ADE. 1 Introduction. (Ryo Fujita) Lie. U q (Lg) U(Lg) Dynkin. Dynkin. Dynkin. 4 A n (n Z 1 ), B n (n Z 2 ), C n (n Z 2 ), D n (n Z 4 )

Σχετικά έγγραφα
The q-commutators of braided groups

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

1 Fuchs. Fuchs. Gauss (1.1) (α) n := α(α + 1) (α + n 1) Bessel Riemann. [MUI], [WW] Gauss. (1.2) x(1 x) d2 u dx 2 + ( γ (α + β + 1)x ) du

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Discriminantal arrangement

Jean Pierre Serre. Géométrie Algébrique et Géométrie Analytique (GAGA) Annales de l institut Fourier, Tome 6 (1956), p

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Single-value extension property for anti-diagonal operator matrices and their square

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function

: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

ΧΛΟΥΒΕΡΑΚΗ ΜΑΡΙΑ ΕΚΠΑΙΔΕΥΣΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΜΠΕΙΡΙΑ

( ) Kähler X ( ),. Floer -Oh- - [6]. X Fano *, X ( = (C ) N ) W : X C ( ) (X,W). X = P, W (y) =y + Q/y. Q P. Φ:X R N, Δ=Φ(X). u Int Δ, Lagrange L(u) =

1 What is CFT? 1. 3 Strange duality conjecture (G) Geometric strange duality conjecture... 5

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

arxiv: v1 [math.qa] 4 Jan 2014

Α Ρ Ι Θ Μ Ο Σ : 6.913

Wishart α-determinant, α-hafnian

Θεοδώρα Θεοχάρη Αποστολίδη

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Lecture 13 - Root Space Decomposition II

Lecture Notes Introduction to Cluster Algebra

ΑΘΑΝΑΣΙΟΣ Ι. ΠΑΠΙΣΤΑΣ

a A, b B,m M,n N} n + n m + m b + b, + ψ(n m ) an + nb ma + bm bb + ϕ(m n, a + a

Αναπαραστάσεις οµάδων: παραδείγµατα

Diderot (Paris VII) les caractères des groupes de Lie résolubles

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).



Coupled Fluid Flow and Elastoplastic Damage Analysis of Acid. Stimulated Chalk Reservoirs

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0

Séminaire Grothendieck

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Higher spin gauge theories and their CFT duals

galois-module δοµή χώρων διαϕορικών και παραµορϕώσεις Αριστείδης Κοντογεώργης, Πανεπιστήμιο Αθηνών Ιωάννινα 18 Μαϊου 2016

Congruence Classes of Invertible Matrices of Order 3 over F 2

L p approach to free boundary problems of the Navier-Stokes equation

Galois module structure χώρων ολόµορφων διαφορικών

arxiv:math/ v1 [math.ag] 15 Feb 1999

New York Journal of Mathematics. On a symmetry of the category of integrable modules

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions


a11 a A V = v 1 = a 11 w 1 + a 12 w 2 + a 13 w 3 + a 14 w 4 v 2 = a 21 w 1 + a 22 w 2 + a 23 w 3 + a 24 w 4 (A 12, A 13, A 14, A 23, A 24, A 34 ) A 6.

Volume 1. presenting their list of errata and corrections.

arxiv: v1 [math.ra] 19 Dec 2017

ΟΜΟΛΟΓΙΑΚΟΣ ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΟΜΑΛΩΝ (REGURAL) ΔΑΚΤΥΛΙΩΝ

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΜΗ ΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΔΟΣΕΩΝ

arxiv: v1 [math.oa] 4 Aug 2016

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

MINIMAL POLYNOMIALS AND ANNIHILATORS OF GENERALIZED VERMA MODULES OF THE SCALAR TYPE

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Ó³ Ÿ , º 3(180).. 313Ä320

Geodesic paths for quantum many-body systems

On the Galois Group of Linear Difference-Differential Equations

Συναρτησιακή Ανάλυση, εαρινό εξάμηνο Έκτο φυλλάδιο ασκήσεων. Παραδώστε τις ασκήσεις 1, 3, 4, 8 και 10 μέχρι το μάθημα της Παρασκευής 24/3.

