Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu"

Transcript

1 Prelucrre umeric semlelor Trsformt Trsformt este echivlet Trsformtei Lplce TL i domeiul sistemelor discrete. I domeiul sistemelor cotiui: xt s Sistem cotiuu yt Ys ht; Hs I domeiul sistemelor discrete: s TL x t Y s H s s t T x t e st dt s j x Sistem y discret Y h; H Titulr: Prof.dr.ig. Cristi Foşlău x x T st e x ot e st Y H 4.

2 Prelucrre umeric semlelor Trsformt Trsformt x plul s e st j e T e ω s = σ+jω T T jt ; rg T e e plul e T e j T σ < σ T σ = ; s = jω Clculul rspusului l frecvet Hjω = Titulr: Prof.dr.ig. Cristi Foşlău Figur 4. 4.

3 Prelucrre umeric semlelor Trsformt Titulr: Prof.dr.ig. Cristi Foşlău 4.3 Exemple de clcul. Impuls Dirc. Impuls Dirc deplst k k x k x δ δ-k 3. Trept uitte u. u x u

4 Prelucrre umeric semlelor Trsformt Titulr: Prof.dr.ig. Cristi Foşlău 4.4 Exemple de clcul 4. Expoetil u. u x u

5 Prelucrre umeric semlelor Trsformt Titulr: Prof.dr.ig. Cristi Foşlău 4.5 Coverget trsformtei u. u x u Fie Dc Coverge Dc u coverge

6 Prelucrre umeric semlelor Trsformt Coverget trsformtei Coditi de coverget. > Figur 4. = Regiue de coverget Titulr: Prof.dr.ig. Cristi Foşlău 4.6

7 Prelucrre umeric semlelor Trsformt Coverget trsformtei Criterii geerle de coverget x x limitt l stg lui, dic x = petru <. x limitt l drept lui, dic x = petru >. coverge petru orie situt i exteriorul cercului de o umit r. coverge petru orie situt i iteriorul cercului de o umit r. x re lugime fiit, dic x = petru < si >. x u este limitt ici l stg, ici l drept. coverge petru tote vlorile lui di plul, cu excepti evetul lui = si =. pote s coverg su s u coverg. Titulr: Prof.dr.ig. Cristi Foşlău 4.7

8 Prelucrre umeric semlelor Trsformt Fie perechile de trsformte: Propriettile trsformtei x y Y. Liiritte x y Y. Deplsre i timp k x k 3. Multiplicre cu o secvet expoetil x Titulr: Prof.dr.ig. Cristi Foşlău 4.8

9 Prelucrre umeric semlelor Trsformt Propriettile trsformtei Fie perechile de trsformte: x y Y 4. Covoluti i timp x y Y 5. Diferetiere x d d Titulr: Prof.dr.ig. Cristi Foşlău 4.9

10 Prelucrre umeric semlelor Trsformt x Repreetre sistemelor discrete i domeiul frecvet. Fucti de trsfer. Sistem discret h; H y Y H Y h H Fucti de trsfer Fucti de trsfer este trsformt rspusului l impuls. TFD h H Rspusul l frecvet l sistemului este TFD plict lui h. j H H T e H j T e j T rg H e Crcteristic de mplitudie Crcteristic de f Titulr: Prof.dr.ig. Cristi Foşlău 4.

11 Prelucrre umeric semlelor Trsformt Titulr: Prof.dr.ig. Cristi Foşlău 4. Aflre fuctiei de trsfer porid de l ecuti cu diferete M M Y Y Y M M Y Q P Y H M M M i i k k i y k x y M y y x x x y M Se plic ecutiei de mi sus

12 Prelucrre umeric semlelor Trsformt Aflre fuctiei de trsfer porid de l ecuti cu diferete Exemple. S se clculee fucti de trsfer sistemului discret dt pri ecuti cu diferete: y x 3, x,x 4 y 4,5y 5. S se clculee fucti de trsfer sistemului discret dt pri ecuti cu diferete: 4y x 6x 8x x 4 Titulr: Prof.dr.ig. Cristi Foşlău 4.

