Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα

Σχετικά έγγραφα
Εφαρμογή της γενικής λύσης

Μικρές ταλαντώσεις Συζευγμένες ταλαντώσεις

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα

Το ελαστικο κωνικο εκκρεμε ς

Αρµονικοί ταλαντωτές

Ταλαντώσεις. q Μια διαφορετική εφαρμογή του φορμαλισμού Lagrange

( ) = Ae + ω t + Be ω t ασταθές σημείο ισορροπίας ( ) = Asin( ωt) + Bcos( ωt) ευσταθής ισορροπία

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

Αρµονικοί ταλαντωτές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012

Φθίνουσες ταλαντώσεις

Πολλαπλασιαστές Lagrange Δυνάμεις δεσμών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007

Ανακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

website:

Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο

ΔΙΑΓΩΝΙΣΜΑ 2 ο ΕΚΦΩΝΗΣΕΙΣ

Φυσική για Μηχανικούς

Κίνηση στερεών σωμάτων - περιστροφική

( ) ( ) ( ) = d ( ) Ταλαντωτές. !!q + ω 2 q = 0. !!q + ω 2 q + ω Q!q = F t. + q ειδ. Q! = δ t t. G!! + ω 2 G + ω G. q t.

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

) A a r a. Κίνηση σωματιδίου κάτω από επίδραση δύναμης. T = 1 2 m (!r 2 + r 2!θ 2. A a r a + C. = Ar a 1 dr V = F = V r V = Fdr

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΜΕΤΡΗΣΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΣΕ ΠΡΑΚΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γ /ω=0.2 γ /ω=1 γ /ω= (ω /g) v. (ω 2 /g)(x-l 0 ) ωt. 2m.

Σύνθεση ή σύζευξη ταλαντώσεων;

Πολυβάθμια Συστήματα. (συνέχεια)

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια)

) = 0 όπου: ω = κ µε m-εκφυλισµό

, και τις ονομάζουμε γενικευμένες συντεταγμένες. Μία δεδομένη συντεταγμένη, q k. , μπορεί να είναι είτε γωνία, είτε απόσταση.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική II 20 Σεπτεμβρίου 2010

Φυσική για Μηχανικούς

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

Κεφάλαιο 13. Περιοδική Κίνηση

ΔΙΑΓΩΝΙΣΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ

Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος

Για τη συνέχεια σήμερα...

Έργο Ενέργεια Παραδείγµατα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΟΛΛΩΝ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

Δυναµική των Ροµποτικών Βραχιόνων. Κ. Κυριακόπουλος

Φυσική για Μηχανικούς

Μηχανική του στερεού σώματος

Θεωρητική μηχανική ΙΙ

Πολυβάθμια Συστήματα. (συνέχεια)

Κανονικ ες ταλαντ ωσεις

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 2019 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

ΑΣΚΗΣΕΙΣ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο

Στα ερωτήματα 1,2.3,4 του ζητήματος αυτού μια πρόταση είναι σωστή να την κυκλώσετε)

Εξαναγκασµένες φθίνουσες ταλαντώσεις

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή

ΑΣΚΗΣΗ 7. έκδοση DΥΝI-EXC b

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019

Θεωρητική μηχανική ΙΙ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 2 o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΕΝΟΤΗΤΑ 1.1: ΠΕΡΙΟΔΙΚΟ ΦΑΙΝΟΜΕΝΟ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΚΙΝΗΜΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) 1ο σετ - Μέρος Β ΘΕΜΑ Β

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διδάσκων: Κολιόπουλος Παναγιώτης

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ)

( ) Ολική στροφορμή L = p! i. L =! R M! v + ri m i vi. r i. q Ορίζουμε την θέση ενός σημείου I από το κέντρο μάζας: r! i

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

Λυμένες ασκήσεις στροφορμής

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ

ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 2ο set - μέρος Α - Απαντήσεις ΘΕΜΑ Β

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 10.

