Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6 7 6 67 66 7 76 74 73 7 7 63 7 7 4 7 6 73 6 6 Οµαδοποίηση των παρατηρήσεων Το εύρος των παρατηρήσεων είναι: -3 = 3. Σύµφωνα µε τον πίνακα της θεωρίας, οι 4 παρατηρήσεις πρέπει να χωρισθούν σε 6 κλάσεις. Αν θέλουµε να οµαδοποιήσουµε σε κλάσεις, για να βρούµε το πλάτος κάνουµε τη διαίρεση 3 : 4,33 και στρογγυλοποιώντας προς τα πάνω θεωρούµε ως πλάτος κάθε κλάσης το. Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων Κλάσεις κέντρο κλάσης χ Συχν. ν Σχετ. Συχν. f Σχετ. συχν. f % Αθρ. Συχν. Ν Σχετ. αθρ. Συχν. F Σχετ. αθρ. συχν. F % [,),,, [,6) 7, 3,7 7,,, [6,6) 6, 4,,, [6,7) 67,,, 4,3 3 [7,7) 7,,, 3,7 7, [7,) 77,, 3,77 77, [,),,, 36, [, ) 7,, 3, [,),, 4 Σύνολο - 4 - - - Ιστογράµµατα Πολύγωνα Ιστόγραµµα συχνοτήτων (σχετικών συχνοτήτων) Αποτελείται από διαδοχικά ορθογώνια ίσου πλάτους (το οποίο θεωρούµε ως µονάδα µέτρησης), των οποίων το ύψος είναι ίσο µε τη συχνότητα (ή τη σχετική συχνότητα). Ιστόγραµµα αθροιστικών συχνοτήτων Επιµέλεια: Πρωτοπαπάς Ελευθέριος
Ιστόγραµµα σχετικών αθροιστικών συχνοτήτων Αποτελείται από διαδοχικά ορθογώνια ίσου πλάτους (το οποίο θεωρούµε ως µονάδα µέτρησης), των οποίων το ύψος είναι ίσο µε τη αθροιστική συχνότητα (ή τη σχετική αθροιστική συχνότητα). Πολύγωνο συχνοτήτων (σχετικών συχνοτήτων) Καταρχήν θεωρούµε δύο επιπλέον κλάσεις ίσου πλάτους µε τις υπόλοιπες, µία στην αρχή και µία στο τέλος, µε συχνότητα (άρα και σχετική συχνότητα ). Τότε το πολύγωνο συχνοτήτων (ή σχετικών συχνοτήτων) είναι µία τεθλασµένη γραµµή, η οποία προκύπτει αν συνδέσουµε τα σηµεία µε τετµηµένη την κεντρική τιµή κάθε κλάσης και αντίστοιχη τεταγµένη ίση µε τη συχνότητα (ή τη σχετική συχνότητα) της αντίστοιχης κλάσης. Πολύγωνο αθροιστικών συχνοτήτων Πολύγωνο σχετικών αθροιστικών συχνοτήτων Καταρχήν θεωρούµε, στην αρχή, µία επιπλέον κλάση ίσου πλάτους µε τις υπόλοιπες µε συχνότητα, άρα και αντίστοιχη σχετική συχνότητα µηδέν. Τότε το πολύγωνο αθροιστικών συχνοτήτων (ή σχετικών αθροιστικών συχνοτήτων) είναι µία τεθλασµένη γραµµή, η οποία προκύπτει αν συνδέσουµε τα σηµεία µε τετµηµένη το δεξί άκρο της κλάσης και αντίστοιχη τεταγµένη ίση µε την αθροιστική συχνότητα (ή τη σχετική αθροιστική συχνότητα) της αντίστοιχης κλάσης. 7 6 4 3 v Με βάση τα παραπάνω κατασκευάζουµε τα ακόλουθα ιστογράµµατα και πολύγωνα για την δοσµένη κατανοµή: Ιστόγραµµα συχνοτήτων 7 6 4 3 v Πολύγωνο συχνοτήτων Πολύγωνο συχνοτήτων 4 6 6 7 7 4 6 6 7 7 Επιµέλεια: Πρωτοπαπάς Ελευθέριος