13 Prelucrre umeric semlelor Trsformt Aflre fuctiei de trsfer cuoscd rspusul l impuls Exemple. S se clculee fucti de trsfer sistemului discret l crui rspus l impuls este: h = {,5; ; ; -,8; -,; ;,}. S se clculee fucti de trsfer sistemului discret l crui rspus l impuls este dt de relti: h u Titulr: Prof.dr.ig. Cristi Foşlău 4.3

14 Prelucrre umeric semlelor Trsformt Titulr: Prof.dr.ig. Cristi Foşlău 4.4 c Aflre ecutiei cu diferete cuoscd expresi fuctiei de trsfer Exemple. S se determie ecuti cu diferete sistemului discret l crui fuctie de trsfer este dt de relti: H. S se determie ecuti cu diferete sistemului discret l crui fuctie de trsfer este dt de relti: H

15 Prelucrre umeric semlelor Trsformt d Aflre rspusului l impuls cuoscd expresi fuctiei de trsfer Cuoscd H, se pote fl h plicd trsformt ivers - h C d Metod de clcul este lorios. I prctic se plic rtificii de clcul. Titulr: Prof.dr.ig. Cristi Foşlău 4.5

16 Prelucrre umeric semlelor Trsformt d Aflre rspusului l impuls cuoscd expresi fuctiei de trsfer Exemple. S se determie ecuti cu diferete sistemului discret l crui fuctie de trsfer este dt de relti: H S se fle rspusul l impuls l sistemului de mi sus. c S se fle rspusul l semlul trept uitte.. S se fle rspusul l impuls l sistemului l crui H este: H S se fle rspusul sistemului l semlul de itrre: x = {; ; ; }. 3. S se fle rspusul l impuls l sistemului l crui H este: 3 Titulr: Prof.dr.ig. Cristi Foşlău H 3 S se spu dc sistemul este stil su u 4.6

17 Prelucrre umeric semlelor Trsformt Trsformtele le uor semle uule kδ kδ-i u cos α si α e -α Titulr: Prof.dr.ig. Cristi Foşlău k k-i cos cos si cos e 4.7

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire 4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

0 z z < r ea admite o dezvoltare în serie Laurent. n n. din dezvoltarea în serie Laurent în vecinătatea punctului z. z (notat { } { } = ρ

0 z z < r ea admite o dezvoltare în serie Laurent. n n. din dezvoltarea în serie Laurent în vecinătatea punctului z. z (notat { } { } = ρ CAPITOLUL ME5 5 eiduuri Teore reiduurilor Defiiţi reiduului Fie w o fucţie litică vâd î u puct sigulr iolt Atuci îtr-o coroă circulră < r e dite o devoltre î serie Luret < w c Se ueşte reiduu l fucţiei

Διαβάστε περισσότερα

REZIDUURI ŞI APLICAŢII

REZIDUURI ŞI APLICAŢII Mtemtici specile şi metode umerice EZIDUUI ŞI APLICAŢII. Formule petru reiduuri Câd sigulrităţile du vlore şi uţ. Teorem reiduurilor Defiiţi. Fie f() o fucţie cre re î C u pol su u puct sigulr eseţil iolt.

Διαβάστε περισσότερα

λ C valoare proprie a matricei A dacă x, x 0

λ C valoare proprie a matricei A dacă x, x 0 ALULUL NUMERI AL VALORILOR PROPRII ŞI AL VETORILOR PROPRII A mtrice pătrtică de ordiul cu elemete rele vlore proprie mtricei A dcă, R : A ; () vector propriu l mtricei A socit vlorii () (A I), I mtrice

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita REZUMAT CURS 3. Clse de uctii itegrbile Teorem.. Dc :, b] R este cotiu tuci este itegrbil pe, b]. Teorem.2. Dc :, b] R este mooto tuci este itegrbil pe, b]. 2. Sume Riem. Criteriul de itegrbilitte Riem

