Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι τετμημένες δύο σημείων Α και Β είναι οι ρίζες της εξίσωσης ( λ+ ) 7= λ () Να βρεθεί η τιμή του λ R ώστε το μέσο του τμήματος ΑΒ να έχει τετμημένη ίση με Εστω τα σημεία A (, ) και (, ) y της δευτεροβάθμιας εξίσωσης () B οπότε οι τετμημένες αυτών δηλαδή τα, είναι ρίζες y Οπότε σύμφωνα με τους τύπους Vieta για το άθροισμα των ριζών τριωνύμου, έχουμε ( λ λ+ ) S= + = =λ λ+ () Το μέσο Μ του ΑΒ έχει συντεταγμένες + y + y (, y ) =, M M και αφού M = άρα + = δηλαδή + = 8 () Από την () και () προκύπτει λ λ+ = 8 δηλαδή λ λ = και λύνοντας το τριώνυμο αυτό προκύπτει λ = ή λ = Nα γνωρίζω ότι: ΤΥΠΟΙ VIETA Τριώνυµο α + b+γ= µε ρίζες, b S= + = α P γ = = α Θέμα Δίνονται τα σημεία Α(-, ) και Β(, ). Να βρεθεί σημείο Γ του άξονα ψ ψ, ώστε το τρίγωνο ΑΒΓ να είναι ορθογώνιο στο Γ
Προφανώς (, y) Γ αφού είναι σημείο του ψ ψ. Οπότε AΓ = (, y ), = (, y ) Συνεπώς ΒΓ. Αφού Γ = 9 ο άρα A Γ ΒΓ δηλαδή A Γ ΒΓ= A Γ ΒΓ= ( ) + (y )(y ) = y= Αρα Γ (,) ή Γ (,) y y (y ) = y = ή y= Θέμα Να βρεθεί διάνυσμα β = (, y) με μέτρο, κάθετο στο α = (,) β = + y = + y = () β α α β= + y= () Λύνοντας το (Σ) των () και () προκύπτει β = ( 8/,6/) ή β = ( 8/, 6/) Θέμα Σε κάθε τρίγωνο ΑΒΓ με διάμεσο ΑΜ, νδο AΒ +ΑΓ = AM + ΒΓ ο θεώρημα διαμέσων ΑΒ+ ΑΓ Β μέλος = AM + ΒΓ = + ( AΓ AB) = ( AB+ AΓ) + ( ΑΓ ΑΒ) = = AB + AΓ + ΑΒΑΓ + ΑΓ +ΑΒ ΑΓΑΒ = AB +ΑΓ Θέμα Νδο τα διανύσματα a= i+ j, β = i+ 7 j, γ = i j σχηματίζουν πλευρές τριγώνου του οποίου να βρεθούν οι γωνίες Είναι a+ β + γ = i+ j+ i+ 7 j+ i j = 8i+ 6 j = ( i+ j) = a αποτελούν τρίγωνο Είναι, συνεπώς τα διανύσματα
a β + 7 συν( a, β) = = = = = = ( a, ) a β 6+ 9 + 9 γ ( a) ( ) + ( ) ( ) συν ( γ, a) = = = = (, a ) γ a 9+ 6 6+ 9 π γ = β γ ( ) + ( 7) ( ) συν ( β, γ) = = = = = (, γ) Θέμα 6 β γ + 9 9+ 6 π β = π β = Νδο οι ευθείες ( m + m ) + (m + m ) y 7m m+ = () διέρχονται από σταθερό σημείο για κάθε τιμή του m R Η () γράφεται ως ( + y 7) m + (+ y ) m+ ( y+ ) = () Για να ισχύει η () για κάθε τιμή του m, πρέπει από όπου προκύπτει =, y= + y 7= + y = y+ = Αρα οι ευθείες () διέρχονται από το σταθερό σημείο Ρ(, ) Θέμα 7 Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ (λ, λ + ) όπου λ πραγματικός Θέτουμε =λ και y = λ+ Λύνοντας ως προς λ προκύπτει λ = + και λ = y Συνεπώς y + = + = y y= + Αρα ο γ.τ. των σημείων Μ είναι η ευθεία y = + Χρήσιμο για την Γ Λυκείου
Θέμα 8 Εστω η εξίσωση ( y+ ) + m(+ y+ 7) =, m R () Α) Νδο για κάθε τιμή της παραμέτρου m η () παριστάνει ευθεία Β) Νδο όλες οι ευθείες που ορίζονται από την () διέρχονται από το ίδιο σημείο Η () γράφεται ως ( + m)+ ( + m)y+ (+ 7m) = () και εκφράζει ευθεία για κάθε τιμή του m, διότι οι συντελεστές των, y δεν μηδενίζονται ταυτόχρονα. Για να βρούμε ότι όλες οι ευθείες που ορίζονται από την () διέρχονται από το ίδιο σημείο αρκεί να βρούμε ένα σημείο του οποίου οι συντεταγμένες μηδενίζουν τις παραστάσεις y+ = Δηλαδή αρκεί να λύσουμε το (Σ) + y+ 7= ( y+ ) και (+ y+ 7) Συνεπώς (, y) = (, ) άρα όλες οι ευθείες της μορφής () διέρχονται από το σημείο (-,) Θέμα 9 Να βρεθεί η εξίσωση της ευθείας (ε) που περνά από το σημείο Α(,) και είναι Α) Παράλληλη στην (δ): y = + B) Κάθετη στην (ζ): y = + Γ) Παράλληλη στην (η): = Δ) Κάθετη στην (θ): y= Α) Αφού ε // δ άρα λ =λ =. Αρα η ζητούμενη ευθεία (ε) είναι ε δ y y =λ ( ) y = ( ) A ε A y = + Β) Αφού ε ζ άρα λ λζ = λε = λε = Αρα η ζητούμενη ευθεία (ε) είναι ε. y y =λ ( ) y = ( ) A ε A y=
Γ) Αφού ε // η και η (η) είναι κατακόρυφη ευθεία άρα δεν ορίζεται το λ. Προφανώς και η ε είναι κατακόρυφη ευθεία που διέρχεται από το Α(,) άρα η εξίσωσή της είναι = o = Δ) Αφού ε θ και η (θ) είναι οριζόντια ευθεία άρα η ε είναι κατακόρυφη ευθεία που διέρχεται από το Α(,) άρα η εξίσωσή της είναι = o = Θέμα Σε τρίγωνο ΑΒΓ είναι Α(-, -), Β(, ) και η κορυφή Γ είναι σημείο της ευθείας (ε): y = ( ). Aν το εμβαδό του ΑΒΓ είναι 9, τ.μ. να βρεθεί η κορυφή Γ Εστω Γ(, y). Τότε αφού η κορυφή Γ είναι σημείο της (ε) άρα οι συντεταγμένες της Γ επαληθεύουν την εξίσωση της (ε) δηλαδή Γ(, ( ) ) ή Γ(, ) Οπότε ΑΒ = (, 6) και ΑΓ= ( +, ) άρα. det( ΑΒ, ΑΓ) = + 6 = ( ) 6( + ) = 7 6 6= 9 76 Συνεπώς E = 9, det( ΑΒ, ΑΓ) = 9, 9 76 = 9, 9 76 = 9 9 76= ± 9 άρα οπότε Αρα η κορυφή Γ είναι 9 76= 9 ή 9 76= 9 9 = 9 ή 9 = 7 = ή = y = ( ) = ή y = ( ) = Γ(,) ή Γ(,)
Θέμα Να βρεθεί το κέντρο και η ακτίνα του κύκλου +y ++y-= Χρήσιμο για την Γ Λυκείου A-Tρόπος (με χρήση τύπων) Χρησιμοποιώ τους εξής τύπους: + y +Α+Βy+Γ= με Α +Β Γ> Α Β Α Τότε: Κέντρο: Κ (, ), Ακτίνα: R= Oπότε Α =, Β =, Γ = - Βρίσκω την ποσότητα Α + Β Γ = + - (-) = > +Β Γ Κύκλος με κέντρο Κ(-/,-/) δηλαδή Κ(-,-) και ακτίνα R = / = 6 Β-Tρόπος (χωρίς χρήση τύπων συμπλήρωμα τετραγώνων) Γράφω την εξίσωση +y ++y-= ως ++y +y = Δηλαδή + + + y + y + = Oπότε (+) - + (y+) = Aρα (+) + (y+) = 6 μορφής (- o ) + (y-y o ) =R Δηλαδή κύκλος με κέντρο Κ(-,-) και ακτίνα R= 6 Θέμα Να βρεθεί η εξίσωση εφαπτομένης του κύκλου (χ ) + (ψ + ) = στο Α(, ) Εστω Μ(,y) τυχαίο σημείο της εφαπτομένης. Κ Τότε KA AM όπου KA= (,) και AM= (, y ) Α Aρα KA AM= (,) (, y ) = ( ) + (y ) = + y 7= Μ Θέμα Νδο η ευθεία (ε): (συνφ)χ + (ημφ)ψ = ημφ συνφ + εφάπτεται στον κύκλο C: + ψ + χ 8ψ + = Η (ε) εφάπτεται στον κύκλο C αν και μόνο αν d(k,ε) = R () 6
Για να δουλέψουμε με την σχέση () θα πρέπει να βρούμε το κέντρο Κ και την ακτίνα R του κύκλου C. Mε βάση το θέμα βρίσκουμε (χ + ) + (ψ ) = 6 κύκλος με κέντρο Κ(-,) και ακτίνα R = Οπότε η () δίνει συνφ ( ) + ηµφ ηµφ+ συνφ d ( K, ε ) = = = = R συν φ+ ηµ φ Θέμα Να βρεθεί η εξίσωση της κοινής χορδής των κύκλων (C ): (χ ) + (ψ ) = 9 και (C ): (χ ) +(ψ ) = Eστω Μ(,y) ένα κοινό σημείο των δύο κύκλων. Τότε το Μ επαληθεύει τις εξισώσεις των κύκλων, οπότε + + y + y= 9 + 9 6+ y + y= και αφαιρώντας κατά μέλη προκύπτει: 8 + + y= y= y= Η τελευταία ευθεία επαληθεύεται από τα κοινά σημεία των δύο κύκλων, άρα είναι η ζητούμενη εξίσωση της κοινής χορδής τους Θέμα Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ, των οποίων ο λόγος των αποστάσεων από τα σημεία Α(-, ) και Β(, ) είναι σταθερός και ίσος με Εστω Μ(, y) σημείο του γ.τ. Τότε MA = δηλαδή MA= MB ή MA = MB MB Οπότε ( ) + ( y) = [( ) + ( y) ] 9 + + 6+ y = [ 9+ 6+ y ] 9 + + 6+ y = 6+ + y + y + 7= η οποία με βάση το θέμα. δίνει τον κύκλο που είναι και ο ζητούμενος γ.τ. + y + 9=... ( ) + y = 7