SPECTRUL RADIAŢIEI DE FRÂNARE EMISE DE TUBUL DE RAZE X. LEGEA DE DUANE-HUNT. DETERMINAREA CONSTANTEI LUI PLANCK
|
|
- Μάρκος Καρράς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 SPECTRUL RADIAŢIEI DE FRÂNARE EMISE DE TUBUL DE RAZE X. LEGEA DE DUANE-HUNT. DETERMINAREA CONSTANTEI LUI PLANCK Obietul lurării - Crterizre spetrului energeti l rdiţiei emise de tubul de rze X l diferite tensiuni de elerre U ; identifire spetrului ontinuu l rdiţiei de frânre. - Deterre limitei dinspre lungimi de undă surte ( ) spetrului ontinuu. - Verifire legii Dune Hunt de deplsre lungimii de undă limită ( ) u tensiune plită pe tub ( U = onst); deterre onstntei lui Plnk. Prinipiul lurării Se nlizeză spetrul rdiţiilor emise de ntitod l diferite tensiuni de elerre plite pe un tub de rze X. Spetrele u fost înregistrte folosind un spetrometru u ristl. Din reprezentre grfiă spetrului N(θ) (intensitte rdiţiei X în funţie de unghiul de inidenţă pe ristlul nlizor) se deteră unghiul im, θ de l re se deteteză rdiţii X difrtte pe ristl. Pe bz ondiţiei de difrţie se luleză limit dinspre lungimi de undă surte,, spetrului înregistrt pentru fiere tensiune U. Reprezentând grfi în funţie de U, se verifiă dependenţ liniră = m U. Din pnt dreptei (m) se deteră onstnt lui Plnk. Bzele fizie le lurării Notiuni introdutive Rzele X sunt rdiţii eletromgnetie u lungime de undă ~ Å, situte în domeniul spetrl dintre rze γ şi ultrviolet. În pliţii de lbortor se foloses uzul rze X u între 0,5 şi 0Å. Relţi dintre energi, frevenţ şi lungime de undă fotonului: h ε = hν = unde: h - onstnt lui Plnk; vitez luii; ε, ν - energi respetiv frevenţ fotonului. Unităţi prtie şi relţii de trnsformre: Å = 0-0 m ; nm = 0Å ; pm = 0.0Å ; ev = J Domeniul spetrl oupt de rdiţiile X se extinde spre lungimi de undă mi surte respetiv spre lungimi de undă mi mri. Rzele X u între 0,0 şi 0,5 Å se numes dure şi u pliţii în rdiogrfi industrilă su în mediină, ir ele u lungimi de undă mi mri, între 0 şi 00 Å, se numes moi. Spetrul rdiţiei eletromgnetie emise de o sursă reprezintă distribuţi pe lungimi de undă intensităţii rdiţiei, I() su numărului de fotoni N() emişi în intervlul, +d. Anlog se pote defini spetrul energeti N(ε) (distribuţi pe energii numărului de fotoni emişi), respetiv spetrul de frevenţe N(ν).