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κρούσεις - Αρµονική Ταλάντωση Ενδεικτικές Λύσεις Θέµα Α

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣ. 211 ΕΡΓΑΣΙΑ # 8 Επιστροφή την Τετάρτη 30/3/2016 στο τέλος της διάλεξης

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

Ημερομηνία: Παρασκευή 27 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

E ολ =K max =U max. q=q max cos(ω 0 t+φ 0 ) q= ω 0 q max sin (ω 0 t+φ 0 ) K max. q max. ω 2 2. =1/2k ισοδ

ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις Α1 Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Transcript:

ΦΥΣ 11 - Διαλ.3 1 Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα q Το παρακάτω σύστημα είναι ανάλογο με το σύστημα των δύο εκκρεμών. q Οι δυο ιδιοσυχνότητες του συστήματος είναι ίδιες με τις ιδιοσυχνότητες των δυο εκκρεμών αντικαθιστώντας όπου x 1 x m 1 m k 1 k k 3 Μπορούμε να γράψουμε δηλαδή: Οι λύσεις είναι της μορφής: z t ω 0 g a ω 0 k 0 m H μελέτη της κίνησης δίνει: m 1!!x 1 = k 1 x 1 + k x x 1 k 3 x (για k 1 =k 3 =k 0 m 1 =m =m) m!!x = k x 1 x m 1 0!!x 1 0 m!!x = k 1 + k k k k + k 3 Μ = z 1( t) ( t) z Κ = a 1 a eiωt = b 1e iδ1t b e iδ t a Επομένως καταλήγουμε: ω Mae iωt = Kae iωt K ω M M!!x = Kx x 1 x e iωt (μιγαδικές) Αλλά αφού έχουμε φυσικό σύστημα, η πραγματική λύση είναι το R z t

ΦΥΣ 11 - Διαλ.3 Ένα άλλο σύστημα q Το παρακάτω σύστημα είναι ανάλογο με το σύστημα των δύο εκκρεμών. Ø Έχουμε 3 πυκνωτές αντί για ελατήρια Ø Έχουμε πηνία αντί για μάζες Ø Η V L είναι ίση με V C1 V C Επομένως γράφουμε: L di a dt = Q 1 C Q C και L di b dt = Q C Q 3 C Παραγωγίζοντας ως προς t έχουμε:!! I a = I a LC + I b I a LC!! I b = I b LC I I b a LC 1 LC Αν Ι α = Ι b (συμμετρικός τρόπος), οι παραπάνω εξισώσεις δίνουν: ω 1 = Δηλαδή ο μεσαίος πυκνωτής δεν φορτίζεται ποτέ και μπορεί να αφαιρεθεί και Το ισοδύναμο κύκλωμα έχει πυκνωτές σε σειρά και πηνία σε σειρά: Αν Ι α = -Ι b τότε οι εξισώσεις δίνουν: ω = C oλ = C L oλ = L Ίδια περίπτωση με τις μάζες και 3 ελατήρια ίδιας σταθεράς K 3 LC ω = 1 LC

Το διπλό εκκρεμές Δουλεύοντας σε πολικές συντεταγμένες: Το εκκρεμές 1 έχει ταχύτητα: a 1!θ 1 a 1 ΦΥΣ 11 - Διαλ.3 3 Το εκκρεμές έχει ταχύτητα: a!θ a + a 1! θ 1 Η γωνία Δθ μεταξύ των ταχυτήτων είναι: Δθ = θ θ 1 Η δυναμική ενέργεια του συστήματος είναι: U 1 = m 1 ga 1 cosθ 1 [ ] U = m g a cosθ + a 1 cosθ 1 Οι κινητικές ενέργειες των εκκρεμών είναι: T 1 = 1 m 1a 1!θ 1 = 1 m a T = 1 m a! "θ + a 1! "θ1 "θ ( + a 1 "θ 1 + a 1 a "θ 1 "θ cos Δθ ) Επομένως η Lagrangian του συστήματος γίνεται: ως προς το σημείο στήριξης L = 1 m a!θ + 1 m + m ( 1 )a 1!θ 1 + m a 1 a!θ 1!θ cos( θ θ 1 ) + + ( m 1 + m )ga 1 cosθ 1 + m ga cosθ