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

2) Numim matrice elementara o matrice:

2) Numim matrice elementara o matrice: I TRANSFORMARI ELEMENTARE ) Cre di urmtorele opertii efectute supr uei mtrice este trsformre elemetr: ) dure uei liii l o colo; b) imultire uei liii cu sclrul α = c) schimbre dou liii itre ele; d) dure

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA

CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA î ul uiversitr 9 PREFAŢĂ Prezet culegere se dreseză deopotrivă elevilor de liceu, î scopul istruirii lor

Διαβάστε περισσότερα

TESTE GRILĂ DE MATEMATICĂ. pentru examenul de bacalaureat şi admiterea în învăţământul superior UNIVERSITATEA POLITEHNICA DIN TIMISOARA

TESTE GRILĂ DE MATEMATICĂ. pentru examenul de bacalaureat şi admiterea în învăţământul superior UNIVERSITATEA POLITEHNICA DIN TIMISOARA TESTE GRILĂ DE MATEMATICĂ petru emeul de bcluret şi dmitere î îvăţămâtul superior l UNIVERSITATEA POLITEHNICA DIN TIMISOARA PREFAŢĂ Prezet culegere se dreseză deopotrivă elevilor de liceu, î scopul istruirii

Διαβάστε περισσότερα

sin d = 8 2π 2 = 32 π

sin d = 8 2π 2 = 32 π .. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 203 ιδάσκων : Π. Τσακαλίδης Λύσεις Πέµπτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/05/203 Ηµεροµηνία

Διαβάστε περισσότερα

2. CONVOLUTIA. 2.1 Suma de convolutie. Raspunsul sistemelor discrete liniare si invariante in timp la un semnal de intrare oarecare.

2. CONVOLUTIA. 2.1 Suma de convolutie. Raspunsul sistemelor discrete liniare si invariante in timp la un semnal de intrare oarecare. . CONVOLUIA. Sum de covoluie. Rspusul sisemelor discree liire si ivrie i imp l u seml de irre orecre. [ ] δ [ ] [ ] δ[ ] x x δ[ ] [ ] x x [ ] δ[ ] x x [ ] δ[ ] [ ] δ[ ] [ ] [ ] δ[ ] x x Rspusul sisemelor

Διαβάστε περισσότερα

Cap. IV Serii Fourier. 4.1 Serii trigonometrice. (1) Numărul T se numeşte perioadă pentru funcţia f ( x )., x D, x ± T D

Cap. IV Serii Fourier. 4.1 Serii trigonometrice. (1) Numărul T se numeşte perioadă pentru funcţia f ( x )., x D, x ± T D Cp. IV Serii Fourier 4. Serii trigoometrice Defiiţie: O fucţie f ( ) defiită pe o muţime ifiită D se umeşte periodică dcă eistă u umăr T stfe îcât: f ( ± T) = f ( ), D, ± T D () Număru T se umeşte periodă

Διαβάστε περισσότερα

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011 Aaliza matematica Specializarea Matematica vara 010/ iara 011 MULTIPLE HOIE 1 Se cosidera fuctia Atuci derivata mita de ordi data de este egala cu 1 y Derivata partiala de ordi a lui i raport cu variabila

Διαβάστε περισσότερα

7. CONVOLUŢIA SEMNALELOR ANALOGICE

7. CONVOLUŢIA SEMNALELOR ANALOGICE 7. CONVOLUŢIA SEMNALELOR ANALOGICE S numş funcţi (prous) convoluţi în imp smnllor şi ingrl: f ( ) Noţi conscră prousului convoluţi în imp s urmăor: no Convoluţi unui smnl cu (7.) (7.) δ su u conuc l rzul