f(%) Ιστόγραµµα σχετικών συχνοτήτων f(%) Πολύγωνο σχετικών συχνοτήτων 3 3 Πολύγωνο σχετικών συχνοτήτων 3 3 4 6 6 7 7 4 6 6 7 7 N Ιστόγραµµα αθροιστικών συχνοτήτων N Πολύγωνο αθροιστικών συχνοτήτων 4 3 36 3 4 3 36 3 3 3 4 4 Πολύγωνο Αθροιστικών συχνοτήτων 4 6 6 7 7 4 6 6 7 7 F(%) Ιστόγραµµα σχετικών αθροιστικών συχνοτήτων F(%) Πολύγωνο σχετικών αθροιστικών συχνοτήτων 7 7 3 3 3 3 Πολύγωνο σχετικών Αθροιστικών συχνοτήτων 3 3 4 6 6 7 7 4 6 6 7 7 Επιµέλεια: Πρωτοπαπάς Ελευθέριος 3
Μέση τιµή Για να βρούµε τη µέση τιµή, φτιάχνουµε τον πίνακα: κλάσεις κεντρική τιµή x συχνότητα ν x.ν [,), 3 [,6) 7, 3 47, [6,6) 6, 4 6 [6,7) 67, 37, [7,7) 7,, [7,) 77, 4 [,),, [, ) 7, 37 [,), 3 ΣΥΝΟΛΟ - 4 6 6 =. 4 Εποµένως η µέση τιµή είναι: x = 7, 7 ιάµεσος Κατασκευάζουµε, καταρχήν, το πολύγωνο των σχετικών αθροιστικών συχνοτήτων της οµαδοποιηµένης κατανοµής. Στην συνέχεια αναζητούµε το σηµείο του πολυγώνου που θα έχει τεταγµένη, οπότε η τετµηµένη θα είναι η διάµεσος (δ), δηλαδή, (δ,). Αυτό επιτυγχάνεται κυρίως µε δύο τρόπους: µε εξίσωση ευθείας και µε όµοια τρίγωνα. ος τρόπος Με εξίσωση ευθείας F(%) Πολύγωνο σχετικών αθροιστικών συχνοτήτων 7 3 Α Β 3 3 4 6 6 7 7 δ Επιµέλεια: Πρωτοπαπάς Ελευθέριος 4
Θεωρούµε τα σηµεία Α(7,3) και Β(7,). Η ευθεία ΑΒ θα έχει εξίσωση της µορφής ψ=αχ+β, όπου αναζητούµε τα α και β. Α ΑΒ, άρα 3=7α+β (Ι) Β ΑΒ, άρα =7α+β (ΙΙ) Από (ΙΙ)-(Ι) παίρνουµε ότι: 3=α α=4,6 και από την (Ι) παίρνουµε 3=7 4,6+β β=-747, οπότε η ευθεία ΑΒ έχει εξίσωση ψ=4,6χ-747. Τότε για ψ= έχουµε χ=δ, άρα =4,6 δ-747 δ=73,6. ος τρόπος Με όµοια τρίγωνα Επικρατούσα τιµή Κατασκευάζουµε, καταρχήν, το ιστόγραµµα των συχνοτήτων της οµαδοποιηµένης κατανοµής. Για να βρούµε την επικρατούσα τιµή, έχουµε και πάλι δύο βασικούς τρόπους: την εξίσωση ευθείας και τα όµοια τρίγωνα. ος τρόπος Με εξίσωση ευθείας 7 6 v Ιστόγραµµα συχνοτήτων Α Β Ε Γ 4 3 7 Μ 4 6 6 7 Θεωρούµε τα σηµεία Α(7,), Β(7,), Γ(7,) και (7,). Οι ευθείες ΑΓ και Β τέµνονται στο Ε, το οποίο θα έχει τετµηµένη Μ. Αναζητούµε τις εξισώσεις των ευθειών ΑΓ, Β όπου λύνοντας το σύστηµά τους θα βρούµε τις συντεταγµένες του Ε, άρα και την επικρατούσα τιµή. Γνωρίζουµε ότι κάθε ευθεία έχει εξίσωση της µορφής ψ=αχ+β, όπου αναζητούµε τα α και β. Α ΑΓ, άρα =7α+β (Ι) Γ ΑΓ, άρα =7α+β (ΙΙ) Από το σύστηµα των (Ι) και (ΙΙ) παίρνουµε ότι: α= -, και β=43, άρα Επιµέλεια: Πρωτοπαπάς Ελευθέριος