Το διπλό εκκρεμές ΦΥΣ 11 - Διαλ.3 4 Θα μπορούσαμε να γράψουμε τις εξισώσεις κίνησης αλλά είναι περίπλοκες. Ø Θεωρώντας ότι οι γωνίες απόκλισης θ 1 και θ είναι μικρές, αναπτύσουµε κατά Taylor ως προς sinθ i και cosθ i κρατώντας τους πρώτους όρους: sinθ = θ θ 3 3! + θ 5 5!! θ cosθ = 1 θ! + θ 4 4!! 1 θ L = 1 m a!θ + 1 m + m ( 1 )a 1!θ 1 + m a 1 a!θ 1!θ cos( θ θ 1 ) + 1 γιατί θ!! μικρό + ( m 1 + m )ga 1 cosθ 1 + m ga cosθ L = 1 m a!θ + 1 ( m + m θ 1 )a 1!θ 1 + m a 1 a!θ 1!θ ( m 1 + m )ga 1 1 m ga θ αγνοώντας ( m 1 + m )ga 1 + m ga Εφαρμόζοντας τη εξίσωση Lagrange παίρνουμε τις εξισώσεις κίνησης: ( m 1 + m )a!! 1 θ 1 + m a 1 a!! θ = ( m 1 + m )ga 1 θ 1 m a 1 a!! θ 1 + m a!! θ = m ga θ Η προσέγγιση μικρών γωνιών οδήγησε σε ομογενή εξίσωση ου βαθμού και δευτεροβάθμια εξάρτηση από ταχύτητες και συντεταγμένες για Τ και U 1θ

ΦΥΣ 11 - Διαλ.3 5 Το διπλό εκκρεμές Μπορούμε να γράψουμε τις δύο εξισώσεις κίνησης στην μορφή: M!! θ = Kθ ( m 1 + m )a 1 m a 1 a!! θ 1 ( m a 1 a m a!! θ = m 1 + m )ga 1 0 θ 1 0 m ga θ Ο πίνακας M δεν έχει μόνο μάζες αλλά έχει και τις ιδιότητες, αφού πολ/ζει τις επιταχύνσεις και επομένως παίζει το ρόλο της μάζας αδράνειας Ø Θεωρούμε ίσες μάζες και μήκη εκκρεμών για απλούστευση πράξεων ma 1 1 1!! θ 1!! = mga 0 0 1 θ Όπως και πριν οποιαδήποτε λύση μπορεί να γραφεί σαν το πραγματικό μέρος μιας μιγαδικής λύσης z(t) με χρονική εξάρτηση e iωt Ø Άρα θα πρέπει να ικανοποιείται η χαρακτηριστική εξίσωση: ( K ω M) = ω ω 0 ω ω ω 0 ω θ 1 θ όπου ω 0 = g a

Το διπλό εκκρεμές q Οι ιδιοσυχνότητες δίνονται από: Det K ω M Ø με λύσεις: ω = ( ± )ω 0 Ø Οι φυσικές συχνότητες είναι: ω 1 = ( )ω 0 ΦΥΣ 11 - Διαλ.3 6 ω 4 4ω ω 0 + ω 0 4 q Από τις φυσικές συχνότητες βρίσκουμε τα ιδιοδιανύσματα και εποµένως τους φυσικούς τρόπους ταλάντωσης. και ω = ( + )ω 0 Ø Αντικαθιστώντας στη χαρακτηριστική εξίσωση τις ω 1 και ω έχουμε: q ω = ω 1 : ( K ω 1 M)a = ma ω ( 0 1) a 1 1 a eiωt Ø Η λύση της παραπάνω δίνει: a = a 1 Ø Τα εκκρεμή ταλαντώνονται με την ίδια συχνότητα και ίδια φάση q Για τη συχνότητα ω δίνει: a 1 = A e iδ t ( t) = R ae iω t ( t) θ 1 θ a = a 1 Ø Τα εκκρεμή ταλαντώνονται με την ίδια συχνότητα αλλά αντίθετη φάση q Γράφοντας: η κίνηση περιγράφεται από: 1 = A cos ω t δ