2 Rdiţi emisă de tubul de rze X Spetrul de emisie l unei surse de rze X depinde de ntur sursei şi de prmetrii de funţionre. Surs folosită uzul în lbortor este tubul de rze X. Aest este lătuit din doi eletrozi, un tod ld (filment) şi un nod (ntitod), înhişi într-o inintă vidtă. Între ei doi eletrozi se pliă o tensiune înltă U, de ordinul zeilor de kilovolti. Eletronii emişi de filment şi elerţi l diferenţă de potenţil U bombrdeză ntitodul în re sunt înetiniţi, energi lor trnsformându-se în ăldură su energie eletromgnetiă. Aest din urmă se mnifestă prin emisi de rze X.. Distribuţi spetrlă rdiţiei X emise de ntitod este lătuită din două omponente: - rdiţi rteristiă elementului ntitodului, u spetru disret, emisă de tomii exitţi prin ioniri u eletronii din fsiulul inident; - rdiţi de frânre, u spetru ontinuu, produsă prin deelerre (frânre) eletronilor în ţint metliă; În lurre se studiză e de dou omponentă rdiţiei emise de tub. Rdiţi X de frânre Conform eletromgnetismului lsi, orie srină eletriă fltă în mişre elertă emite rdiţie eletromgnetiă. În tubul de rze X, eletronii re bombrdeză ntitodul sunt deelerţi (frânţi brus) şi urmre emit rdiţie eletromgnetiă. L o vlore dtă tensiunii de elerre, în spetrul ontinuu l rdiţiei de frânre există o lungime de undă imă ( ), respetiv o frevent mxim (ν mx ). Limit nu depinde de ntur ntitodului, fiind detertă numi de tensiune înltă U, plită pe tub. În 95, Dune şi Hunt u găsit ă produsul (U. ) este onstnt şi u stbilit formul empiriă: U Vm () (lege de deplsre Dune-Hunt) Limit dinspre lungimi de undă surte spetrului ontinuu pote fi explită în drul teoriei fotonie rdiţiei. Eletronii inidenţi jung l ntitod u energi inetiă: E = eu (2) e srin eletronului Prin frânre unui eletron în propiere unui nuleu din ţintă, se emite un foton u energi ε = hν : unde: ' hν = E E (3) ' E, E -reprezintă energi inetiă eletronului îninte, respetiv după emisi fotonului. Energi ' E v fi edtă sub formă de ăldură (el mi probbil) su prin emisi ltor fotoni. Dă un eletron pierde întreg energie inetiă prin emisi unui singur foton, est v ve energi mximă: hν = (4) mx eu 2
3 hν = h Lungime de undă imă su limit spetrului ontinuu de rze X v fi h = (5) e U Înlouind în (4) vlorile onstntelor fizie (h = Js ; = ms - ; e = As) se găseşte, în unităţi SI, următore relţie: U 6 = (6) în bună onordnţă u formul empiriă () stbilită de Dune şi Hunt. În unităţi prtie formul (6) devine: [Å] = (7) U [kv ] Observţie. Aeleşi înlouiri numerie ondu şi l formul prtiă pentru lulul lungimii de undă fotonului în funţie de energi s: [Å] = (7 ) ε [kev] 3
4 Anliz dtelor Spetrele de rze X emise de un tub u nod de Cu u fost înregistrte în metod unghiulr-dispersivă, nliz lungimilor de undă din fsiul relizându-se prin difrţie pe un monoristl de LiF (fig. ). Dă un fsiul poliromti de rze X de sub un unghi θ pe o fmilie de plne ristline (fig.2), sunt difrtte şi jung l detetor numi rzele X u lungime de undă re stisfe ondiţi Brgg de difrţie * : Fig..Shem de difrţie pe monoristl D - detetor Fig. 2 Reflexi pe plne ristline 2 dsin θ = n (8} unde: d este distnţ interplnră; pentru LiF, d = 2.04Å n ordinul de difrţie (ii n = ); Dtele sunt înregistrte în fişierele spet_n.dt (n =,2,..). În fiere fişier sunt două olone de dte; prim reprezintă unghiul de difrţie (θ), ir e de dou intensitte rdiţiei exprimtă prin numărul de impulsuri înregistte, N[imp]. În fişierul spet.txt sunt dte ondiţiile experimentle pentru fiere spetru înregistrt: tensiune înltă, U, plită pe tub şi ntur nodului. Crterizre spetrelor de rze X emise de tub; identifire spetrului rdiţiei de frânre Se reprezintă grfi spetrele experimentle N(θ) (reprezentre se fe pe lultor în ORIGIN). Din nliz spetrelor se identifiă: - spetrul ontinuu l rdiţiei X de frânre; - limit spetrului ontinuu; - liniile rteristie le ntitodului. * Interferenţ onstrutivă pre numi dă diferenţ de drum dintre undele reflette l unghi θ de plnele ristline este eglă u un număr întreg de lungimi de undă. 4