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά

Διαβάστε περισσότερα

4. Integrale improprii cu parametru real

4. Integrale improprii cu parametru real 4. Itegrle improprii cu prmetru rel Fie f: [ b, ) [ cd, ] y [, itegrl improprie R cu < b +, stfel îcât petru fiecre b cd ] f (, ) ydeste covergetă. Atuci eistă o fucţie defiită pritr-o itegrlă improprie

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

ANEXA., unde a ij K, i = 1, m, j = 1, n,

ANEXA., unde a ij K, i = 1, m, j = 1, n, ANEXA ANEXĂ MATRICE ŞI DETERMINANŢI Fie K u corp şi m N* = N \ {} Tbloul dreptughiulr A = ude ij K i = m j = m m m se umeşte mtrice de tip (m ) cu elemete di corpul K Mulţime mtricelor cu m liii şi coloe

Διαβάστε περισσότερα

Şiruri recurente. Mircea Buzilă. 2009, Editura Neutrino Titlul: Şiruri recurente Autor: Mircea Buzilă ISBN

Şiruri recurente. Mircea Buzilă. 2009, Editura Neutrino Titlul: Şiruri recurente Autor: Mircea Buzilă ISBN Mirce Buzilă Şiruri recurete Editur eutrio 9 9 Editur eutrio Titlul: Şiruri recurete utor: Mirce Buzilă SB 978-97-896-7-9 Descriere CP Bibliotecii ţiole Roâiei BUZLĂ MRCE Şiruri recurete / Mirce Buzilă.

Διαβάστε περισσότερα

3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1

3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1 3.4 Iegrre fucţiilor rigoomerice ) R( si,cos ) d Susiuţi recomdă ese: uei fucţii rţiole. g =, (, ) şi iegrl dă se reduce l iegrre si cos si cos g si + cos + g = = = + cos si g cos + si + g = = = + = rcg

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

3. Serii de puteri. Serii Taylor. Aplicaţii.

3. Serii de puteri. Serii Taylor. Aplicaţii. Fucţiile f ( ) cos t = sut de clasă C pe R cu α si derivatelor satisface codiţiile: α f ' ( ) si = şi seria ' ( ), α α f R cu = b α ' coverge petru α > f este (ormal covergetă) absolut şi uiform covergetă

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu

Διαβάστε περισσότερα

9. STABILITATEA SISTEMELOR

9. STABILITATEA SISTEMELOR 9. STABILITATEA SISTEMELOR 9.. Itroducere Stbilitte uui item ete u ditre proprietăţile importte le cetui. Noţiue de tbilitte ete îtâlită şi liztă l tote ctegoriile de iteme: mecice, electrice, termice

Διαβάστε περισσότερα

Integrale generalizate (improprii)

Integrale generalizate (improprii) Integrle generlizte (improprii) Fie f : [, ] R, definită prin =, α > 0. Pentru u, funţi α f este integrilă pe intervlul [, u] şi u ln α+ α+ u u = ( α)u α α, α = ln u, α =. Dă treem l limită pentru u oţinem

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ Pierre-Simn Laplace ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ /4 Τι περιλαμβάνει Ορισμοί Μετασχ. Laplace απλών σημάτων Ιδιότητες Εφαρμογή στη λύση ΔΕ Μετασχηματισμένο

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

6. INTEGRALA SIMPLĂ. INTEGRALA SIMPLĂ CU PARAMETRU

6. INTEGRALA SIMPLĂ. INTEGRALA SIMPLĂ CU PARAMETRU 6. INTEGRALA SIMPLĂ. INTEGRALA SIMPLĂ CU PARAMETRU 6.1. Noţiui teoretice şi rezultte fudmetle 6.1.1. Metod lui Droux de defii itegrl simplă Fie [, ] u itervl. Descompuem itervlul [, ] îtr-u umăr orecre

Διαβάστε περισσότερα

CURS III, IV. Capitolul II: Serii de numere reale. a n sau cu a n. Deci lungimea segmentului este suma lungimilor sub-segmentelor obţinute, adică