ΦΥΣ 11 - Διαλ.3 7 Συζευγμένοι ταλαντωτές - Η γενική περίπτωση q Τα προηγούμενα παραδείγματα δείχνουν ότι για συστήματα με DoF υπάρχουν χαρακτηριστικές συχνότητες και τρόποι ταλάντωσης q Θεωρούμε ένα συντηρητικό σύστημα που περιγράφεται: Ø Από μια ομάδα από k-γενικευμένες συντεταγμένες q k Ø το χρόνο t Ø το σύστημα έχει n-βαθμούς ελευθερίας q Υποθέτουμε ότι υπάρχει μια κατάσταση σταθερής ισορροπίας και ότι στην ισορροπία οι συντεταγμένες είναι: q k0. Οι εξισώσεις Lagrange ικανοποιούνται από q k = q k 0,!q k,!!q k, k = 1,,",n q Οι µή μηδενικοί όροι της μορφής d L dt!q k Ø Όλοι οι όροι αυτής της μορφής θα μηδενίζονται στην ισορροπία πρέπει να περιέχουν είτε!q k ή!!q k q Στην κατάσταση ισορροπίας, η εξίσωση του Lagrange θα γραφεί: L = T U

ΦΥΣ 11 - Διαλ.3 8 Συζευγμένοι ταλαντωτές - Η γενική περίπτωση q Υποθέτουμε ότι οι εξισώσεις μεταξύ γενικευμένων και ορθογώνιων! συντεταγμένων δεν περιέχουν ακριβώς τον χρόνο: r a = r! a q 1,q,",q n L = T T ( q,!q ) = 1 U,k m k!q!q k Ø Επομένως (όπως ξέρουμε) η κινητική ενέργεια μπορεί να γραφεί: T = 1 T a m! "r a, k = 1,,!,n Όχι απαραίτητα νούμερα Μπορεί να εξαρτώνται από τις συντεταγμένες: r m k = m a, i a a q i q k0 r a, i q Αν υποθέσουμε ότι η θέση ισορροπίας είναι τέτοια ώστε Ø ενδιαφερόμαστε για μικρές μετατοπίσεις από τη θέση ισορροπίας Aνάπτυγμα Taylor: = U 0 + U q 1,q,!,q n U ( q 1,q,!,q n ) = 1 U σταθ., k = 1,,!,n U k qk q k k + 0q 1 U q q k +!,k q 0 U q q k V,k q q k = U U = 1 k V k q q k με 0,k q

ΦΥΣ 11 - Διαλ.3 9 Συζευγμένοι ταλαντωτές - Η γενική περίπτωση q Ανάλογα με την δυναμική ενέργεια, αναπτύσσουμε κατά Taylor την Τ Ø Αφού δεν υπάρχει ακριβής χρονική εξάρτηση των q k και η Τ περιέχει μόνο όρους!q που είναι ου!q k βαθμού ως προς q k T ( q,!q ) = 1,k M k!q!q k Ø O όρος M k αποτελεί τον πρώτο μη μηδενικό όρο του αναπτύγματος των m k ως προς τη θέση ισορροπίας: m k Ø Αλλά ο σταθερός όρος ( q 1,q,!,q n ) = m k ( q l 0 ) + m k ( q l 0 ) m k l ql δεν μπορεί να είναι μηδέν 0 q l +! v Κρατώντας αυτό τον όρο έχουμε την ίδια τάξη προσέγγισης με το δυναμικό γιατί ο επόμενος όρος του αναπτύγματος της Τ θα δώσει όρους της μορφής!q!q k q l που είναι ανώτερης τάξης από το ανάπτυγμα της U Επομένως: M k = m k ( q l 0 )

ΦΥΣ 11 - Διαλ.3 10 Συζευγμένοι ταλαντωτές - Η γενική περίπτωση Επομένως καταλήγουμε ότι για μικρές αποκλίσεις από τη θέση ισορροπίας: U = 1 V k q q k V k = U,k q T = 1 M k!q!q k M k = m k q l 0,k n n πίνακες αριθμητικών τιμών που καθορίζουν τους τρόπους σύζευξης των διαφόρων συντεταγμένων Αν M k 0 για k τότε η Τ περιέχει ένα όρο ανάλογο προς!q!q k και υπάρχει σύζευξη μεταξύ των και k συντεταγμένων. Αν ο πίνακας είναι διαγώνιος τότε Μ k 0 για = k ενώ Μ k για k τότε: T = 1 M!q Αν και o πίνακας V k είναι διαγώνιος τότε U είναι απλό άθροισμα ξεχωριστών δυναμικών ενεργειών και κάθε συντεταγμένη συμπεριφέρεται σαν να κάνει ταλαντώσεις με μια ορισμένη συχνότητα Άρα αν βρούμε ένα μετασχηματισμό συντεταγμένων που να διαγωνοποιεί τους πίνακες Μ και V τότε το σύστημα μπορεί να περιγραφεί με τον απλούστερο δυνατό τρόπο κανονικές συντεταγμένες

