ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ



Σχετικά έγγραφα
Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΤΕΤΑΡΤΗ 23 MAΪΟΥ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 20 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 20 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 28 MAΪΟΥ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

μιας παρατήρησης όπου λ. Αν για το πλήθος Ν(Ω) των σφαιρών που υπάρχουν στο κουτί ισχύει 64<Ν(Ω)<72, τότε λ

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

(f(x)+g(x)) =f (x)+g (x), x R

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 16 MAΪΟΥ 2011 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 25 MAΪΟΥ 2015 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

(c f (x)) = c f (x), για κάθε x R

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Μαθηματικός Περιηγητής σχ. έτος

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β =

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

1% = 100% 25 = 100. v 400. v = 6v v = 6 40 v = 240. = = 360 v v v + v + v + v = v v = 400

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

P A B P(A) P(B) P(A. , όπου l 1

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

P(A ) = 1 P(A). Μονάδες 7

( ) ( ) ( ) ( ) Α2. Έστω μια συνάρτηση f με πεδίο ορισμού A. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό μέγιστο στο x1 Μονάδες 4.

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

ΑΠΑΝΤΗΣΕΙΣ. ευτέρα, 17 Μα ου 2010 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ. Οµάδα Μαθηµατικών της Ώθησης. Επιµέλεια:

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ

(t) x (t) t t. t 2 ή t S x( 2) x( 0) S x( 3) x( 2) 10 m

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4

Transcript:

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεµάτων Έκδοση η (30/05/04, 3:30) Οι απαντήσεις και οι λύσεις είναι αποτέλεσµα συλλογικής δουλειάς των Επιµελητών των φακέλων του Λυκείου του ικτυακού Τόπου mathematca.gr µε βάση υλικό που αναρτήθηκε στο mathematca http://www.mathematca.gr/forum/vewtopc.php?p=... Συνεργάστηκαν οι: Στράτης Αντωνέας, Ανδρέας Βαρβεράκης, Βασίλης Κακαβάς, Γιώργης Καλαθάκης, Φωτεινή Καλδή, Σπύρος Καρδαµίτσης, Νίκος Κατσίπης,Στάθης Κούτρας, Χρήστος Κυριαζής, Γρηγόρης Κωστάκος, Βαγγέλης Μουρούκος, Ροδόλφος Μπόρης, Μίλτος ΠαπαγρηγοράκηςΛευτέρης Πρωτοπαπάς, Γιώργος Ρίζος, Σωτήρης Στόγιας, Αλέξανδρος Συγκελάκης, Αχιλλέας Συνεφακόπουλος Κώστας Τηλέγραφος, Χρήστος Τσιφάκης

Το ελτίο διατίθεται ελεύθερα από το δικτυακό τόπο mathematca.gr

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Θέµα.. Α. Αν η συνάρτηση f είναι παραγωγίσιµη στο ΙR και c σταθερός πραγµατικός αριθ- µός, να αποδείξετε µε τη χρήση του ορισµού της παραγώγου ότι ( ( )) ( ) c f = c f, για κάθε IR Μονάδες 7 Α. Πότε µια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστηµα του πεδίου ορισµού της; Μονάδες 4 Α3. Πότε µια ποσοτική µεταβλητή λέγεται διακριτή και πότε συνεχής; Μονάδες 4 Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασµένη. = και η παράγωγός α) Αν για τη συνάρτηση f ισχύει f ( ) 0, για ( α,β) 3 0 0,της f διατηρεί πρόσηµο εκατέρωθεν του 0, τότε η f είναι γνησίως µονότονη στο (α, β) και δεν παρουσιάζει ακρότατο στο διάστηµα αυτό. (µονάδες ) β) Για δύο οποιαδήποτε ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω ισχύει: P( A B) = P( B) P( A B) (µονάδες )

