Εισαγωγή στην Εκτιμητική



Σχετικά έγγραφα
Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Στατιστική Επιχειρήσεων ΙΙ

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

Κεφάλαιο 9 Κατανομές Δειγματοληψίας

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

Στατιστική Συμπερασματολογία

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη

3. Κατανομές πιθανότητας

Δειγματικές Κατανομές

Σημειακή εκτίμηση και εκτίμηση με διάστημα Παραδείγματα. 12 η Διάλεξη

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο

Στατιστική ΙΙ-Διαστήματα Εμπιστοσύνης Ι (εκδ. 1.1)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Εκτίμηση Διαστήματος. Χ. Εμμανουηλίδης, 1. Στατιστική ΙI. Εκτίμηση Διαστήματος Εμπιστοσύνης για τον Μέσο

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα

Διαστήματα Εμπιστοσύνης

ΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης

Το Κεντρικό Οριακό Θεώρημα

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 3: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (3/4) Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Κεφάλαιο 9. Έλεγχοι υποθέσεων

10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

ΣΧ0ΛΗ ΤΕΧΝ0Λ0ΓΙΑΣ ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΕΡΓΑΣΤΗΡΙΟ: ΟΡΓΑΝΟΛΗΠΤΙΚΟΥ ΕΛΕΓΧΟΥ ΓΙΑΝΝΑΚΟΥΡΟΥ ΜΑΡΙΑ ΤΑΛΕΛΛΗ ΑΙΚΑΤΕΡΙΝΗ

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. )

21/11/2016. Στατιστική Ι. 8 η Διάλεξη (Κεντρικό Οριακό Θεώρημα)

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1.

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής

Στατιστική Επιχειρήσεων ΙΙ

Δειγματοληπτικές κατανομές

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ

Οι παρατηρήσεις του δείγματος, μεγέθους n = 40, δίνονται ομαδοποιημένες κατά συνέπεια ο δειγματικός μέσος υπολογίζεται από τον τύπο:

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Ι (ΨΥΧ-1202) ΑΣΚΗΣΕΙΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Θεωρητικές Κατανομές Πιθανότητας

Είδη Μεταβλητών. κλίµακα µέτρησης

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

5 o Μάθημα Έλεγχοι Υποθέσεων

Στατιστική Επιχειρήσεων ΙΙ

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ. Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

Περιγραφική Ανάλυση ποσοτικών μεταβλητών

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

Μαθηματικά Και Στατιστική Στη Βιολογία

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

Χ. Εμμανουηλίδης, 1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Εισόδημα Κατανάλωση

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Transcript:

Εισαγωγή στην Εκτιμητική

Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση του δείγματος (στατιστικό); Ποιο είναι το μέγεθος του σφάλματος; x, s 2, s, p Υπάρχει υπερεκτίμηση ή υποεκτίμηση της άγνωστης παραμέτρου του πληθυσμού;

Πληθυσμός κ δείγματα μεγέθους n μ χ 1 χ 2 χ 4 χ κ χ 3 Η κατανομή των μέσων αριθμητικών των κ δειγμάτων αποτελεί την κατανομή δειγματοληψίας των δειγματικών μέσων. Όσο αυξάνει το μέγεθος n η κατανομή αυτή προσεγγίζει την κανονική κατανομή με μέση τιμή Ε(x) και τυπική απόκλιση ** Συνήθως το σ είναι άγνωστο και αντικαθίσταται από το s σ x (τυπικό σφάλμα του μέσου) Κεντρικό οριακό θεώρημα : Όποια και αν είναι η κατανομή του πληθυσμού ως προς την μεταβλητή x οι δειγματικοί μέσοι ακολουθούν την κανονική κατανομή. n

Επιγραμματικά: Ο πληθυσμός είναι κανονικός -- Η κατανομή δειγματοληψίας του μέσου είναι κανονική ανεξάρτητα από το μέγεθος του δείγματος. Η κατανομή του πληθυσμού είναι περίπου συμμετρική -- Η κατανομή δειγματοληψίας του μέσου προσεγγίζει την κανονική κατανομή για δείγματα μεγέθους τουλάχιστον 15 παρατηρήσεων (n > 15). Ανεξάρτητα από την κατανομή του πληθυσμού -- Η κατανομή δειγματοληψίας του μέσου προσεγγίζει την κανονική κατανομή για δείγματα μεγέθους τουλάχιστον 30 παρατηρήσεων (n > 30).