ΦΥΣ 11 - Διαλ.3 11 Παράδειγμα προσέγγισης μικρών ταλαντώσεων Μια χάντρα μάζας m μπορεί να κινείται σε ένα λείο σύρμα που βρίσκεται στο επίπεδο x-y και το οποίο είναι λυγισμένο στο σχήμα μιας συνάρτησης y = f(x) και η οποία παρουσιάζει ελάχιστο στη θέση (0,0). Να γραφεί η δυναμική και κινητική ενέργεια καθώς και η απλοποιημένη μορφή τους κατάλληλη για μικρές ταλαντώσεις γύρω από τη θέση (0,0). y 0 y = f(x) x 1 βαθμός ελευθερίας è γενικευμένη συντεταγμένη x U = mgy = mgf (x) Για μικρές ταλαντώσεις αυτό θα δώσει: U mgf x 0 Η κινητική ενέργεια θα είναι: T = 1 m (!x +!y ) = 1 m!x + dy dx + mg f ( x 0 ) + 1 mg f x 0 x U 1 T = 1 m!x 1+ f ( x) f (0) = f (x 0 ) mg f ( 0)x Από τη στιγμή που Τ περιέχει τον όρο!x μπορούμε να θέσουμε f (x) 1 m!x και για μικρές ταλαντώσεις: T = 1 m!x 1 + f (x) dx dt Άρα Τ και U έγιναν ομογενείς ου βαθμού συναρτήσεις του x και x!

ΦΥΣ 11 - Διαλ.3 1 Εξίσωση κίνησης συζευγμένων ταλαντωτών γενική περίπτωση Επιστρέφοντας στην απλοποιημένη μορφή των Τ και U, η Lagrangian γίνεται: = T (!q 1,!q,",!q n ) U ( q 1,q,",q n ) L q,!q και θα έχουμε n-εξισώσεις κίνησης της μορφής: d dt L!q i = L q i Αντικαθιστώντας τα Τ και U και παραγωγίζοντας έχουμε: T U = M i!q = V q!q i q i Η εξίσωση κίνησης γίνεται: M i!!q + V i q!q i d T U dt = T U d T q i dt!q i = U q i M i!!q + V i q γραμμικό σύστημα n-ομογενών Δ.Ε. ης τάξης Η παραπάνω εξίσωση γράφεται σε μορφή πίνακα: M!!q = Vq με q = και οι πίνακες Μ και V είναι οι ανάλογοι πίνακες Μαζών και σταθερών ελατηρίων q 1! q n

ΦΥΣ 11 - Διαλ.3 13 Συζευγμένοι ταλαντωτές Γενική λύση συστήματος i(ωt δ ) Αναμένουμε λύσεις της μορφής: q (t) = a e Ø α είναι πραγματικοί αριθμοί (πλάτος) και δ η φάση Ø ω είναι πραγματικός αριθμός ü δεν είναι μιγαδικός γιατί δεν θα είχαμε διατήρηση ενέργειας Αντικαθιστώντας τη παραπάνω λύση στην εξίσωση της κίνησης έχουμε: ( V i ω M i ) a Για μη τετριμένη λύση για α θα πρέπει η ορίζουσα να μηδενίζεται: V 11 ω M 11 V 1 ω M 1 V 13 ω M 13! V 1 ω M 1 V ω M V 3 ω M 3! V 13 ω M 13 V 3 ω M 3 V 33 ω M 33! " " " # Εξίσωση n-βαθμού ως προς ω και επομένως n-λύσεις ω i Tα ω i ονομάζονται φυσικές ή χαρακτηριστικές συχνότητες Όταν μια ή περισσότερες συχνότητες είναι ίσες έχουμε εκφυλισμό Αντικαθιστώντας τιμές των ω i προκύπτουν τα ιδιοδιανύσματα a i H γενική λύση είναι υπέρθεση των λύσεων για κάθε n-τιμή της i