University of Ioannina Department of Mathematics. Representation Dimension, Cohen-Macaulay Modules and Triangulated Categories

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

Monotonicity theorems for analytic functions centered at infinity. Proc. Amer. Math. Soc. (to appear). Growth theorems for holomorphic functions

ΑΧΙΛΛΕΑΣ ΔΡΑΜΑΛΙΔΗΣ CV

Lie Algebras Representations- Bibliography

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - Θ. BOLZANO - Θ. ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ. , ώστε η συνάρτηση. æ η γραφική της παράσταση να διέρχεται από το σημείο Mç

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"


Kostka functions associated to complex reflection groups


ACHILLES DRAMALIDIS CV

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

κ α ι θ έ λ ω ν α μ ά θ ω...

1 I X (f) := f(x t ) dt. f B

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

f O(U) (f n ) O(Ω) f f n ; L (K) 0(n )

Jean Bourgain Institute for Advanced Study Princeton, NJ 08540

Contraction of a Lie Algebra with respect to one of its Subalgebras and its application to Group Representations

!"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%' " (&! #!$"/001

x xn w(x) = 0 ( n N)

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

u(x, y) =f(x, y) Ω=(0, 1) (0, 1)

From root systems to Dynkin diagrams

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

A 1 A 2 A 3 B 1 B 2 B 3

( 1 ) ( 2) ΘΕΜΑ 1 ο Α. 1 Θεώρημα σχ. βιβλίου σελ. 98 Α. 2 Ορισμός σχ. βιβλίου σελ. 141 Α. 3 Ορισμός σχ. βιβλίου σελ. 280

Sho Matsumoto Graduate School of Mathematics, Nagoya University. Tomoyuki Shirai Institute of Mathematics for Industry, Kyushu University

apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJ"AL hp_a*a

IUTeich. [Pano] (2) IUTeich

SELFINJECTIVE ALGEBRAS: FINITE AND TAME TYPE

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4

Lie Algebras Representations- Bibliography

Déformation et quantification par groupoïde des variétés toriques

m i N 1 F i = j i F ij + F x

Transcript:

ADE (Ryo Fujita) 1 Introduction Lie g U(g) q 2 q q Hopf Drinfeld- U q (g) C S 1 g U(g) q U q (g) U(Lg) q U q (Lg) Lg := g C[t ±1 ] Lie U q (Lg) 2 R ADE Lie g U q (Lg) ADE Dynkin Dynkin Q Dynkin Q Hernandez-Leclerc [6] U q (Lg) C Q Q 2 2.1 Dynkin Lie An (n Z 1 ) Lie Dynkin Dynkin 3 2 3 D n (n Z 4 ) E n (n = 6, 7, 8) 1 2 3 n 1 n 1 2 1 3 4 5 2 n 3 n 2 4 A n (n Z 1 ), B n (n Z 2 ), C n (n Z 2 ), D n (n Z 4 ) E n (n = 6, 7, 8), F 4, G 2 ADE Dynkin Dynkin n 1 n n E-mail:rfujita@math.kyoto-u.ac.jp