ΑΓ: ψ=-,χ+43. Επίσης: Β Β, άρα =7α+β (III) και Β, άρα =7α+β (IV) Λύνοντας το σύστηµα των (III), (IV) βρίσκουµε ότι α=, και β=-3, άρα Β : ψ=,χ-3. Λύνοντας το σύστηµα των εξισώσεων των ευθειών ΑΓ και Β βρίσκουµε τις συντεταγµένες του Ε, Οπότε Ε(74,.), άρα η επικρατούσα τιµή είναι Μ =74. ος τρόπος Με όµοια τρίγωνα v Ιστόγραµµα συχνοτήτων 7 6 Ζ Α Β Ε Η Γ 4 3 7 Μ 4 6 6 7 Εύρος Τα δεδοµένα πριν οµαδοποιηθούν, έχουν εύρος: -3 = 3. Τα δεδοµένα όταν οµαδοποιηθούν, έχουν εύρος: - = 4. ιασπορά Τυπική απόκλιση s Για να βρούµε τη διασπορά µε τη βοήθεια του τύπου k x v k = = x v v = v, φτιάχνουµε τον πίνακα: Επιµέλεια: Πρωτοπαπάς Ελευθέριος 6
κέντρο κλάσεις κλάσης συχνότητα x x.v v x ν [,), 36, 3 46, [,6) 7, 3 46, 47, 744,7 [6,6) 6, 4 646, 6 6 [6,7) 67, 6, 37, 4,3 [7,7) 7, 76,, 676,3 [7,) 77, 36, 4 [,), 3336,, 663,3 [, ) 7, 36, 37 73, [,), 376, 3 74, ΣΥΝΟΛΟ - 4-6 76 Με τη βοήθεια των τύπων έχουµε ότι: Η διασπορά είναι: s = 4 = x v = x v 6 = 76 4 4 4 s =,67,. Και η τυπική απόκλιση: 34 =,67 Επίσης θα µπορούσαµε να χρησιµοποιήσουµε τον ακόλουθο πίνακα: Κλάσεις Μεταβλητή Συχνότητα χ v χ χ χ χ χ [,), -, 4,6,3 [,6) 7, 3 -, 3,6 67,6 [6,6) 6, 4 -,,6 4, [6,7) 67, -, 7,6 37, [7,7) 7, -,,6,6 [7,) 77, 4,7,6, [,),,7,6 47,3 [, ) 7, 4,7 7,6 43,3 [,),,7 3,6 7,3 χ ν ΣΥΝΟΛΟ 4 - - 3.47,. Επιµέλεια: Πρωτοπαπάς Ελευθέριος 7
Με τη βοήθεια των τύπων έχουµε ότι: Η διασπορά είναι: s = x 4 = x v = 4 3.47, =,67 Και η τυπική απόκλιση: s,67, 34 =. Συντελεστής µεταβολής Οµοιογενές δείγµα Ο συντελεστής µεταβολής των παρατηρήσεων είναι: s,34 CV = =,7 =,7%. 7,7 x Αφού CV<%, το δείγµα είναι οµοιογενές. Με τη βοήθεια των παραπάνω, λύστε µόνοι σας: Άσκηση η Τα βάρη µαθητών σε κιλά µιας τάξης Λυκείου είναι:, 76,, 6, 7, 7, 6, 3, 6, 6, 7, 63, 6, 66,, 7, 7, 7, 7, 6, 4, 63, 6, 6, 7,, 6, 66, 7,, 7, 6, 64, 7, 63, 6, 6, 7,, 4, 6, 63, 7,, 4, 6, 6, 7,,. α) Να οµαδοποιήσετε τις παρατηρήσεις σε κλάσεις ίσου πλάτους. β) Να κατασκευάσετε τον πίνακα κατανοµής συχνοτήτων και σχετικών αθροιστικών συχνοτήτων. γ) Να κατασκευαστούν τα ιστογράµµατα συχνοτήτων, σχετικών συχνοτήτων, αθροιστικών συχνοτήτων και σχετικών αθροιστικών συχνοτήτων και τα αντίστοιχα πολύγωνά τους. δ) Να βρεθεί το εύρος των παρατηρήσεων και το εύρος της κατανοµής. ε) Να υπολογιστεί η µέση τιµή x του δείγµατος. στ) Να υπολογιστεί η διασπορά και η τυπική απόκλιση του δείγµατος. ζ) Να προσδιοριστούν η διάµεσος και η επικρατούσα τιµή. η) Να υπολογιστεί ο συντελεστής µεταβολής και να εξετάσετε αν το δείγµα είναι οµοιογενές.. Επιµέλεια: Πρωτοπαπάς Ελευθέριος