Παρaδείγματα Οι βαθμοί των εξετάσεων κατανέμονται κανονικά με μέση τιμή μ = 5 και τυπική απόκλιση σ = 1. Ποια είναι η πιθανότητα ένας φοιτητής να πάρει βαθμό μεγαλύτερο από 6.5; Η μέση βαθμολογία μιας τάξης 20 φοιτητών να είναι μεγαλύτερη από 6.5; 6.5 5 P ( x 6.5) P ( z ) P ( z 1.5) 1 P ( z 1.5) 0.0668 6.68% 1 6.5 5 P ( x 6.5) P ( z ) P ( z 6.7) 1 P ( z 6.7) 1/ 20 Ένα εξάρτημα ιατρικού μηχανήματος έχει κατά μέσο όρο 500 ώρες διάρκεια λειτουργίας με τυπική απόκλιση 200 ώρες. Αν ελέγξουμε ένα δείγμα από 16 εξαρτήματα, ποια είναι η πιθανότητα η μέση τιμή της διάρκειας λειτουργίας του δείγματος να είναι μικρότερη από 460 ώρες; x N (500,50), / n 200/ 4 50 460 500 P ( x 460) P ( z ) P ( z 0.8) 0.2119 21.19% 50

Κατανομή δειγματοληψίας ποσοστού (ή αναλογίας) Έστω p η αναλογία ή ποσοστό «επιτυχιών» στον πληθυσμό και p η αναλογία των επιτυχιών στο δείγμα π.χ. αναλογία ή ποσοστό των ατόμων που δηλώνουν προτίμηση για ένα προϊόν. Η αναλογία (ή ποσοστό) μεταβάλλεται σε κάθε δείγμα και αποτελεί τυχαία μεταβλητή της οποίας η κατανομή είναι διωνυμική. Όταν το μέγεθος του δείγματος αυξάνει (n>30) η κατανομή πιθανότητας του p προσεγγίζει την κανονική και ισχύει: (1 ) p' N p, p p n Σ ένα πληθυσμό το 40% ψηφίζει το κόμμα Α και το 60% το κόμμα Β. Ποια είναι η πιθανότητα σε τυχαίο δείγμα 100 ατόμων η πλειοψηφία να ψηφίζει το κόμμα Α. 0.4 0.5 P ( p' 0.5) P ( z ) P ( z 2) 1 P ( z 2) 0.023 (0.4x 0.6)/100

Διαστήματα εμπιστοσύνης Έστω θ η τιμή μιας παραμέτρου του πληθυσμού. Με βάση τα δεδομένα ενός δείγματος προσδιορίζεται ένα διάστημα (z 1, z 2 ) το οποίο περιέχει την παράμετρο θ που θέλουμε να εκτιμήσουμε με μια καθορισμένη εκ των προτέρων πιθανότητα, δηλαδή P(z 1 <θ<z 2 ) = 1-α. Διάστημα Εμπιστοσύνης (Confidence Interval): το διάστημα (z 1, z 2 ) Όρια εμπιστοσύνης του διαστήματος (Confidence limits): τα z 1, z 2 Επίπεδο εμπιστοσύνης (level of confidence): η πιθανότητα 1-α Επίπεδο σημαντικότητας (Significance level): το α

Διαστήματα εμπιστοσύνης της μέσης τιμής Περίπτωση που η διακύμανση σ 2 είναι γνωστή x z, x z n a /2 a /2 n z a/2 : η κριτική τιμή της τυποποιημένης κανονικής κατανομής που αντιστοιχεί σε επίπεδο σημαντικότητας α. P x za /2 x za /2 1 a n n π.χ. αν α=0.05, η πιθανότητα το διάστημα εμπιστοσύνης να περιέχει την άγνωστη μέση τιμή είναι 0.95 z z 1.96 και z z 1.96 0.05/2 0.025 1 0.05/2 0.975

1-α α/2 α/2

Παράδειγμα Μία εταιρία κατασκευής ιατρικών παρασκευασμάτων παίρνει δείγμα για την ζήτηση των παρασκευασμάτων της κατά την διάρκεια 25 εβδομάδων που θεωρούνται οι σημαντικότερες για τις πωλήσεις της: 235 374 309 499 253 421 361 514 462 369 394 439 348 344 330 261 374 302 466 535 386 316 296 332 334 Είναι γνωστό ότι η τυπική απόκλιση της ζήτησης κατά την περίοδο αυτή είναι 75 παρασκευάσματα. Θέλουμε να εκτιμήσουμε την μέση τιμή της ζήτησης με 95% εμπιστοσύνη με σκοπό να εκτιμήσουμε επίπεδα αποθεμάτων.

Η καταγεγραμμένη ζήτηση των 25 εβδομάδων αποτελεί ένα δείγμα της ζήτησης. Η παράμετρος που πρέπει να εκτιμηθεί είναι η μέση τιμή του πληθυσμού: μ Από τα δεδομένα x 370.16 Επομένως Τα κάτω και άνω όρια εμπιστοσύνης είναι 340.76 and 399.56

Το εύρος ενός διαστήματος εμπιστοσύνης εξαρτάται από το επιπέδου εμπιστοσύνης, την τυπική απόκλιση του πληθυσμού, και το μέγεθος του δείγματος.