Εφαρμογή της γενικής λύσης Να βρεθούν οι χαρακτηριστικές συχνότητες του συστήματος ΦΥΣ 11 - Διαλ.3 14 x 1 x m 1 m k 1 k 1 k 3 Η δυναμική ενέργεια του συστήματος είναι: U = 1 kx 1 + 1 k 1 ( x x 1 ) + 1 kx Υπολογίζουμε τα V k : V 11 = U x 1 0 = k + k 1 V = U x U = 1 ( k + k 1 ) x 1 + 1 ( k + k 1 ) x k 1 x 1 x 0 = k + k 1 V 1 = U x 1 x 0 = k 1 = V 1 Η κινητική ενέργεια του συστήματος είναι: T = 1 m!x 1 + 1 m!x Αλλά είδαμε ότι: T = 1,k M k!x!x k Από την χαρακτηριστική εξίσωση παίρνουμε: k + k 1 Mω k 1 k 1 k + k 1 Mω ω = k + k 1 ± k 1 M m 11 = m = M m 1 = m 1 ω 1 = k + k 1 M ω = k M

Κανονικές συντεταγμένες ΦΥΣ 11 - Διαλ.3 15 q Η γενική λύση για την κίνηση της συντεταγμένης q είναι ένας γραμμικός συνδυασμός διαφόρων όρων καθένας από τους οποίους εξαρτάται από μια ξεχωριστή συχνότητα. q Τα ιδιοδιανύσματα a r είναι επίσης ορθοκανονικά μεταξύ τους: M k a r a ks = δ rs = 0 r s,k 1 r = s q Για να αποφύγουμε το περιορισμό από την αυθαίρετη κανονικοποίηση χρησιμοποιούμε κάποιο συντελεστή κλίμακας που εξαρτάται από τις αρχικές συνθήκες και μπορούμε να γράψουμε την κίνηση της q (t): q (t) = r = α r a r e i ω rt δ r r β r a r e iω rt q Ορίζουμε τώρα την ποσότητα η r : έτσι ώστε: q (t) = a r η r (t) Τα η r ικανοποιούν εξισώσεις της μορφής: r όπου β r είναι ο συντελεστής κλίμακας η r = β r e iω rt κανονικές συντεταγμένες!! η r + ω r η r q Υπάρχουν n ανεξάρτητες τέτοιες εξισώσεις, και οι εξισώσεις κίνησης εκφρασμένες σε κανονικές συντεταγμένες γίνονται διαχωρίσιμες

Μεθοδολογία ΦΥΣ 11 - Διαλ.3 16 q Επιλογή γενικευμένων συντεταγμένων και εύρεση των Τ και U σύμφωνα με το συνηθισμένο τρόπο των προβλημάτων με Lagrangian. U = 1 V k q q k V k = U,k q T = 1 M k!q!q k M k = m k q l 0,k q Αντικατάσταση των V k και M k σαν πίνακες n x n και χρησιμοποίηση της εξίσωσης M!!q = Vq για εύρεση των n τιμών των ιδιοσυχνοτήτων ω r q Για κάθε τιμή ιδιοσυχνότητας ω r, προσδιορισμός των λόγων α 1r :α ri :α 3r : :α nr αντικαθιστώντας στην εξίσωση: ( V i ω r M i ) a r q Αν χρειαστεί, προσδιορίζονται οι σταθερές κλίμακας β i από αρχικές συνθ. q Προσδιορισμός των κανονικών συντεταγμένων η i με κατάλληλους γραμ. συνδυασμούς των q συντεταγμένων που φαίνονται να ταλαντώνουν στην συγκεκριμένη ιδιοσυχνότητα ω i. H κίνηση για τη συγκεκριμένη κανονική συντεταγμένη ονομάζεται normal mode. Η γενική κίνηση του συστήματος είναι υπέρθεση όλων των normal modes.