CURS III, IV. Capitolul II: Serii de numere reale. a n sau cu a n. Deci lungimea segmentului este suma lungimilor sub-segmentelor obţinute, adică Capitolul II: Serii de umere reale Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC CURS III, IV Capitolul

Διαβάστε περισσότερα

4. Ecuaţii diferenţiale de ordin superior

4. Ecuaţii diferenţiale de ordin superior 4.. Ecuaţii liiare 4. Ecuaţii difereţiale de ordi superior O problemã iportatã este rezolvarea ecuaţiilor difereţiale de ordi mai mare ca. Sut puţie ecuaţiile petru care se poate preciza forma aaliticã

Διαβάστε περισσότερα

lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D;

lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D; Limit d fucńii Aliz mtmtică, cls XI- Limit d fucńii NotŃii: f :D R, D R, α - puct d cumulr lui D DfiiŃii l iti DfiiŃi f ( = l, l R, dcă ptru oric vciătt V lui l istă o vciătt α U lui α stfl îcât D U, α,

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Μετασχηματισμός Fourier Ιδιότητες Επιμέλεια: Αθανάσιος N. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες

Διαβάστε περισσότερα

lim = dacă se aplică teorema lui 3. Derivate de ordin superior. Aplicaţii.

lim = dacă se aplică teorema lui 3. Derivate de ordin superior. Aplicaţii. 5 Petru limita determiată: 2 + lim = dacă se aplică terema lui LHspital: 2 + 2 lim = lim = rezultatul este icrect. 3. Derivate de rdi superir. Aplicaţii. Fie A R mulţime care îşi cţie puctele de acumulare

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

CAPITOLUL 4 REZOLVAREA ECUAŢIILOR NELINIARE

CAPITOLUL 4 REZOLVAREA ECUAŢIILOR NELINIARE Tri CICNE Metode umerice î igieri ecoomică CAPITLUL 4 REZLVAREA ECUAŢIILR NELINIARE Rezolvre uei ecuţii eliire pre prctic î orice modelre mtemtică uei proleme fizice. Cu ecepţi uor czuri forte prticulre,

Διαβάστε περισσότερα

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει. Έστω xt : Ο (αμφίπλευρος) μετασχηματισμός LAPLACE ορίζεται : X: L { xt} : X xt e dt = = μιγαδική συνάρτηση της μιγαδικής μεταβλητής = σ+ j Ο (μονόπλευρος) μετασχηματισμός LAPLACE ορίζεται : L { xt } :

Διαβάστε περισσότερα

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 3: Μετασχηματισμός Laplace: Συνάρτηση μεταφοράς

Διαβάστε περισσότερα

Seminariile 1 2 Capitolul I. Integrale improprii

Seminariile 1 2 Capitolul I. Integrale improprii Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur

Διαβάστε περισσότερα

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1. Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)

Διαβάστε περισσότερα

Σήματα και Συστήματα

Σήματα και Συστήματα Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες

Διαβάστε περισσότερα

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau EcuŃii de grdul l doile x + x + c = 0,,,c R, 0 Formule de rezolvre: > 0 + x =, x =, = c; su ' + ' ' ' x =, x =, =, = c Formule utile în studiul ecuńiei de grdul l II-le: x + x = (x + x ) x x = S P 3 x

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε

Διαβάστε περισσότερα

Laborator 4 Interpolare numerica. Polinoame ortogonale

Laborator 4 Interpolare numerica. Polinoame ortogonale Laborator 4 Iterpolare umerica. Polioame ortogoale Resposabil: Aa Io ( aa.io4@gmail.com) Obiective: I urma parcurgerii acestui laborator studetul va fi capabil sa iteleaga si sa utilizeze diferite metode

Διαβάστε περισσότερα

Exerciţii de Analiză Matematică

Exerciţii de Analiză Matematică Exerciţii de Aliză Mtemtică October, 5 Şiruri si serii de umere rele. Să se stbilescă dcă şirul cu termeul geerl x =... este su u fudmetl.. Petru răt că şirul este fudmetl: Petru răt că şirul este fudmetl:

Διαβάστε περισσότερα

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA,

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA, TEORIA SISTEMELOR AUTOMATE Prof. dr. ig. Vler DOLGA, Curi_7_ Aliz i ruul iemelor liire i domeiul im II. Sieme de ordiul. Ruul iemului l emle drd imul uir re uir rm 3. Noiui rivid clie iemului de ordiul

Διαβάστε περισσότερα

4. Serii de numere reale

4. Serii de numere reale I. (,) lim x lim + II. x şi lim x III. > x ( + ) ( + ) şi cum lim ( >) ; lim x lim lim lim x + ; (,) (, ). 4. Serii de umere rele Coceptul de serie umerică este o geerlizre turlă oţiuii de sum fiită de

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

9. Polinoamele Taylor asociate unor funcţii (I. Boroica) 9.1. Formulele lui Taylor şi polinoamele Taylor asociate funcţiilor elementare

9. Polinoamele Taylor asociate unor funcţii (I. Boroica) 9.1. Formulele lui Taylor şi polinoamele Taylor asociate funcţiilor elementare lgeră Cupris Mtrice de ordi doi şi plicţii (IDicou VPop Mtrice de ordi doi Proleme rezolvte Teorem lui Cle- Hmilto 4 Proleme rezolvte 5 Determire puterilor turle le uei mtrice de ordi doi 6 Proleme rezolvte

Διαβάστε περισσότερα

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora.

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora. Cp PRIMITIVE 5 CAPITOLUL PRIMITIVE METOE GENERALE E CALCUL ALE PRIMITIVELOR Î cest prgrf vom remiti oţiue de primitivă, proprietăţile primitivelor şi metodele geerle de clcul le cestor efiiţi Fie f : I,

Διαβάστε περισσότερα

Analiza sistemelor liniare şi continue

Analiza sistemelor liniare şi continue Paula Raica Departmentul de Automatică Str. Dorobantilor 71-73, sala C21, tel: 0264-401267 Str. Baritiu 26-28, sala C14, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW / MINI (Ισχύει από 15/01/2018) ΚΙΒΩΤΙΟ ΤΑΧΥΤΗΤΩΝ ΚΥΒΙΣΜΟΣ ΙΣΧΥΣ (HP)

ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW / MINI (Ισχύει από 15/01/2018) ΚΙΒΩΤΙΟ ΤΑΧΥΤΗΤΩΝ ΚΥΒΙΣΜΟΣ ΙΣΧΥΣ (HP) Υ F21 LCI - Σειρά 1 3θυρη 1W11 120i ΧΚ 1.998 184 131 21.941,48 33.000 1W31 125i ΑΚ 1.998 224 130 26.407,03 42.040 1W91 M140i ΧΚ 2.998 340 179 31.878,02 52.790 1P91 M140i xdrive ΑΚ 2.998 340 169 35.428,74

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

IV.3. Factorul de condiţionare al unei matrice

IV.3. Factorul de condiţionare al unei matrice IV.3. Fctorul de codiţiore l uei mtrice defieşte pri Defiiţie. Fctorul de codiţiore l uei mtrice pătrte A M, (R) se cod(a) = A A - ude este o orm opertorilă mtricei A (de exemplu, su ). Pri coveţie cod(a)

Διαβάστε περισσότερα

SEMNALE {I SISTEME DISCRETE

SEMNALE {I SISTEME DISCRETE CAPITOLUL SEMNALE {I SISTEME DISCRETE.. Semale discrete Dup\ cum a fost precizat ` capitolul, u semal discret, x, este o fuc]ie a c\rei variabil\ idepedet\ este u `treg [i poate lua orice valoare real\

Διαβάστε περισσότερα

Inegalitati. I. Monotonia functiilor

Inegalitati. I. Monotonia functiilor Iegalitati I acest compartimet vor fi prezetate diverse metode de demostrare a iegalitatilor, utilizad metodele propuse vor fi demostrate atat iegalitati clasice precum si iegalitati propuse la diferite

Διαβάστε περισσότερα

Sisteme de ecuatii liniare

Sisteme de ecuatii liniare Sisteme e eutii liire Sisteme e ou eutii u ou euosute Def.U sistem e ou eutii u ou euosute re form ( S : ue,,, se umes oefiietii euosutelor, ir, termeii lieri. Def.Se umeste solutie sistemului orie ulu

Διαβάστε περισσότερα

CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite.

CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite. CAPITOLUL SERII FOURIER Ser trgoometrce Ser Fourer Fe fucţ f :[, Remtm că puctu [, ] se umeşte puct de b dscotutte de prm speţă fucţe f dcă mtee tere f ( ş f ( + estă ş sut fte y Defţ Fucţ f :[, se umeşte

Διαβάστε περισσότερα

LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2)

LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5)

e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5) Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς-Λύσεις 4ης Σειράς Ασκήσεων 7/5/ Λύσεις 4ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

sistemelor de algebrice liniarel

sistemelor de algebrice liniarel Uivesitatea Tehică a Moldovei Facultatea de Eergetică Catedra Electroeergetica Soluţioarea sistemelor de ecuaţii algebrice liiarel lect.uiv. Victor Gropa «Programarea si Utilizarea Calculatoarelor I» Cupris

Διαβάστε περισσότερα

Tema 4. Primitiva şi integrala Riemann. Aplicaţii. Modulul Primitiva. Aplicaţii

Tema 4. Primitiva şi integrala Riemann. Aplicaţii. Modulul Primitiva. Aplicaţii Tem 4 Primitiv şi itegrl Riem. Alicţii. Modulul 4. - Primitiv. Alicţii Noţiue de rimitivă s- degjt di licţiile mtemticii î situţii cocrete, cre costă î determire modelului mtemtic l uui roces tuci câd

Διαβάστε περισσότερα

3.5. Forţe hidrostatice

3.5. Forţe hidrostatice 35 oţe hidostatice 351 Elemente geneale lasificaea foţelo hidostatice: foţe hidostatice e suafeţe lane Duă foma eeţilo vasului: foţe hidostatice e suafeţe cube deschise foţe hidostatice e suafeţe cube

Διαβάστε περισσότερα

METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA

METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA ETOE ŞI ETAPE ECESARE PETRU ETERIAREA UGHIULUI A OUĂ PLAE PROF. IACU ARIA, ŞCOALA ROUL LAEA, ORAVIłA, CARAŞ- SEVERI (). Unghi diedru. Fie α şi β două semiplne vând ceeşi frontieră (muchie)d. Se numeşte

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier

Διαβάστε περισσότερα

Integrale cu parametru

Integrale cu parametru 1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul

Διαβάστε περισσότερα

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

OLIMPIADA DE MATEMATICĂ FAZA LOCALĂ CLASA a V-a

OLIMPIADA DE MATEMATICĂ FAZA LOCALĂ CLASA a V-a CLASA a V-a 1. Îtr-o familie de 4 persoae, suma vârstelor acestora este de 97 de ai. Băiatul s-a ăscut câd tatăl avea 3 de ai, iar fata s-a ăscut câd mama avea de ai şi fratele său 4 ai.puteţi găsi ce

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Τρεις ισοδύναμες μορφές: () = = = = Σειρές Fourier j( 2π ) t Τ.. x () t FS a jω0t xt () = ae =

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ LUCRARE CONCEPUTĂ ȘI REALIZATĂ DE COLECTIVUL CLASEI XII- A, PROFIL REAL, SPECIALIZAREA MATEMATICĂ-INFORMATICĂ.

