ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο

Σχετικά έγγραφα
ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ

( f ) ( T) ( g) ( H)

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα

ΑΠΑΝΤΗΣΕΙΣ. και g(x) =, x ΙR * τότε

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

και g(x) =, x ΙR * τότε

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ

AΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2018

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Σχέδιο βαθμολόγησης-προσομοίωση Προσανατολισμού Γ Λυκείου - 1/2017 ΣΧΕΔΙΟ ΒΑΘΜΟΛΟΓΗΣΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ TΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α

Λύσεις των θεμάτων. Παρασκευή 9 Ιουνίου 2017 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

στο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλαδικές Εξετάσεις 2017

lim f x lim g x. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΘΕΜΑ Β. Β1.. Η f παραγωγίσιμη στο πεδίο ορισμού της R (διότι. x άρα. x 1 0 για κάθε x R)

Εξετάσεις 9 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Άγγελος Λιβαθινός, Μαθηματικός. ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ. Α1. Θεωρία ( Σχολικό Βιβλίο, Σελίδα 98. Μέτρο Μιγαδικού αριθμού- ιδιότητα)

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (09/06/2017)

{ } { ( ) } ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2.

1 εφ x dx. 1 ν 1. συνx. 2 + ln1 = - ln 2. J 3-2 = 1 2 J 1 = ln 2 2, οπότε. x lnx 2 x, x > 0.

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3)

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ x. Η f είναι συνεχής στο x0. lim lim 1. Παρατηρούμε, δηλαδή, ότι μια

ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2017

A3. Σχολικό βιβλίο σελίδα 73 Α4. α. Λάθος, β. Σωστό, γ. Λάθος, δ. Σωστό, ε. Σωστό.

Προτεινόμενες λύσεις. , β) και η f είναι συνεχής στο x. , η f είναι γνησίως αύξουσα στο (α,x. 0]. Έτσι έχουμε: f(x) f(x

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000

Πανελλαδικές εξετάσεις 2016

0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x

ÈÅÌÁÔÁ 2008 ÏÅÖÅ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 Απόδειξη θεωρήματος σελίδα 135 στο σχολικό

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 MAΪΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

Μαθηματικά Προσανατολισμού x 0 x 0. , 0,, οπότε η f είναι γνησίως αύξουσα στο 0, και


ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

f(x ) 0 O) = 0, τότε το x

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α

ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΥΤΕΡΑ, 12 ΙΟΥΝΙΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ

3.4 Θεώρημα Rolle Θεώρημα Μέσης Τιμής

2.5. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i. 1.ii Να εξετάσετε αν η συνάρτηση

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

1 η δεκάδα θεµάτων επανάληψης

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2

1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα

1.1 Τριγωνομετρικές Συναρτήσεις

f(x ) 0 O) = 0, τότε το x

2 ο Διαγώνισμα Ύλη: Συναρτήσεις

Διαγώνισμα προσομοίωσης Πανελλαδικών Εξετάσεων στα Μαθηματικά Κατεύθυνσης Δευτέρα 13 Μαΐου 2019

ΜΑΘΗΜΑ ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

Αχ, πονεμένη μου συνάρτηση ολοκλήρωμα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

x (x ) (x + 1) - x (x + 1)

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 βλ. σχολικό βιβλίο σελ Α.2 βλ. σχολικό βιβλίο σελ. 246 Α.3 βλ. σχολικό βιβλίο σελ. 222 Α.4 α Λ, β Σ, γ Σ, δ Λ, ε Σ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Απαντήσεις Θεμάτων Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων (Νέο & Παλιό Σύστημα)

Transcript:

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α A. Έστω f μια συνάρτηση αραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο του o, στο οοίο όμως η f είναι συνεχής. Αν η f () διατηρεί ρόσημο στο (α, o ) ( o, β), να αοδείξετε ότι το f( o ) δεν είναι τοικό ακρότατο και ότι η f είναι γνησίως μονότονη στο (α, β). Μονάδες 7 Αάντηση: Η αόδειξη της σελίδας 45 του Σχολικού Βιβλίου. A. Έστω Α ένα μη κενό υοσύνολο του R. Τι ονομάζουμε ραγματική συνάρτηση με εδίο ορισμού το Α; Αάντηση: Ο Ορισμός της σελίδας 45 του Σχολικού Βιβλίου. A3. Δίνονται οι γραφικές αραστάσεις των συναρτήσεων f, g, F, G, H, T. Μονάδες 4

Να γράψετε στο τετράδιο σας οια αό τις συναρτήσεις F, G, H, T μορεί να είναι η αράγωγος της συνάρτησης f και οια της g. Μονάδες 4 Αάντηση: Της T μορεί να είναι η f Της Η μορεί να είναι η g A4. Θεωρήστε τον αρακάτω ισχυρισμό: «Για κάθε ζεύγος ραγματικών συναρτήσεων f,g:(, + ) R, αν ισχύει lim f() = + f()+g() και lim g() = -, τότε lim =». α) Να χαρακτηρίσετε τον ισχυρισμό, γράφοντας στο τετράδιό σας το γράμμα Α, αν είναι αληθής, ή το γράμμα Ψ, αν είναι ψευδής. (μονάδα ) Αάντηση: Ψευδής. β) Να αιτιολογήσετε την αάντησή σας στο ερώτημα α. (μονάδες 3) Μονάδες 4 Αάντηση: Το αράδειγμα της αραγράφου.6 στο σχολικό βιβλίο με: f ( ) -, g( ) lim f ( ), lim g( ), lim f ( ) g( ) A5. Να χαρακτηρίσετε τις ροτάσεις ου ακολουθούν γράφοντας στο τετράδιό σας, δίλα στο γράμμα ου αντιστοιχεί σε κάθε ρόταση, τη λέξη Σωστό, αν η ρόταση είναι σωστή, ή Λάθος, αν η ρόταση είναι λανθασμένη. α) Η γραφική αράσταση μιας συνάρτησης f: R R μορεί να τέμνει μια ασύμτωτή της. Αάντηση: Σωστή β) Αν μια συνάρτηση f: R R είναι -, τότε κάθε οριζόντια ευθεία τέμνει τη γραφική αράσταση της f το ολύ σε ένα σημείο.

Αάντηση: Σωστή γ) Αν οι συναρτήσεις f και g έχουν εδίο ορισμού το [, ] και σύνολο τιμών το [, 3], τότε ορίζεται η f o g με εδίο ορισμού το [, ] και σύνολο τιμών το [, 3]. Μονάδες 6 Αάντηση: Λάθος ΘΕΜΑ Β Δίνεται η συνάρτηση +, > f() = + α, Β. Να υολογίσετε το α R ώστε η συνάρτηση f να είναι συνεχής. Η f είναι συνεχής στο διάστημα Η f είναι συνεχής στο διάστημα, ως ολυωνυμική., ως ηλίκο συνεχών συναρτήσεων (ολυωνυμικών) Θα ρέει να είναι συνχής και στο σημείο, δηλαδή ρέει και αρκεί: lim f ( ) lim f ( ) f () a a Μονάδες 3 Στα αρακάτω ερωτήματα θεωρήστε ότι α =. Β. Να εξετάσετε αν η συνάρτηση f ικανοοιεί τις υοθέσεις του θεωρήματος Roll στο διάστημα, 4 Μονάδες 6 +, > f() = +, Η f είναι συνεχής στο διάστημα, 4 Η f είναι αραγωγίσιμη στο διάστημα, με αράγωγο ( ) f Η f είναι αραγωγίσιμη στο διάστημα, 4 με με αράγωγο f ( ) Θα εξετάσουμε αν η f είναι αραγωγίσμιμη στο. Έχουμε:

f ( ) f () lim lim lim f ( ) f () lim lim lim Εομένως η f δεν είναι αραγωγίσμιμη στο και άρα η f δεν ικανοοιεί τις υοθέσεις του θεωρήματος του Roll. Β3. Να βρείτε τα σημεία της γραφικής αράστασης της συνάρτησης f στα οοία η εφατομένη είναι αράλληλη ρος την ευθεία y = + 8 και να γράψετε τις εξισώσεις των εφατομένων στα 4 σημεία αυτά. Μονάδες 7 A, f ( ) τα σημεία στα οοία η σημεία της γραφικής αράστασης της συνάρτησης f στα οοία η Αν εφατομένη είναι αράλληλη ρος την ευθεία y = + 8, τότε ρέει να ισχύει f ( ). Είναι: 4 4 Αν, τότε f ( ) και άρα: f ( ). Το αντίστοιχο σημείο είναι 4 8 A, f 8 8 ή 65 A, 8 64. Αν, τότε f ( ) και άρα: f ( ) και εειδή δεκτή 4 4 3 τιμή είναι η. Το αντίστοιχο σημείο είναι A, f ή A,. Αν η f δεν είναι αραγωγίσιμη. Οι εξισώσεις των εφατομένων στα σημεία αυτά είναι: Στο A : Στο A : 65 63 y f ( ) y y 8 4 8 64 4 3 4 64 3 y f ( ) y y 4 4 4 Β4. Να βρείτε τις ασύμτωτες της γραφικής αράστασης της f και να αραστήσετε γραφικά τη συνάρτηση. Στο η f δεν έχει λάγιες και οριζόντιες ασυμτωτες ως ολυώνυμο ου βαθμού. Δεν έχει κατακόρυφες ασύμτωτες αφού είναι συνεχής στο. Στο έχουμε: f ( ) lim lim lim lim f ( ) lim Μονάδες 9

Άρα η ευθεία y είναι οριζοντια ασύμτωτη της γραφικής αράστασης της f στο Η γραφική αράσταση της f δίνεται στο εόμενο σχήμα: ΘΕΜΑ Γ Δίνεται η συνάρτηση f : [, ] R, με τύο: f() = ημ. Γ. Να βρείτε τα ακρότατα της f (τοικά και ολικά). Η f είναι αραγωγίσιμη στο διάστημα, με f ( ),,. Έχουμε: f ( ) 3 Ο ίνακας ροσήμου της f είναι: χ 3 f ( ) + - f ( ) (Το ρόσημο της f βρίσκεται με την σκέψη ότι εειδή η f είναι συνεχής στο [,] κσι θα διατηεί σταθερό ρόσημο μεταξύ των ριζών. Δίνοντας μια οοιαδήοτε τιμή μεταξύ των ριζών.χ. f, f ) 4 Γ. Να αοδείξετε ότι για κάθε o [, ] η γραφική αράσταση της f και η εφατομένη της στο A( o, f( o )) έχουν ένα μόνο κοινό σημείο.

Η f είναι δύο φορές με f ( ),,. Άρα η f είναι κοίλη στο διάστημα, και εομένως η γραφική της αράσταση θα βρίσκεται «άνω» αό την εφατομένη της στο σημείο Α, εκτός του ίδιου του σημείου Α. Άρα η εφατομένη και η γραφική αράσταση της f έχουν κοινό μόνο το σημείο Α. Γ3. Να υολογίσετε το ολοκλήρωμα f() συνd f ( ) d d d d J, όου I d, J d. Για το I : Θέτουμε: Μονάδες 8 και άρα I. Για το J έχουμε: u du u u Γ4. α) Να αοδείξετε ότι J d ημ d= ημ d β) Να υολογίσετε το f() lim =. (μονάδες ) lim f()-f() ln. (μονάδες 5) Μονάδες 7 α) Έχουμε: β) Έχουμε: f ( ) lim lim lim f ( ) f ( ) lim f ( ) f ( ) ln lim ln () f ( ) f ( ) f ( ) f ( ) K lim lim lim ln lim ln lim lim lim( ) K ΘΕΜΑ Δ Δίνεται η συνάρτηση f: (, + ) R, με τύο: ln( + ) f() =. Δ. Να αοδείξετε ότι ln( + ) > +, για κάθε >.

Έχουμε διαδοχικά και ισοδύναμα: ln ln ln Θεωρούμε τη συνάρτηση h( ) ln,. Η h είναι αραγωγίσισμη για με: h( ) ln, h ( ) ln, ln h ( ) Άρα η h είναι γνησίως αύξουσα για. Εομένως: h( ) h() ln Δ. Να αοδείξετε ότι η f αντιστρέφεται και ότι το εδίο ορισμού της f - είναι το διάστημα (, ). Αρκεί να αοδείξουμε ότι η f είναι συνάρτηση «-» Η f είναι αραγωγίσιμη για κάθε με: ln( ) ( ) h f ( h( ), ) Άρα η f είναι γνησίως φθίνουσα στο, άρα και «-». ln ( ) - Το εδίο ορισμού της f είναι το σύνολο τιμών της f ου, εειδή η f είναι συνεχής και γνησίως αύξουσα, έχουμε:, lim ( ),lim ( ), f f f, διότι ; - Άρα το εδίο ορισμού της f είναι το,. ln( ) lim f ( ) lim lim ln( ) lim f ( ) lim lim Δ3. Να αοδείξετε ότι f() > f(), για κάθε >. Έχουμε διαδοχικά και ισοδύναμα (αφού f ( ) ): ln( f ( ) ) f ( ) f ( ) ln( f ( ) ) f ( ) ln ln f ( ) f ( f ( )) f () f ( ) ( f ) Η τελευταία σχέση είναι αληθής.

f(α) f (α) ημ(α) Δ4. Να αοδείξετε ότι η εξίσωση + + =, όου < α <, έχει ακριβώς δύο ρίζες ως ρος, μία στο διάστημα (, ) και μία στο διάστημα (, ). Θεωρούμε τη συνάρτηση: g f a f a ( ) ( ) ( ) ( ) ( ) ( )( ) ( ),, f(α) f (α) ημ(α) Η εξίσωση + + = g( ), g( ),, (, ) Στο, έχουμε: Η g είναι συνεχής στο, (ως ολυωνυμική) g() ( ) ( ) g() f ( a) ( a f ( a) ) Άρα η g έχει μία, τουλάχιστον, ρίζα στο διάστημα (,) Στο, έχουμε: Η g είναι συνεχής στο, (ως ολυωνυμική) g() f ( a) ( a f ( a) ) - g() f ( a) (αφού αό το το ερώτημα Δ το εδίο ορισμού της f είναι το, ). Άρα η g έχει μία, τουλάχιστον, ρίζα στο διάστημα (, ). Εειδή η εξίσωση g ολυωνυμική ου βαθμού θα έχει το ολύ ρίζες. Άρα η εξίσωση g( ),, (, ) ρίζες μία στο διάστημα (,) και μία στο διάστημα (, ). Σχόλιο: Ο βαθμός της ολυωνυμικής εξίσωσης g ( ),, (, ) είναι θα έχει ακριβώς ( ),, (, ) είναι διότι ο συντελεστής του είναι : g( ) ( f ( a) f ( a) ( )) ( f ( a) f ( a) 3 ( )) και f ( a) f ( a) ( ) >. Δ5. Αν F είναι μια αρχική συνάρτηση της f στο διάστημα (, + ) με F() = ln, να αοδείξετε ότι. + ln < F() < ln Θα εφαρμόσουμε το Θ.Μ.Τ. για την F στο διάστημα,. F συνεχής στο, F αραγωγίσιμη στο, F( ) F() F( ) F(). Έχουμε Άρα υάρχει ένα, τουλάχιστον, ξ, : F ξ f ξ διαδοχικά και ισοδύναμα:

ln F() ln( ) f () f ( ) f ( ) ln ( ) ln( ) ( ) ln( ) ln ln F() ln F() ln ( ) ln( ) ln ln ( ) ln( ) F() ln ln ln ln F() ln ( ) ln( ) ln F() ln ( ) ln( ) ln ln ( ) ln( ) ln ln( ) ln ( ) ln( ) ln ln( ) ln( ) ln ln( ) ln Η τελευταία σχέση είναι αληθής.