Παράδειγμα ΦΥΣ 11 - Διαλ.3 17 Εύρεση των ιδιοσυχνοτήτων, ιδιοδιανυσμάτων και κανονικών συντεταγμένων του συστήματος που φαίνεται στο παρακάτω σχήμα. Υποθέτουμε ότι k 1 = k x 1 x m 1 m k 1 k 1 k 3 Στο παράδειγμα της σελ. 14 στο 1 ο βήμα βρήκαμε τα Τ και U και τους πίνακες M και V: V = k + k 1 k 1 k 1 k + k 1 και M = m 0 0 m όπου m 11 = m = m Ιδιοσυχνότητες: Χρησιμοποιώντας την χαρακτηριστική εξίσωση βρίσκουμε τις ιδιοσυχνότητες: k + k 1 mω k 1 k 1 k + k 1 mω ω = k + k ± k 1 1 m ω 1 ω = k m k + k 1 3k m m = =

Ιδιοδιανύσματα ΦΥΣ 11 - Διαλ.3 18 Για να βρούμε τα ιδιοδιανύσματα χρησιμοποιούμε την εξίσωση: ( V i ω r M i ) a r όπου α r οι συνιστώσες του ιδιοδιανύσματος a r τo οποίο αντιστοιχεί στην ιδιοσυχνότητα ω r V 11 ω r M 11 V 1 M 1 a 1r ( V 1 M 1 V ω r M a r = V 11 ω r M 11 )a 1r + ( V 1 M 1 )a r ( V 1 M 1 )a 1r + ( V ω r M )a r εξισώσεις για κάθε τιμή του r, αλλά μπορούμε να βρούμε μόνο το α 1r /α r επομένως μπορούμε να χρησιμοποιήσουμε μόνο τη μια εξίσωση. k Για r=1, δηλαδή την 1 η ιδιοσυχνότητα: ω1 = αντικαθιστώντας τα V i, M i m έχουμε (χρησιμοποιούμε k 1 = k) : k a11 1 k ma 11 + ka1 ka11 ka 1 = 1 άρα: a m a 1 = a 11 1 (1) 1 k+k 1 =V 11 ω 1 M 11 V 1 Ανάλογα για τη η ιδιοσυχνότητα ω k + k 1 3k m m = k 3k m m a 1 + ka ka 1 ka a 1 1 = 1 άρα: a a = a 1 ()

Ιδιοδιανύσματα - Ορθοκανονικότητα ΦΥΣ 11 - Διαλ.3 19 Αφού τα a 1 και a είναι ορθοκανονικά θα έχουμε:, k M k a r a ks = δ rs = M 11 a 1r a 1s + M 1 a 1r a s + M 1 a r a 1s + M a r a s M 11 r s a1 r a1 r + M1a1 rar + M1ara1 r + M arar = 1 r = Αντικαθιστώντας α r στην εξίσωση και αφού Μ 1 =0 και Μ 11 = Μ = m: M 11 a 1r a 1r + M 1 a 1r a r + M 1 a r a 1r + M a r a r = 1 r = 1, ma 11 + ma 1 = 1 s Αλλά α 11 =α 1 οπότε: ma 11 = 1 a 11 = 1 m a 1 = 1 m Κατά τον ίδιο τρόπο βάζοντας για r = έχουμε: a = 1 m a = 1 m 1 1 1 1

Κανονικές συντεταγμένες ΦΥΣ 11 - Διαλ.3 0 Η γενική λύση θα είναι της μορφής: q ( t) = a r η r ( t) όπου η r t r β r e iω rt Επομένως θα έχουμε: μάζα 1: x 1 = a 11 η 1 + a 1 η = a 11 η 1 a η μάζα : x = a 1 η 1 + a η = a 11 η 1 + a η Προσθέτοντας και αφαιρώντας τα x 1 και x έχουμε: 1 η1 = ( x 1 + x ) η a = 1 ( x 1 x ) 11 a Όταν το σύστημα κινείται κάτω από ένα από τα normal modes έχουμε: η 1 = 1 ( x 1 + x ) a και η ή η = 1 ( x 1 x ) 11 a και η 1 Όταν η x 1 = x Άρα για mode 1 x 1 και x σε φάση Όταν η 1 x 1 = x Άρα για mode x 1 και x έχουν αντίθετη φάση Σημειωτέον ότι στο πρόβλημα δεν μας δίνονται αρχικές συνθήκες και επομένως δεν χρειάζεται να υπολογίσουμε το β r ούτε την πλήρη λύση