γ) Σε µια κανονική ή περίπου κανονική κατανοµή το 95% περίπου των παρατηρήσεων βρίσκονται στο διάστηµα ( s, + s), όπου η µέση τιµή και s η τυπική απόκλιση των παρατηρήσεων. (µονάδες ) δ) Αν είναι τιµή µιας ποσοτικής µεταβλητής X, τότε η αθροιστική συχνότητα N εκφράζει το πλήθος των παρατηρήσεων που είναι µεγαλύτερες της τι- µής (µονάδες ) ε) Το κυκλικό διάγραµµα είναι ένας κυκλικός δίσκος χωρισµένος σε κυκλικούς τοµείς, τα εµβαδά ή, ισοδύναµα, τα τόξα των οποίων είναι ανάλογα προς τις αντίστοιχες συχνότητες ν ή τις σχετικές συχνότητες f των τιµών της µεταβλητής. ΑΠΑΝΤΗΣΕΙΣ Α. Θεώρηµα, σχολικό βιβλίο σελίδα 30. Α. Ορισµός, σχολικό βιβλίο σελίδα 3 Α3. Ορισµός, σχολικό βιβλίο σελίδα 59 Α4. α) Σ, προκύπτει από τη σελίδα 40 β) Λ, σελίδα 5 γ) Λ, σελίδα 95 δ) Λ, σελίδα 66 ε) Σ, σελίδα 70 (µονάδες ) Μονάδες 0 Θέµα.. Στο παρακάτω σχήµα φαίνεται το ιστόγραµµα συχνοτήτων, το οποίο παριστάνει τις πωλήσεις σε χιλιάδες ευρώ που έγιναν από τους πωλητές µιας εταιρείας κατά τη διάρκεια ενός έτους. 4

Β. Να βρείτε το πλήθος των πωλητών της εταιρείας. Μονάδες 5 Β. Να µεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα συχνοτήτων της κατανοµής των πωλήσεων κατάλληλα συµπληρωµένο, δικαιολογώντας τη στήλη µε τις σχετικές συχνότητες f, =,, 3, 4 Μονάδες 8 Β3. α) Να υπολογίσετε τη µέση τιµή των πωλήσεων του έτους. (µονάδες 6) β) Να βρείτε το πλήθος των πωλητών που έκαναν πωλήσεις τουλάχιστον 4,5 χιλιάδων ευρώ (θεωρούµε ότι οι παρατηρήσεις κάθε κλάσης είναι οµοιό- µορφα κατανεµηµένες). (µονάδες 6) Μονάδες ΛΥΣΗ Β. Το πλήθος των πωλητών της εταιρείας είναι +8 +4 + 6 = 40. 5

Β. κλάσεις v f [, 4) 3 0,30 [4, 6) 5 8 0,0 [6, 8) 7 4 0,35 [8, 0) 9 6 0,5 Σύνολο 40,00 f = 0,3 40 =, f = 8 0, 40 =, f 3 = 4 0,35 40 =, f 4 = 6 0,5 40 = B3. α) κλάσεις v f v [, 4) 3 0,30 36 [4, 6) 5 8 0,0 40 [6, 8) 7 4 0,35 98 [8, 0) 9 6 0,5 54 Σύνολο 40,00 8 4 v 36+ 40+ 98+ 54 8 = = = = v 40 40 = 5,7 χιλιάδες ευρώω. β) Αφού οι παρατηρήσεις κάθε κλάσης είναι οµοιόµορφα κατανεµηµένες πρέπει να πάρουµε τον αριθµό των πωλητών στις κλάσεις [6, 8) και [8, 0) και τα 3 των πωλητών της κλάσης [4, 6). 4 ηλαδή 6 + 4 + 6 = 6. 6