5 Deterre limitei dinspre lungimi de undă surte spetrului ontinuu Pentru fiere tensiune U se deteră din grfiul N(θ) unghiul θ de l re se deteteză rze X difrtte şi din (8) se luleză lungime de undă limită. Dtele se tre într-un tbel de form: Nr U [kv] θ [ o ] [Å]. 2.. Verifire legii Dune-Hunt. Deterre onstntei lui Plnk Se reprezintă grfi în funţie de. Prin puntele obţinute se trseză drept: U = m exp (9) U (se foloseşte metod elor mi mii pătrte; în ORIGIN există opţiune fit linir). Se deteră pnt dreptei, m exp, re se ompră u vlore teoretiă din relţi (7) (respetiv u onstnt empiriă găsită de Dune şi Hunt). Rezulttul se srie sub form: ( m exp ± σ m ) unde σ m este erore stndrd prmetrului m. Din (5) se luleză onstnt lui Plnk: e h = mexp (0) Se luleză şi erore σ h, ir rezulttul se prezintă sub form: (h ± σ h ). Constnt lui Plnk se pote deter şi reprezntând grfi tensiune de elerre U funţie de /sinθ re este tot o dependenţă liniră: U = m exp sinθ Din (5), (8) şi () se obţine relţi: 2ed h = mexp (2) (d = 2.04 Å = 0.204nm) Întrebări; teme suplimentre. Se emit rze X din ernul unui televizor/monitor în funţiune? Să se justifie răspunsul. 2. Să se explie, littiv, priţi unor linii în spetrele de rze X nlizte. De e nu pr linii în tote spetrele? 3. Să se detere lungime de undă şi energi orespunzătore liniilor rteristie observte în spetrul rdiţiei X emise de ntitodul de Cu. 5
6 ANEXA Spetre de rze X (Dte experimentle pentru lurre Spetrul rdiţiei de frânre emise de tubul de rze X. ) Spetrele pentru un tub u ntitod de Cu, l diferite tensiuni U plite pe tub, sunt măsurte în metod unghiulr-dispersivă (nliz spetrlă prin difrţie pe un monoristl de LiF, u distnţ interplnră d=2.04å). Spetrele măsurte sunt înregistrte în fişierele spet_n.dt În fiere fişier prim olonă, θ[ o ], reprezintă unghiul de inidenţă rzelor X pe plnele ristline, ir e de dou, N[imp] intensitte (număr de impulsuri înregistrte). Nume fişier U [kv] spet_.dt 8 spet_2.dt 9 spet_3.dt 0 spet_4.dt 2 spet_5.dt 6 spet_6.dt 22 spet_7.dt 36 6
7 ANEXA 2 7
8 8
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Spectrul continuu emis de tubul de raze X. Verificarea relatiei Duane Hunt. Determinarea constantei lui Planck.
Spectrul continuu emis de tubul de raze X. Verificarea relatiei Duane Hunt. Determinarea constantei lui Planck. 1. Obiectivele lucrarii - Determinarea limitei dinspre lungimi de unda scurte (λ min ) a
EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau
EcuŃii de grdul l doile x + x + c = 0,,,c R, 0 Formule de rezolvre: > 0 + x =, x =, = c; su ' + ' ' ' x =, x =, =, = c Formule utile în studiul ecuńiei de grdul l II-le: x + x = (x + x ) x x = S P 3 x
Integrale generalizate (improprii)
Integrle generlizte (improprii) Fie f : [, ] R, definită prin =, α > 0. Pentru u, funţi α f este integrilă pe intervlul [, u] şi u ln α+ α+ u u = ( α)u α α, α = ln u, α =. Dă treem l limită pentru u oţinem
MULTIMEA NUMERELOR REALE
www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Seria Balmer. Determinarea constantei lui Rydberg
Seria Balmer. Determinarea constantei lui Rydberg Obiectivele lucrarii analiza spectrului in vizibil emis de atomii de hidrogen si determinarea lungimii de unda a liniilor serie Balmer; determinarea constantei
Integrale cu parametru
1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice
Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi
Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu
EL-nesss.r.l. CONDENSATOARE DE MEDIE TENSIUNE
ONDENSATOARE DE MEDIE TENSIUNE EL-nesss.r.l. ondenstorele sunt destinte imunttirii fctorului de putere si filtrrii rmonicilor superiore in retelele de medie tensiune. Dielectricul este de tip ll-film impregnt
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
sin d = 8 2π 2 = 32 π
.. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.
86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.
Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)
Punţi de măsurare. metode de comparaţie: masurandul este comparat cu o mărime etalon de aceeaşi natura;
Punţi de măsurre metode de comprţie: msurndul este comprt cu o mărime etlon de ceeşi ntur; punte: reţe complet cu 4 noduri: brţe: 4 impednţe digonl de limentre: surs (tensiune, curent) digonl de măsurre:
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Seminariile 1 2 Capitolul I. Integrale improprii
Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur
Traductoare de deplasare inductive
SENZOI ŞI ADUCOAE 1. Introuere Senzorii e eplsre inutivi sunt lrg răspâniţi în pliţii inustrile torită robusteţii şi omptităţii lor şi torită influenţei reuse ftorilor e meiu. Funţionre se bzeză pe prinipiul
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1
FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile
Difractia de electroni
Difractia de electroni 1 Principiul lucrari Verificarea experimentala a difractiei electronilor rapizi pe straturi de grafit policristalin: observarea inelelor de interferenta ce apar pe ecranul fluorescent.
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar
Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Tema 1 - CCIA. Proiectarea unui dig de pământ
Tem - CCIA. Piete unui dig de pământ Dte de temă : Pentu pteje unui bietiv industil împtiv inundţiil, se ee exeute unui dig de pământ u umătele teistii : γ φ γ φ S S = (7,0 0, G )kn / m ;n = (5 0, G )
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Ecografia Doppler 105. Dr. Dobreanu Dan
Eogri Doppler 105 ECOGRAFIA DOPPLER Dr. Dobrenu Dn Eogri Doppler reprezintă o modlitte de explorre prtului rdiovsulr u jutorul ultrsunetelor, bztă pe eetul Doppler. Christin Johnn Doppler, mtemtiin şi
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Examen AG. Student:... Grupa: ianuarie 2016
16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex
METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA
ETOE ŞI ETAPE ECESARE PETRU ETERIAREA UGHIULUI A OUĂ PLAE PROF. IACU ARIA, ŞCOALA ROUL LAEA, ORAVIłA, CARAŞ- SEVERI (). Unghi diedru. Fie α şi β două semiplne vând ceeşi frontieră (muchie)d. Se numeşte
Algebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu
Prelucrre umeric semlelor Trsformt Trsformt este echivlet Trsformtei Lplce TL i domeiul sistemelor discrete. I domeiul sistemelor cotiui: xt s Sistem cotiuu yt Ys ht; Hs I domeiul sistemelor discrete:
1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
Anexa nr. 3 la Certificatul de Acreditare nr. LI 648 din
Valabilă de la 14.04.2008 până la 14.04.2012 Laboratorul de Încercări şi Verificări Punct lucru CÂMPINA Câmpina, str. Nicolae Bălcescu nr. 35, cod poştal 105600 judeţul Prahova aparţinând de ELECTRICA
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi
Capitolul 2 - HIDROCARBURI 2.5.ARENE
Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
2AM = AI + AJ EF. Aplicând lema de mai sus în triunghiurile ABD şi ACD avem
Conursul Gzet Mtemtiă și ViitoriOlimpii.ro Prolem 1. Fie D un punt moil pe ltur (BC) triunghiului ABC. În triunghiurile ABD şi ACD se însriu erurile C 1, respetiv C. Tngent omună exterioră (lt deât BC)
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Tema: şiruri de funcţii
Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
Capitolul 14. Asamblari prin pene
Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala
LASERI NOTIUNI FUNDAMENTALE.APLICATII
LASERI NOTIUNI FUNDAMENTALE.APLICATII Efectul de amplificare se bazează pe fenomenul emisiei induse Un atom în stare excitată se poate dezexcita spontan Un atom în stare excitată se poate dezexcita în
EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă
Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
Capitolul 2 - HIDROCARBURI 2.5.ARENE
Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Sulfonarea benzenului este o reacţie ireversibilă.
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
3. REPREZENTAREA PLANULUI
3.1. GENERALITĂŢI 3. REPREZENTAREA PLANULUI Un plan este definit, în general, prin trei puncte necoliniare sau prin o dreaptă şi un punct exterior, două drepte concurente sau două drepte paralele (fig.3.1).
Muchia îndoită: se află în vârful muchiei verticale pentru ranforsare şi pentru protecţia cablurilor.