Dynkin Lie g X = A, D, E X n Dynkin I = {1, 2,..., n} 2 i, j I i j Cartan A = (a ij ) i,j I 2 i = j ; a ij = 1 i j ; 0 X n Lie g {e i, f i, h i } i I [h i, h j ] = 0, [h i, e j ] = a ij e j, [h i, f j ] = a ij f j, [e i, f j ] = δ ij h i, ad(e i ) 1 a ij (e j ) = ad(f i ) 1 a ij (f j ) = 0 (i j), ad(x)(y) := [x, y] Lie g U(g) Lie [x, y] xy yx C Lie g C U(g) Cartan h := i I Ch i g {h i } i I {ϖ i } i I h P := i I Zϖ i h U(g) M M = M λ, M λ := {v M h v = λ(h)v (h h)}. λ P i I α i := j I a ijϖ j P P Q := i I Zα i Q + := i I Z 0α g = α Q g α R := {α Q \ {0} g α 0} R + := R Q + R = R + ( R + ) n + (resp. n ) {e i } i I (resp. {f i } i I ) g Lie n ± = α ±R + g α, h = g 0 g = n h n + α R dim g α dim n ± = R +. = 1 U(g) U(g)-mod fd Weyl Irr U(g)-mod fd P + := i I Z 0α i P 1 : 1 λ P + V (λ) v e i v = 0, h i v = λ(h i )v, f λ(h i)+1 i v = 0 ( i I) U(g) X g (X) = X 1 + 1 X : U(g) U(g) U(g) 2 U(g) V, W C V W U(g) U(g)-mod fd v w w v U(g) V W = W V 2.2 C Lie g Laurent C[t ±1 ] Lg := g C[t ±1 ] Lie [X f(t), Y g(t)] = [X, Y ] f(t)g(t), (X, Y g, f(t), g(t) C[t ±1 ])

Lg C Lie C U(Lg) ADE U q (Lg) ADE Lie g Lg U(Lg) q 1 q C 2.1. X = A, D, E X n U q (Lg) {e i,r, f i,r i I, r Z} {K ±1 i i I} {h i,m i I, m Z 0 } C : K i K 1 i = K 1 i K i = 1, [K i, K j ] = [K i, h j,l ] = [h i,m, h j,l ] = 0, K i e j,r K 1 i = q aij e j,r, K i f j,r K 1 i = q aij f j,r, (w q ±a ij z)ψi ε (z)x ± j (w) = (q±a ij w z)x ± j (w)ψε i (z), [x + i (z), x i (w)] = δ ( ( ij z ) ( w ) ) q q 1 δ ψ + i w (w) δ ψ i z (z), (w q ±aij z)x ± i (z)x± j (w) = (q±aij w z)x ± j (w)x± i (z), { x ± i (z 1)x ± j (z 2)x ± j (w) (q + q 1 )x ± i (z 1)x ± j (w)x± i (z 2) + x ± j (w)x± i (z 1)x ± i (z 2) } + {z 1 z 2 } = 0 (i j ). ε {+, } δ(z), ψ ± i (z), x± i (z) ( U q(lg)[[z, z 1 ]]) : δ(z) := r= x + i z r, ψ ± i (z) := (z) := K±1 i exp r= ( ±(q q 1 ) e i,r z r, x i (z) := r= ) h i,±m z ±m, m=1 f i,r z r. 2 {z 1 z 2 } 1 z 1 z 2 e i,r, f i,r, h i,m Lg e i t r, f i t r, h i t m K i q hi 1 U q (Lg) U q (Lg)-mod fd U q (Lg) M M = M λ, M λ = {v M K i v = q λ(hi) v (i I)} λ P 1 1 U q (Lg) C C Lie g C : U q (Lg) U q (Lg) U q (Lg) *1. i I (K i ) = K i K i, (e i,0 ) = e i,0 K 1 i + 1 e i,0, (f i,0 ) = f i,0 1 + K i f i,0, *1 U q(lg) U q(ĝ) Lie Hopf 0 U q (Lg) U q (ĝ) 0

1 C U q (Lg)-mod fd 2 3 V, W C V W W V V W W V U q (Lg) Grothendiek K(C) 2.3 C 2.2 (Chari-Pressley [1]). L C 1 Cv L 1 I π = (π i (u)) i I (1 + uc[u]) I 3 *2 (1) e i,r v = 0 (i I, r Z); (2) K i v = q λ(hi) v (i I); [ (3) L[[z ±1 ]] ψ ± i (z) v = πi (q qλ(h i) 2 ] z) π i (z) v z ±1 =0 (i I). λ := i I (deg π i)ϖ i P + [ ] z ±1 =0 z ±1 = 0 L = L(π) Irr C L(π) π (1 + uc[u]) I 1 : 1 I π (1 + uc[u]) I Drinfeld (1), (2), (3) v U q (Lg) l v l l 2.2 C l U(g)-mod fd 2.4 / Weyl Chari-Pressley [2] l Weyl U q (Lg) M(π) = U q(lg)v (1),(2),(3) /(3) /r π M(λ) = U q(lg)v (1),(2) L(π) W (π) W(λ) K v 2.2 (1), (2), (3) l M(π) L(π) C M(π) C Weyl (local Weyl module) M(π) W (π) C Weyl W (π) v (1), (2), (3) f λ(hi)+1 i,r v = 0 (i I, r Z) (2.1) v 2.2 (1), (2) M(λ) *3 *2 (2) (3) *3 M(λ) Weyl W(λ) Drinfeld λ P +

M(λ) *4 W(λ) Weyl (global Weyl module) Weyl W(λ) (1), (2) (2.1) Chari-Pressley [2] [9] R λ := End Uq (Lg)(W(λ)) = i I C[z ±1 i,1,..., z±1 i,λ(h i ) ]S λ(h i ) W(λ) R λ R λ Specm(R λ ) = (C ) λ := i I (C ) λ(hi) /S λ(hi ) ( (C ) λ [(c i,1,..., c i,λ(hi ))] i I λ(hi ) ) j=1 (1 c i,ju) (1 + uc[u]) I λ Drinfeld λ i I Drinfeld π R λ r π Weyl W (π) Weyl W(λ) r π Weyl W(λ) (C ) λ Weyl W (π) π R π := lim k R λ /r k π Weyl W(λ) π Ŵ (π) := W(λ) R λ Rπ Weyl 2.5 L(λ) M(λ) [9] π {0} M 0 (λ) λ P + (quiver variety) 2 C M(λ) M 0 (λ) M(λ) ν Q + M(ν, λ) M 0 (λ) ν Q + M 0 (ν, λ) M(λ) M 0 (λ) G(λ) := i I GL λ(h i )(C) C G(λ) π : M(λ) M 0 (λ) M 0 (λ) 0 π L(λ) (central fiber) A 1 I = {1} ϖ = ϖ 1, α = α 1 λ = lϖ P +, ν = kα Q + M(ν, λ) Grassmann T Gr(k, l) M 0 (λ) = {x End(C l ) x 2 = 0} Gr(k, l) T Gr(k, l) 0 k l 0 k l π {0} {x End(C l ) x 2 = 0} T Gr(k, l) = {(x, V ) End(C l ) Gr(k, l) x(c l ) V, x(v ) = 0} π 1 L(λ) Grassmann Gr(k, l) G(λ) = GL(C l ) C T Gr(k, l) GL(C l ) g (x, V ) = (gxg 1, gv ) C G X K X G Coh G (X) Grothendiek K(Coh G (X)) K G (X) X 1 pt Coh G (pt) G Rep(G) K G (pt) G R(G) V Rep(G) G X G [V ] R(G) [F] K G (X) *4 e i,r, f i,r U q (ĝ) 0

[V ] [F] := [V OX F] K K G (X) R(G) M(λ) M 0 (λ) G G(λ) A := R(C ) = Z[v ±1 ], R(GL k (C)) = Z[z 1 ±1,..., z±1 k ]S k R(G(λ)) = i I A[z±1 i,1,..., z±1 i,λ(h i) ]S λ(h i) A v A U q (Lg) q C C A R λ R λ = R(G(λ)) A C G(λ) X K G(λ) (X) := K G(λ) (X) A C R λ M(λ) M 0 (λ) Steinberg Z(λ) := M(λ) M0(λ) M(λ) K K G(λ) (Z(λ)) (convolution) K K G(λ) (Z(λ)) R λ K K G(λ) (L(λ)) K G(λ) (Z(λ)) 2.3 ( [9]). λ P + C Φ λ : U q (Lg) K G(λ) (Z(λ)) U q (Lg) Φ λ (KG(λ) (L(λ))) Weyl W(λ) R λ 2.4. Φ λ 4.2 3 Dynkin Hernandez-Leclerc C Q Dynkin C Q C 3.1 Gabriel (quiver) I Ω Q = (I, Ω) a Ω a I a I I Ω Q C i I C V i a Ω f a Hom(V a, V a ) ((V i ) i I, (f a ) a Ω ) Q = (I, Ω) p = (a 1, a 2,..., a l ) a k = a k+1 (1 k < l) a 1 a l (path) l p a Ω 1 0 i i 0 ϵ i Q C CQ = p Cp 2 0 *5 C CQ V V i := ϵ i V a f a : V a V a Q ((V i ), (f a )) Q CQ CQ V CQ-mod fd dimv := (dim V i ) i I (Z 0 ) I d = (d i ) i I (Z 0 ) I E d := a Ω Hom(C d a, C d a ) G d := i I GL(C di ) *5 (a 1,..., a l ) (a l+1,..., a l+m ) = δ al,a l+1 (a 1,..., a l+m ), ϵ i ϵ j = δ ij ϵ i, ϵ i (a 1,..., a l ) = δ i,a1 (a 1,... a l ), (a 1,..., a l ) ϵ i = δ al,i(a 1,... a l ).

G d (g i ) i I : (f a ) a Ω (g a f a g 1 a ) a Ω E d dimv = d V CQ-mod fd G d E d G d E d /G d d 1 : 1 3.1 (Gabriel ). (1) Q d Z I 0 E d/g d < Q Dynkin Q ADE Dynkin (2) Q Dynkin (Z 0 ) I d i I d iα i Q + (Z 0 ) I Q + CQ-mod fd R + Q + 1 : 1 Dynkin Q 3.1 (2) α R + dimm α = α M α CQ-mod fd M CQ-mod fd Krull-Schmidt dim [ ] 3.2. M m α α R+ α (m α ) Dynkin Q β β Kostant KP(β) := {(m α ) (Z 0 ) R + α m αα = β} 1 : 1 β = i I d iα i E d G d KP(β) 3.2 Auslander-Reiten Krull-Schmidt C A *6 Auslander-Reiten(AR) Γ(A) Γ(A) A Γ(A) X Y X Y *7 Dynkin Q D b (CQ-mod fd ) AR D b (CQ-mod fd ) {M α [k] α R +, k Z} M α [k] stalk H i (M α [k]) := { M α i = k ; 0 Dynkin Q = (I, Ω) ξ : I Z ξ a = ξ a + 1 a Ω ADE Dynkin ξ Q (repetition quiver) Q = (Î, Ω) Î := {(i, p) I Z p ξ i 2Z}, Ω := {(i, p) (j, p + 1) (i, p) Î, i j} *8. *6 2 C *7 section retraction 2 *8 Q Q Ω

A 3 (3, 2) (3, 0) (3, 2) (3, 4) (2, 3) (2, 1) (2, 1) (2, 3) (1, 2) (1, 0) (1, 2) (1, 4) 3.3 (cf. [4]). ξ ϕ : Q = Γ(D b (CQ-mod fd )) i I ϕ(i i [0]) = (i, ξ i ) I i CQ-mod fd M αi (injective hull) t CQ-mod fd D b (CQ-mod fd ) R + α ϕ(α) := ϕ(m α [0]) Î 3.4. A 3 R + = {α 1, α 2, α 3, (α 1 + α 2 ), (α 2 + α 3 ), (α 1 + α 2 + α 3 )} (1) Q = (1 2 3) (ξ 1, ξ 2, ξ 3 ) = (2, 1, 0) ϕ α 1 + α 2 + α 3 α 2 + α 3 α 1 + α 2 α 3 α 2 α 1 ϕ (3, 0) (2, 1) (2, 1) (1, 2) (1, 0) (1, 2) (2) Q = (1 2 3) (ξ 1, ξ 2, ξ 3 ) = (2, 1, 2) ϕ α 1 + α 2 α 3 α 2 α 1 + α 2 + α 3 α 2 + α 3 α 1 ϕ (3, 0) (3, 2) (2, 1) (2, 1) (1, 0) (1, 2) 3.3 Hernandez-Leclerc C Q C C Q Î P + := Z 0 Î ϕ(r + ) Î P0 + P + ( ) P + (1 + uc[u]) I ; l i,p (i, p) (1 q p u) li,p (i,p) Î p i I Drinfeld (1 + uc[u]) I 2.2 Irr C = (1 + uc[u]) I C Serre C Z (resp. C Q ) Irr C Z = P + (resp. Irr C Q = P+) 0 C Z C D b (CQ-mod fd ) C Q C Z CQ-mod fd D b (CQ-mod fd )

C Z C 3.5 (cf. [5]). C Z C K(C) = a C /q 2Z K(τ a C Z ) τ a U q (Lg) τ a L(π(u)) = L(π(au)) Lie n + g Lie N + C Q N + C[N + ] (categorification) 3.6 (Hernandez-Leclerc [6]). C Q C Z K(C Q ) Z C = C[N + ] C Q C[N + ] (dual canonical basis) *9 1 : 1 C Q C[N + ] C[N + ] (cluster algebra) 4 4.1 C Q KP(β) (m α ) α m αϕ(α) P 0 + KP(β) P0 + P 0 + = β Q + KP(β) KP(β) + KP(β ) KP(β + β ) C Q,β Irr C Q,β = KP(β) C Q Serre C Q = β Q + C Q,β C β C β C β+β * 10 β Q + C Q,β β = i I d iα i Q + ϕ π := i I d iϕ(α i ) P 0 + (1 + uc[u]) I π Drinfeld (π i (u)) i I λ := i I (deg π i)ϖ i P + 2.3 Φ λ : U q (Lg) K G(λ) (Z(λ)) R β := lim R λ /r k k π Φ λ Φ β : U q (Lg) K G(λ) (Z(λ)) K G(λ) (Z(λ)) Rλ Rβ =: K β R λ = R(G(λ)) A C G(λ) 1 T ( = C ) G(λ) r π r π M 0 (λ) T M 0 (λ) T T G(λ) G d T 4.1 (Hernandez-Leclerc [6]). G d M 0 (λ) T = E d E d G d Gabriel 3.2 Φ β *9 U q (g) Lusztig, *10 Grothendiek C[N + ] = β Q + C[N + ] β

4.2 (F. [3]). (1) Φ β : U q (Lg) K β K β -mod fd = CQ,β C Q,β ĈQ,β := K β -mod fg (2) ĈQ,β M(λ) T E d * 11 ĈQ,β Weyl 4.2 Dynkin Schur-Weyl A Schur-Weyl U q (Lsl n ) GL Hecke Schur-Weyl ADE Kang- -Kim [7] Dynkin Q Hecke * 12 U q (Lg) C Q 1 : 1 4.2 Kang- -Kim ([3]) [1] V. Chari and A. Pressley. Quantum affine algebras and their representations. Representations of groups (Banff, AB, 1994), 59 78, CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, 1995. [2] V. Chari and A. Pressley. Weyl modules for classical and quantum affine algebras. Represent. Theory, 5:191 223, 2001. [3] R. Fujita. Affine highest weight categories and quantum affine Schur-Weyl duality of Dynkin quiver types. preprint. arxiv:1710.11288. [4] D. Happel. Triangulated categories in the representation theory of finite-dimensional algebras. London Mathematical Society Lecture Note Series, 119. Cambridge University Press, 1988. [5] H. Hernandez and B. Leclerc. Cluster algebras and quantum affine algebras. Duke Math. J., 154(2):265 341, 2010. [6] H. Hernandez and B. Leclerc. Quantum Grothendieck rings and derived Hall algebras. J. Reine Angew. Math., 701:77 126, 2015. [7] S.-J. Kang, M. Kashiwara, and M. Kim. Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, II. Duke Math. J., 164(8):1549 1602, 2015. [8] A. Kleshchev. Affine highest weight categories and affine quasi-hereditary algebras. Proc. Lond. Math. Soc. (3), 110(4):841 882, 2015. [9] H. Nakajima. Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Amer. Math. Soc., 14(1):145 238, 2001. *11 [8] *12 GL Hecke Khovanov-Lauda-Rouquier