Θέµα.3. Ένα δοχείο περιέχει κόκκινες (Κ), άσπρες (Α) και πράσινες (Π) µπάλες. Επιλέγουµε τυχαία µία µπάλα. Η πιθανότητα να προκύψει κόκκινη µπάλα είναι Ρ( Κ) Ρ A =, ενώ η πιθανότητα να προκύψει άσπρη µπάλα είναι ( ) =, όπου, είναι οι θέσεις των τοπικών ακροτάτων της συνάρτησης 3 7 f( ) = 4 +, IR µε < Γ. Να βρείτε τις πιθανότητες P(Κ), P(A) και P(Π), όπου P(Π) η πιθανότητα να προκύψει πράσινη µπάλα. Μονάδες 0 Γ. Αν P( K) = και Ρ( Α) =, να βρείτε τις πιθανότητες των παρακάτω 4 3 ενδεχοµένων: Γ: «η µπάλα που επιλέγεται τυχαία να είναι κόκκινη ή άσπρη» : «η µπάλα που επιλέγεται τυχαία να είναι ούτε κόκκινη ούτε άσπρη» Ε: «η µπάλα που επιλέγεται τυχαία να είναι άσπρη ή να µην είναι πράσινη». Μονάδες 9 Γ3. Αν οι άσπρες µπάλες είναι κατά τέσσερις (4) λιγότερες από τις πράσινες µπάλες, να βρείτε πόσες µπάλες έχει το δοχείο. Μονάδες 6 ΛΥΣΗ Γ. Η συνάρτηση f είναι παραγωγίσιµη µε Είναι f () = 7+ f () = 0 7+ = 0 = ή = 3 4 και επειδή < θα είναι = και =, 4 3 συνεπώς P(K) = και P(A) =. 4 3 Αν Ω είναι ο δειγµατικός χώρος τότε Ω= K A Π. 7

Άρα Π= ( A K ) και επειδή τα ενδεχόµενα K,A,Π είναι ασυµβίβαστα ανά δύο, είναι (( ) ) 5 P(Π) = P A K = P(A K) = P(A) P(K) = = 3 4 Γ. Είναι Γ= A K άρα από τον απλό προσθετικό νόµο έχουµε 7 P(A K) = P(A) + P(K) = + = 3 4 Εάν η µπάλα που επιλέγεται δεν είναι ούτε κόκκινη ούτε άσπρη, είναι υποχρεωτικά πράσινη συνεπώς = Π οπότε Τέλος, ισχύει E A Π A ( A K) A (A K) = A K= Γ άρα E = Γ οπότε 5 P( ) = P(Π) =. = = και επειδή A A K άρα 7 P(E) = P(Γ) = Γ3. Αν N(A), N(Π), N(Ω) είναι το πλήθος των στοιχείων των ενδεχοµένων A,Π και του δειγµατικού χώρου Ω αντίστοιχα τότε σύµφωνα µε την εκφώνηση έ- χουµε N(A) N(Π) 4 =. ιαιρώντας την τελευταία µε N(Ω) 0 παίρνουµε τελικά 4 5 4 4 P(A) = P(Π) = = N(Ω) = 48 N(Ω) 3 N(Ω) N(Ω) Άρα το δοχείο περιέχει 48 µπάλες. Θέµα.4. 8

Θεωρούµε ένα κουτί σχήµατος ορθογωνίου παραλληλεπιπέδου µε βάση ορθογώνιο και ανοικτό από πάνω. Το ύψος του κουτιού είναι 5 dm. Η βάση του κουτιού έχει σταθερή περίµετρο 0 dm και µία πλευρά της είναι dm µε 0 < < 0.. Να αποδείξετε ότι η συνολική επιφάνεια του κουτιού ως συνάρτηση του είναι ( ) E() 0 00, 0, 0 = + + και να βρείτε για ποια τιµή του το κουτί έχει µέγιστη επιφάνεια. Μονάδες 8 Στη συνέχεια, θεωρούµε τα σηµεία A (, y ), όπου y = E ( ), =,,...,5 µε 5 = < <... < 4 < 5 = 9.. Αν το δείγµα των τετµηµένων, =,,...,5 των παραπάνω σηµείων A (, y ), δεν είναι οµοιογενές έχει µέση τιµή = 8 και τυπική απόκλιση s τέτοια, ώστε τότε: α) να αποδείξετε ότι s = β) να βρείτε τη µέση τιµή των ίνεται ότι: s = v t v = s 5s+ = 0, µε =,,...,5 v = t v (µονάδες 4) (µονάδες 4) Μονάδες 8 9

3. Επιλέγουµε τυχαία ένα από τα παραπάνω σηµεία A (, y ), =,,...,5. Να βρείτε την πιθανότητα του ενδεχοµένου: ΛΥΣΗ { A (,y ),,,...,5τέτοιαώστε y 4 R } B= = > + 9 +, όπου R είναι το εύρος των y = E ( ), =,,...,5 Μονάδες 9. Αφού η περίµετρος Π του ορθογωνίου της βάσης είναι 0 dm άρα, αν y είναι η άλλη πλευρά του ορθογωνίου της βάσης έχουµε + y= 0 δηλαδή y= 0 Συνεπώς επειδή έχουµε ένα ορθογώνιο µε διαστάσεις, y, αφού το κουτί είναι ανοιχτό από πάνω, ορθογώνια διαστάσεων 5 και και δύο ορθογώνια διαστάσεων 5 και y, άρα η συνολική επιφάνεια του κουτιού ως συνάρτηση του είναι E() = (0 ) + 5+ 5+ 5(0 ) + 5(0 ) = 0 5 5 50 5 50 5 = + + + + = 0 00 = + + Η συνάρτηση E() είναι παραγωγίσιµη µε E () = + 0 και ισχύει E () = 0 = 5. E () < 0 + 0< 0 > 5 συνεπώς η συνάρτηση E() είναι γνησίως φθίνουσα στο διάστηµα [5, 0). Επίσης E () > 0 + 0> 0 < 5 συνεπώς η συνάρτηση E() είναι γνησίως αύξουσα στο διάστηµα (0,5]. f () f() 0 Ò 5 + 0-5 Ó 0 Άρα η συνάρτηση E() παρουσιάζει µέγιστο για = 5.. α) Είναι s 5s+ = 0 s= ή s= 0

s Αν s= τότε CV= = < 0, άρα το δείγµα είναι οµοιογενές οπότε η 6 τιµή s= απορρίπτεται. s Αν s= τότε CV= = > 0. άρα το δείγµα δεν είναι οµοιογενές οπότε η 4 τιµή s= είναι δεκτή. Άρα s= β) Αν συµβολίσουµε µε έχουµε τη µέση τιµή των τότε από το δοσµένο τύπο ν 5 5 ν = = = ν = ν 5 5 s = 4= 4= = 68. Άρα η ζητούµενη µέση τιµή των είναι = 68 3. Η συνάρτηση E() είναι γνησίως φθίνουσα στο [5,0) άρα αφού 5= < < < = 9 άρα 5 5= E(5) = E( ) > E( ) > E( ) = E(9) = 09 5 συνεπώς το εύρος των τιµών R είναι R= 5 09 δηλαδή R= 6 Όµως E( ) = y > 4 + 9R+ + 0 + 00> 4 + 45 άρα τα µόνα σηµεία είναι τα A και Α 5. 4 45 0 + < Συνεπώς B { A, A,,A } (5,9) A που εξαιρούµε από το δειγµατικό χώρο των 5 σηµείων 3 4 = οπότε αν N(B),N(Ω) είναι το πλήθος των στοιχείων του B και το πλήθος των στοιχείων του δειγµατικού χώρου Ω τότε 3 N(B) = 3 και N(Ω) = 5 άρα τελικά P(B) =. 5

ΣΧΟΛΙΑ: Εναλλακτικές αποδείξεις Β. Το πλήθος των πωλητών ν είναι το άθροισµα των συχνοτήτων ν. Έτσι έχουµε : 4 ν = ν = + 5+ 4+ 6= 40 =. Η συνάρτηση E() είναι τριώνυµο δευτέρου βαθµού µε α= < 0 άρα ως γνωστόν από τη θεωρία του τριωνύµου παρουσιάζει µέγιστο στη θέση β 0 = = = 5. α ( )