TRASEU DE CABLURI METALIC Tip H60 Lungimea unitară livrată: 3000 mm Perforaţia: pentru a uşura montarea şi ventilarea cablurilor, găuri de 7 30 mm în platbandă, iar distanţa dintre centrele găurilor consecutive
Olimpiada de Fizică Etapa naţională- ARAD 2011 TEORIE Barem. Subiect Parţial Punctaj 1. Barem subiect 1 10 A. Condiţiile de echilibru pentru pârghii:
Olipiaa e Fiziă Etapa naţională- ARAD Pagina in 6 Subiet Parţial Puntaj. subiet A. Coniţiile e ehilibru pentru pârghii: =( + 4), 4e=f, O ( + + 4)a=b a b e f + 4 = f 4= e 4,5 4 4 4 =, =8g f + e =4g a =
DETERMINAREA CONSTANTEI RYDBERG
UNIVERSITATEA "POLITEHNICA" BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICA ATOMICA SI FIZICA NUCLEARA BN-03A DETERMINAREA CONSTANTEI RYDBERG DETERMINAREA CONSTANTEI RYDBERG. Scopul lucrării Determinarea
Subiecte Clasa a V-a
(40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii
Control confort. Variator de tensiune cu impuls Reglarea sarcinilor prin ap sare, W/VA
Control confort Variatoare rotative electronice Variator rotativ / cap scar 40-400 W/VA Variatoare rotative 60-400W/VA MGU3.511.18 MGU3.559.18 Culoare 2 module 1 modul alb MGU3.511.18 MGU3.559.18 fi ldeş
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Lucian Maticiuc SEMINAR 1 3. Capitolul I: Integrala definită. Primitive. 1. Să se arate că. f (x) dx = 0. Rezolvare:
Cpitolul I: Integrl definită. Primitive Conf. dr. Lucin Mticiuc Fcultte de Hidrotehnică, Geodezie şi Ingineri Mediului Anliz Mtemtică II, Semestrul II Conf. dr. Lucin MATICIUC. Să se rte că Rezolvre: SEMINAR
4. PLANUL 4.1 Reprezentarea planului. Relaţia punct dreaptă plan
LANUL 37 4. LANUL 4.1 Repreentre plnului. Relţi punt reptă pln Un pln orere [] este eterint în spţiu e trei punte neolinire, e o reptă şi un punt eterior ei, e ouă repte prlele su onurente. Şi în epură
1.3 Baza a unui spaţiu vectorial. Dimensiune
.3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este
STUDIUL RADIAŢIILOR X CARACTERISTICE. Obiectul lucrării
STUDIUL RADIAŢIILOR X CARACTERISTICE Obiectul lucrării Studiul radiaţiilor X caracteristice ale elementelor, verificarea legii lui Moseley şi determinarea numărului atomic Z al unor elemente folosind legea
7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL
7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in
Capitolul FF.04 Difracţia luminii
Cpitolul FF.4 Difrcţi luminii Cuvinte-cheie difrcţie Frunhofer, difrcţie Fresnel, figură de difrcţie, tehnic zonelor semiundă, difrcţi Frunhofer pe o fntă dreptunghiulră, difrcţi Frunhoher pe o fntă circulră,
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
LUCRAREA NR. 1 STUDIUL SURSELOR DE CURENT
LUCAEA N STUDUL SUSELO DE CUENT Scopul lucrării În această lucrare se studiază prin simulare o serie de surse de curent utilizate în cadrul circuitelor integrate analogice: sursa de curent standard, sursa
Metode de caracterizare structurala in stiinta nanomaterialelor: aplicatii practice
Metode de caracterizare structurala in stiinta nanomaterialelor: aplicatii practice Utilizare de metode complementare de investigare structurala Proba investigata: SrTiO 3 sub forma de pulbere nanostructurata
Examen AG. Student:... Grupa:... ianuarie 2011
Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)
Se cere determinarea caracteristicilor geometrice pentru secţiunea antisimetrică din figura de mai
Seminr 7. Crcteristici geometrice l suprfeţe plne II.. Secţiune compusă cu profile lminte jos: Se cere determinre crcteristicilor geometrice pentru secţiune ntisimetrică din figur de mi fig.1 Poziţi centrului