Διαβάστε περισσότερα

PROBLEME CU PARTEA ÎNTREAGĂ ŞI

PROBLEME CU PARTEA ÎNTREAGĂ ŞI PROBLEME CU PARTEA ÎNTREAGĂ ŞI PARTEA FRACŢIONARĂ. Să se rezolve ecuaţia {x} {008 x} =.. Fie r R astfel ca r 9 ] 00 Determiaţi 00r]. r 0 ] r ]... r 9 ] = 546. 00 00 00 Cocurs AIME (SUA), 99. Câte ditre

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Συνάρτηση Απόκρισης Συχνότητας

Δυναμική Μηχανών I. Συνάρτηση Απόκρισης Συχνότητας Δυναμική Μηχανών I 7 3 Συνάρτηση Απόκρισης Συχνότητας 215 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα Απόκριση

Διαβάστε περισσότερα

y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V

Διαβάστε περισσότερα

EL-nesss.r.l. CONDENSATOARE DE MEDIE TENSIUNE

EL-nesss.r.l. CONDENSATOARE DE MEDIE TENSIUNE ONDENSATOARE DE MEDIE TENSIUNE EL-nesss.r.l. ondenstorele sunt destinte imunttirii fctorului de putere si filtrrii rmonicilor superiore in retelele de medie tensiune. Dielectricul este de tip ll-film impregnt

Διαβάστε περισσότερα

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν

Διαβάστε περισσότερα

Elementul de întârziere de ordinul doi, T 2

Elementul de întârziere de ordinul doi, T 2 5..04 u Fig..83.5..3. Elemeul de îârziere de ordiul doi, Elemeul de îârziere de ordiul doi coţie douǎ elemee cumulore de eergie su subsţǎ. Peru elemeul de ordi doi ecuţi difereţilǎ se oe scrie î mi mule

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας Δυναμική Μηχανών I Απόκριση Γραμμικών Συστημάτων στο 7 4 Πεδίο της Συχνότητας 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς

Διαβάστε περισσότερα

Formula lui Taylor. 25 februarie 2017

Formula lui Taylor. 25 februarie 2017 Formula lui Taylor Radu Trîmbiţaş 25 februarie 217 1 Formula lui Taylor I iterval, f : I R o fucţie derivabilă de ori î puctul a I Poliomul lui Taylor de gradul, ataşat fucţiei f î puctul a: (T f)(x) =

Διαβάστε περισσότερα

Δυναμική Ανάλυση των Συστημάτων Πρώτης Τάξης

Δυναμική Ανάλυση των Συστημάτων Πρώτης Τάξης KEΦAΛAIO 5 Δυναμική Ανάλυση των Συστημάτων Πρώτης Τάξης Όπως είδαμε στο Κεφάλαιο 4, η δυναμική μελέτη ενός φυσικού/ χημικού συστήματος οδηγεί συχνά στη διερεύνηση της δυναμικής συμπεριφοράς μιας γραμμικής,

Διαβάστε περισσότερα

Analiza sistemelor liniare şi continue

Analiza sistemelor liniare şi continue Paula Raica Departamentul de Automatică Str. Dorobanţilor 7, sala C2, tel: 0264-40267 Str. Bariţiu 26, sala C4, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea

Διαβάστε περισσότερα

5.1. ŞIRURI DE FUNCŢII

5.1. ŞIRURI DE FUNCŢII Modulul 5 ŞIRURI ŞI SERII DE FUNCŢII Subiecte :. Şiruri de fucţii.. Serii de fucţii. 3. Serii de puteri. Evaluare :. Covergeţa puctuală şi covergeţa uiformă la şiruri şi serii de fucţii.. Teorema lui Abel.

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

x x m Δx. Rezulta deci că adevătata valoare a mărimii căutate va fi cuprinsă între limitele:

x x m Δx. Rezulta deci că adevătata valoare a mărimii căutate va fi cuprinsă între limitele: ERORI DE MĂSURĂ L efecture uei determiări, pri repetre celeişi măsurători, reliztă î codiţii idetice, se oţi rezultte diferite, difereţele fiid î geerl mici. Acest fpt dovedeşte că măsurătorile efectute

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα