2 Kazalo 1 Navadne diferencialne enačbe (NDE) 5 1.1 NDE 1.reda....................................... 5 1.2 Homogena NDE 2. reda...............................
Pisni izpit iz Mehanike in termodinamike (UNI), 9. februar 07. Izpeljite izraz za kinetično energijo polnega homogenega valja z maso m, ki se brez podrsavanja kotali po klancu navzdol v trenutku, ko ima
Univerza v Ljubljani Fakulteta za strojništvo. Računske vaje iz fizike
Univerza v Ljubljani Fakulteta za strojništvo Darja Horvat, Rok Petkovšek, Andrej Jeromen, Peter Gregorčič, Tomaž Požar, Vid Agrež Računske vaje iz fizike Ljubljana, 2014 1 Kazalo 1 Uvod 2 Premo gibanje
MEHANIKA FLUIDA. Prosti cevovodi
MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora
0,00275 cm3 = = 0,35 cm = 3,5 mm.
1. Za koliko se bo dvignil alkohol v cevki termometra s premerom 1 mm, če se segreje za 5 stopinj? Prostorninski temperaturni razteznostni koeficient alkohola je 11 10 4 K 1. Volumen alkohola v termometru
3.1 Površinska napetost
3 Tekočine Lastnosti tekočin so za fiziologijo pomembne, saj kar približno 70 % človeškega telesa sestavlja najpomembnejša tekočina voda. Osnovna lastnost tekočin je, da ohranjajo prostornino, ne pa tudi
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
PREZRAČEVANJE RAČUNSKE VAJE Z REŠITVAMI. Predavatelj : dr. M. K.
PREZRAČEVANJE RAČUNSKE VAJE Z REŠITVAMI Predavatelj : dr. M. K. 18.10.2006 1. naloga ( podobna naloga na strani 7, 6 naloga ) Kakšna bo temperatura na stičišču med zunanjim delom opeke in izolacijo Tv,
Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
FS PAP Tehniška fizika Priporočene naloge za vaje v sredo,
FS PAP Tehniška fizika Priporočene naloge za vaje v sredo, 11. 1. 2017 Za nastop je potrebno pripraviti vsaj pet nalog. Študenti, ki že imajo točke iz nastopov pred tablo, morajo pripraviti vsaj dve težji
Energije in okolje 1. vaja. Entalpija pri kemijskih reakcijah
Entalpija pri kemijskih reakcijah Pri obravnavi energijskih pretvorb pri kemijskih reakcijah uvedemo pojem entalpije, ki popisuje spreminjanje energije sistema pri konstantnem tlaku. Sistemu lahko povečamo
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Fizika (BF, Biologija)
dr. Andreja Šarlah Fizika (BF, Biologija) gradivo za vaje 2009/10 Vsebina 1. vaje: Matematični uvod: funkcije, vektorji & Newtnovi zakoni gibanja: kinematika, sile, navori, energija 2 2. vaje: Coulombov
1. kolokvij iz fizike za študente kemije Ljubljana,
1. kolokvij iz fizike za študente kemije Ljubljana, 4. 12. 2008 1. Dve kroglici sta obešeni na enako dolgih vrvicah. Prvo kroglico, ki ima maso 0.4 kg, dvignemo za 9 cm in spustimo, da se zaleti v drugo
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
ZBIRKA REŠENIH PROBLEMOV IN NALOG
Izr. Prof. dr. Andrej Kitanovski Asist. dr. Urban Tomc Prof. dr. Alojz Poredoš ZBIRKA REŠENIH PROBLEMOV IN NALOG Učni pripomoček pri predmetu Prenos toplote in snovi Ljubljana, 2017 V tem delu so zbrane
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Seznam domačih nalog - Matematična fizika 1
Seznam domačih nalog - Matematična fizika 1 2016/2017 V {zavitih oklepajih} so številke nalog, ki so relevantne za rezervacijo. dopolnjeval, ko bo to potrebno. Seznam nalog se bo Spletna stran za rezervacije: