ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

Σχετικά έγγραφα
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ςυμπλήρωμα ωσ προσ 1

ΗΥ101: Ειςαγωγι ςτθν Πλθροφορικι

Θεςιακά ςυςτιματα αρίκμθςθσ

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα

ςυςτιματα γραμμικϊν εξιςϊςεων

Μετατροπεσ Παραςταςεων

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης

Μετατροπεσ Παραςταςεων

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο

ΕΝΟΤΗΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Αρχεία - Φάκελοι

ΔΙΑΓΩΝΙΣΜΑ XHMEIAΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΑ:

Γενικόσ Δείκτησ Τιμών Καταναλωτή (ΔΤΚ) Γενικοφ ΔΤΚ. Εκπαίδευςη Αλκοολοφχα ποτά & Καπνό Χρηςιμοποιήςαμε τα λογιςμικά Excel, PowerPoint & Piktochart.

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης ΤΕΙ ΧΑΛΚΙΔΑΣ

Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ

Διαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια

1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό.

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3)

Η γλώςςα προγραμματιςμού C

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι

ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ

Γεωργικός Πειραματισμός ΙΙ ΑΥΞΗΜΕΝΑ ΣΧΕΔΙΑ

Μεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία).

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα

Τάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά

Δυαδικοσ πολλαπλαςιαςμοσ και διαιρεςη ακεραιων

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β

Ιδιότθτεσ πεδίων Γενικζσ.

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ

ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ζρευνα ικανοποίθςθσ τουριςτϊν

HY437 Αλγόριθμοι CAD

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1

ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία

Slide 1. Εισαγωγή στη ψυχρομετρία

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας

ΕΝΟΣΘΣΑ 1: ΓΝΩΡIΗΩ ΣΟΝ ΤΠΟΛΟΓΙΣΘ Ω ΕΝΙΑΙΟ ΤΣΘΜΑ. ΚΕΦΑΛΑΙΟ 1: Ψθφιακόσ Κόςμοσ

Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων

Ιςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων

ΥΡΟΝΣΙ ΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣ Η» ΔΙΑΓΩΝΙ ΜΑ ΑΕΠΠ

Ενδεικτικζσ Λφςεισ Θεμάτων

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ

1 ο Διαγώνιςμα για το Α.Ε.Π.Π.

Διαγώνισμα Χημείας Γ Λυκείου στα Κεφάλαια 1-4

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

ΜΑΘΗΜΑΣΙΚΑ Γ ΓΕΝΙΚΗ ( ΑΠΟ ΘΕΜΑΣΑ ΛΤΚΕΙΩΝ ) ΕΡΩΣΗΕΙ ΩΣΟΤ ΛΑΘΟΤ ΑΝΑΛΤΗ

Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ

ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ

ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ

Διαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο

Αςκιςεισ ςε (i) Δομζσ Ευρετθρίων και Οργάνωςθ Αρχείων (ii) Κανονικοποίθςθ

3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ

ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο)

Ανάλυςη κλειςτϊν δικτφων

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα,

1. Εγκατάςταςη κειμενογράφου JCE

25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ. Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και

ΑΝΑΠΣΤΞΘ ΕΦΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 3 ο ΓΕΝΙΚΟ ΛΤΚΕΙΟ Ν. ΜΤΡΝΘ- ΕΠΙΜΕΛΕΙΑ: ΠΤΡΙΔΑΚΘ Λ.

Τμήματα Μνήμησ Υπολογιςμόσ Φυςικών διευθύνςεων. Εκπαιδεφτρια: Μαρία Πολίτθ

5 ΜΕΘΟΔΟΙ - ΠΑΡΑΜΕΤΡΟΙ

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ

Modellus 4.01 Συ ντομοσ Οδηγο σ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

Καρβέλης Φώτης ΠΕΡΙΟΔΙΚΟ ΠΙΝΑΚΑ

= = 124

Μάκθςθ Κατανομϊν Πικανότθτασ και Ομαδοποίθςθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ

Δζντρα. Δομζσ Δεδομζνων

ΣΟΙΧΕΙΟΜΕΣΡΙΚΟΙ ΤΠΟΛΟΓΙΜΟΙ

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ

Η άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 2009_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ

Α ΕΚΦΕ ΑΝ. ΑΤΤΙΚΗΣ Υπ. Κ. Παπαμιχάλθσ. Μζτρηςη του λόγου γ=c P /C V των αερίων με τη μζθοδο Clement Desormes

Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Από κεωρια εχουμε μακει ότι ενασ υπολογιςτθσ ςε ζνα δικτυο προςδιοριηεται από μια Ip διευκυνςθ που ζχει τθ γενικι μορφι X.Y.Z.W

Ακολουκιακά Λογικά Κυκλώματα

Ψθφιακά Ηλεκτρονικά. Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ

Μάθημα 9 ο ΤΕΧΝΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΙΚΟΝΙΚΗΣ ΜΝΗΜΗΣ

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ (Β - Γ Λυκείου)

Transcript:

Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης

το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ υποδιαςτολισ: απλήσ και διπλήσ ακρίβειασ 2

Παράςταςθ Ενασ δυαδικόσ αρικμόσ κινθτοφ ςθμείου, R παριςτάνεται από μια αλυςίδα από bits και χαρακτθρίηεται από τισ εξισ παραμζτρουσ: από το πρόςθμο (sign) S του αρικμοφ. από ζναν εκκζτθ (exponent) Ε μιασ βάςθσ Η, από ζνα ςυντελεςτι (mantissa) F, ζτςι ϊςτε να ιςχφει η ςχζςη: R = (-1) S x Η Ε x F 3

αποκικευςθ H κζςθ μνιμθσ του Θ/Υ που κ' αποκθκεφςει τον αρικμό χρειάηεται να ζχει τρεισ χϊρουσ. Ζνα για το πρόςημο S, ζνα για τον εκθέτη Ε (M bits) και Ζνα για τον ςυντελεςτή F (K bits), ζτςι ϊςτε n=1+m+k. Θ βάςθ Η είναι ίδια για όλουσ τουσ αρικμοφσ και δεν χρειάηεται να ζχουμε ιδιαίτερο χϊρο γι' αυτιν και ονομάηεται βάςθ του ςυςτιματοσ κινθτισ υποδιαςτολισ 'Όςο μεγαλφτερο είναι το K, τόςο περιςςότερο αυξάνεται θ ακρίβεια του αρικμοφ, αντίκετα όςο αυξάνει το M τόςο αυξάνει το μζγεκοσ του αρικμοφ 4

Αναπαράςταςη απλήσ ακρίβειασ Θ αναπαράςταςθ ενόσ αρικμοφ, ςφμφωνα με τθ μορφι απλισ ακρίβειασ του προτφπου ΙΕΕΕ, αποτελείται από τρία πεδία: το ςυντελεςτι f (23 bits), τον πολωμζνο εκκζτθ e (8 bits) και το πρόςθμο s (1 bit). Τα πεδία αυτά αποκθκεφονται ςυνεχόμενα ςε μία λζξθ 32 bits του υπολογιςτι. Τα bits 0-22 περιζχουν το ςυντελεςτι f. Το bit 0 είναι το λιγότερο ςθμαντικό, ενϊ το bit 22 είναι το πιο ςθμαντικό bit του ςυντελεςτι. Τα bits 23-30 περιζχουν τον πολωμζνο εκκζτθ. Το bit 23 είναι το λιγότερο ςθμαντικό, ενϊ Το bit 30 είναι το πιο ςθμαντικό bit του πολωμζνου εκκζτθ. Το bit 31 αναπαριςτά το πρόςθμο του αρικμοφ. 5

Παρατθριςεισ R = (-1) S x Η Ε x F, Δεν υπάρχει κζςθ για το πρόςθμο του εκκζτθ. Η ζλλειψη αρνητικοφ εκθζτη ςημαίνει ότι δεν μποροφν να παραςταθοφν πολφ μικροί αριθμοί. Θ ζλλειψθ αυτι αντιμετωπίηεται μ' ζνα τζχναςμα. Στον πρϊτο τφπο αντί του εκκζτθ E τοποκετείται ο πολωμζνοσ (biased Exponent) εκκζτθσ e, ζτςι ϊςτε Ε = e - 127 Θ τιμι 127 ονομάηεται πόλωςθ (bias). 6

Παρατθριςεισ R = (-1) S x Η Ε x F, Επειδι ιςχφει 0 e 255 (γιατί;) κα ζχουμε -127 e - 127 128. Το τζχναςμα αυτό άλλαξε τα μεγζκθ των αρικμϊν που μποροφμε να κωδικοποιιςουμε. Χωρίσ τθν πόλωςθ κα είχαμε αρικμοφσ με μεγζκθ από 0 ζωσ 2 255 ενϊ με τθν προςκικθ τθσ πόλωςθσ μποροφμε να κωδικοποιιςουμε αρικμοφσ με μεγζκθ που περιλαμβάνονται μεταξφ των ορίων 2-127 και 2 128 R = (-1) S x 2 e-127 x (1.f) 7

απλισ ακρίβειασ αρικμόσ κινθτοφ ζχει τθ μορφι: ςθμείου R R = (-1) S x 2 e-127 x (1.f) Όπου S είναι το πρόςθμο του αρικμοφ (1 bit) e είναι o εκκζτθσ που καταλαμβάνει χϊρο 8 bits f ζνα δυαδικό κλάςμα(fraction ι mantissa) 23 bits Αν ςυνδυάςουμε τθν παραπάνω ςχζςθ με τθν R = (-1) S x Η Ε x F ζχουμε : Ε = e - 127, F = (1.f) και Η = 2 8

κανονικοποιθμζνοσ αρικμόσ κατά το πρότυπο τθσ ΙΕΕΕ Ενασ αρικμόσ R κα λζγεται κανονικοποιθμζνοσ ωσ προσ βάςθ 2, όταν μπορεί να γραφεί με τθ μορφι R = (-1) S x 2 e-127 x F, όπου F είναι ζνασ δυαδικόσ αρικμόσ με ζνα ακζραιο bit ίςο με τθν μονάδα, δθλαδι ζχουμε τθ ςχζςθ F = 1.f προκφπτει ότι 1 1.f < 2. Πράγματι, θ μικρότερθ τιμι του f είναι μθδζν και του 1.f είναι 1. Θ μεγαλφτερθ τιμι του f είναι.111...111 2 (23 bits) και του (1. f) = 1.99999999... 10 θ μονάδα αριςτερά του δυαδικοφ ςθμείου ςτον παράγοντα (1.f) δεν καταλαμβάνει κζςθ μζςα ςτα 32 bit που κωδικοποιείται ο αρικμόσ R 9

Aλγόριθμοσ Αποκωδικοποίηςησ Θ αποκωδικοποίθςθ του περιεχομζνου μιασ κζςθσ μνιμθσ που φιλοξενεί ζναν αρικμό κινθτισ υποδιαςτολισ R γίνεται ωσ εξισ: B1 : Μετατρζπουμε τισ ποςότθτεσ e και f ςτο δεκαδικό ςφςτθμα Β2 : Υπολογίηουμε τον πολωμζνο εκκζτθ Ε 10 =e 10-127. Β3 : Υπολογίηουμε τον αρικμό R με βάςθ το πρότυπο IEEE 10

αλγόρικμοσ αποκωδικοποίθςθσ για να βροφμε το δεκαδικό τθσ αντίςτοιχο. Αν υποκζςουμε ότι μια κζςθ μνιμθσ ζχει τθν παρακάτω εικόνα: 31 30 23 22 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S ΕXP (E) MANTISSA (F) S = 1 e = 10001011 2 και f=0.001101 2 R = (-1) S x 2 e-127 x (1.f) Β1 : e 10 = 139 10 f 10 = 0.203125 10 Β2 : Ε 10 = 139-127 = 12 10 Β3 : R = (-1) 1 x 2 12 x 1.203125 = = (-1) x 4096 x 1.203125 = -4928 11

αποκωδικοποίθςθ 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S EXP (E) MANTISSA (F) S = 0 e = 01111000 2 και f = 0.1 2 R = (-1) S x 2 e-127 x (1.f) B1 : e 10 = 120 10 f 10 = 0.5 10 B2 : Ε 10 = 120-127 = -7 10 Β3 : R = (-1) 0 x 2-7 x 1.5 = +.011718750 12

παράδειγμα 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 S EXP (E) MANTISSA (F) R = (-1) S x 2 e-127 x (1.f) -53851 10 13

παράδειγμα 10111110100110011001100110011001 S EXP (E) MANTISSA (F) R = (-1) S x 2 e-127 x (1.f) -0.3 10 14

1 00011011 0011100000000000000000-12,47<10> R = (-1) S x 2 e-127 x (1.f) 15

0 00111111 1101111110000000 R = (-1) S x 2 e-127 x (1.f) 3 10 10 16

παράδειγμα 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 S EXP (E) MANTISSA (F) R = (-1) S x 2 e-127 x (1.f) 17

κωδικοποίθςθ Θ κωδικοποίθςθ ακολουκεί τον αντίκετο δρόμο με το πρόςκετο βιμα τθσ κανονικοποίθςθσ του αρικμοφ. Ζνασ αρικμόσ κινθτοφ ςθμείου R κανονικοποιείται ωσ εξισ: Μετακινοφμε τα bits του παράγοντα F ζτςι ϊςτε να τον φζρουμε ςτη μορφή (1.f). Αν μετακινήςουμε τα ψηφία του F κατά Κ θζςεισ δεξιά μειϊνουμε αντίςτοιχα κατά Κ τον εκθζτη Ε. Η προσ τ' αριςτερά μετακίνηςη ςημαίνει αντίςτοιχα αφξηςη του εκθζτη 18

Aλγόριθμοσ κωδικοποίηςησ Β1 : Γράφουμε τον αρικμό R 10 = 2 0 x F 10. B2 : Μεταφζρουμε το F 10 ςτο δυαδικό ςφςτθμα (F 2 ). Β3 : Κανονικοποιοφμε τθν ποςότθτα 2 0 x F 2 και τθν φζρνουμε ςτθν μορφι 2 Ε 10 x (1.f) 2. B4 : Επθρεάηουμε τον εκκζτθ Ε 10 προςκζτοντασ το 127 10. Δθλαδι, e 10 = E 10 + 127 10 Β5 : Μεταφζρουμε τον e 10 ςτο δυαδικό (e 2 ). Β6 : Αν R είναι Θετικόσ τότε S=0, αν αρνθτικόσ S=1. Β7 : Τοποκετοφμε το S ςτο bit 31. Τοποκετοφμε το e 2 ςτα bits 30 ωσ 23. Τοποκετοφμε το f 2 ςτα bits 22 ωσ 0. 19

οι δφο αλγόρικμοι που παρουςιάςαμε υλοποιοφν τθν περίπτωςθ 0 < e < 255 τθσ IEEE και δεν περιζχουν τισ ακραίεσ τιμζσ 0 και 255. Όπωσ φαίνεται από τον οριςμό τθσ ΙΕΕΕ αυτζσ οι τιμζσ χρθςιμοποιοφνται για τθν παράςταςθ κάποιων ειδικϊν καταςτάςεων. (π.χ άπειρο, τίποτα, μθδζν) 20

Αντιςτοιχίεσ Αντιςτοιχία μεταξφ των τιμϊν των τριϊν πεδίων s, e, f, και τθσ τιμισ του πραγματικοφ αρικμοφ που αναπαρίςταται. Το ςφμβολο u ςθμαίνει «αδιάφορο», δθλαδι θ τιμι του ςυγκεκριμζνου πεδίου δεν επθρεάηει τον υπολογιςμό τθσ τιμισ του αντίςτοιχου πραγματικοφ αρικμοφ. 21

Να κωδικοποιθκεί ο αρικμόσ -53851 10 Β1 : (1.f) = 53851 = 2 0 x 53851 10 B2 : (1.f) = 53851 10 = 1101001001011011 2 Β3 : (1.f) 2 = 2 0 x 1101001001011011. = 2 15 x 1.101001001011011 Β4 : e 10 = 15 +127 = 142 10 B5 : e 2 = 10001110 2 B6 : S=1 Β7 : S EXP (E) MANTISSA (F) 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 22

Να κωδικοποιθκεί ο αρικμόσ -0.3 10 23

Αποκωδικοποιθςθ 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 S = 1 e = 01111101 2 f =.00110011001100110011001 2 B1 : e 10 = 125 10 f 10 = 0.1999999910 B2 : Ε 10 = 125-127 = -2 10 Β3 : R = (-1)1 x 2-2 x 1.1999999 = = -0.29999999821186066 10 Το συάλμα ποσ προκύπτει μεγαλώνει ή μικραίνει ανάλογα με το μήκος της mantissa. Αστό ουείλεται στο γεγονός ότι αναγκαστήκαμε να κόψοσμε τα bit τοσ (0.3) 10, πέρα από το 25ο (μετά από την κανονικοποίηση). 24

Μζγιςτοσ και ελάχιςτοσ αρικμόσ που μποροφμε να κωδικοποιιςουμε Ασ υποκζςουμε ότι ζχουμε ζναν υπολογιςτι 16 bits. Θ παράςταςθ ενόσ αρικμοφ κινθτοφ ςθμείου ακολουκεί το πρότυπο με μια κζςθ για το πρόςθμο, 5 bits για τον εκκζτθ και 10 bits για τθν mantissa. Υπολογίςτε τον μεγαλφτερο και τον μικρότερο αριθμό που μποροφμε να κωδικοποιήςουμε 25

υπολογιςμόσ τθσ πόλωςθσ Ο υπολογιςμόσ τθσ πόλωςθσ εξαρτάται από το μικοσ ςε bits του χϊρου του εκκζτθ. Αν ο εκκζτθσ e ζχει μικοσ K bits τότε e min = 0 και e max = 2 K -1. Ο αρικμόσ που πολϊνει τον εκκζτθ (bias) κα είναι ο 2 K-1-1 και ο εκκζτθσ e -(2 Κ-1-1) κα ζχει μζγιςτο 2 Κ-1 και ελάχιςτο -(2 Κ-1-1). 26

Aφοφ το μικοσ για το e είναι 5 τότε ο μεγαλφτεροσ αρικμόσ που μπορεί να χωρζςει ςτο πεδίο αυτό είναι ο 2 5-1 = 31. Θ πόλωςθ κα ζχει τιμι 2 5-1 -1 =15 Άρα ι ςχζςθ μεταξφ Ε και e γίνεται Ε = e -(2 5-1 -1) = e - 15. Από τθ ςχζςθ E = e-15 κα υπολογίςουμε το Εmax =2 κ-1 και το Emin=-(2 Κ-1-1). 27

Emax = emax -15 = 2 5-1 - 15 = 16 10 Εmin = emin -15 = 0-15 =-15 10 'Αρα, αν λάβουμε υπόψθ μασ ότι e=0 και e = 31 δεν χρθςιμοποιoφνται, τότε Emax = 15 10 Εmin = -14 10 Θα υπολογίςουμε τϊρα το Fmax και το Fmin. Fmax = (1.f)max = 1.1111111111 2 = 1.9990234375 10 Fmin = (1.f)min = 1.000 Rmax = 2 Emax x Fmax = 2 15 x 1.9990234375 = 65504 10 Rmin = 2 Emin x Fmin = 2-14 x 1.0 = 1.5125 x 10-5 28

Αναπαράςταςη διπλήσ ακρίβειασ Θ αναπαράςταςθ ενόσ αρικμοφ, ςφμφωνα με τθ μορφι διπλισ ακρίβειασ του προτφπου ΙΕΕΕ, αποτελείται από τρία πεδία: το ςυντελεςτι f (52 bits), τον πολωμζνο εκκζτθ e (11 bits) και το πρόςθμο s (1 bit). Τα πεδία αυτά αποκθκεφονται ςυνεχόμενα ςε δφο λζξεισ 32 bits του υπολογιςτι. Τα bits 0-51 περιζχουν το ςυντελεςτι f. Το bit 0 είναι το λιγότερο ςθμαντικό, ενϊ το bit 51 είναι το πιο ςθμαντικό bit του ςυντελεςτι. Τα bits 52-62 περιζχουν τον πολωμζνο εκκζτθ. Το bit 52 είναι το λιγότερο ςθμαντικό, ενϊ το bit 62 είναι το πιο ςθμαντικό bit του πολωμζνου εκκζτθ. Το bit 63 αναπαριςτά το πρόςθμο του αρικμοφ 29

Ερωτιςεισ - ςυηιτθςθ