1.7 OΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ

Σχετικά έγγραφα
1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x

Θεωρήματα και προτάσεις με τις αποδείξεις τους

ΜΑΡΙΑ ΓΚΟΥΝΤΑΡΟΠΟΥΛΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Η θεωρία στα Μαθηματικά κατεύθυνσης

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΘΕΩΡΗΜΑΤΑ (των οποίων πρέπει να ξέρουμε & τις αποδείξεις) από το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΘΕΩΡΗΜΑΤΑ ΤΥΠΟΙ ΧΩΡΙΣ ΑΠΟΔΕΙΞΗ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

ΤΖΕΜΠΕΛΙΚΟΥ ΚΑΤΕΡΙΝΑ ΜΑΘΗΜΑΤΙΚΟΣ

1o ΓΕ.Λ. Λιβαδειάς Μαθηματικά Προσανατολισμού Ορισμοί Θεωρήματα- Αποδείξεις- Γεωμετρικές ερμηνείες- Σχόλια Αντιπαραδείγματα - Παρατηρήσεις.

ΤΟ ΣΥΝΟΛΟ C ΤΩΝ ΜΙΓΑ ΙΚΩΝ

Μαθηματικά για την Α τάξη του Λυκείου

Επαναληπτικά θέµατα Θεωρίας Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ

Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό.

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

1.5 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ

ΟΡΙΑ - ΣΥΝΕΧΕΙΑ. Πόσα είδη ορίων υπάρχουν; Τι είναι το +, - ; Τι ονοµάζουµε γειτονιά ή περιοχή του x o ; Τι ονοµάζουµε γειτονιά του +, - ;

Η Θεωρία σε 99 Ερωτήσεις

lim f (x) = +. ΣΗΜΕΙΩΣΕΙΣ Μη πεπερασμένο όριο στο x 0 R

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Υπάρχει ένα στοιχείο i τέτοιο, ώστε i 1, Κάθε στοιχείο z του γράφεται κατά μοναδικό τρόπο με τη μορφή i, όπου,

Η θεωρία στα Μαθηματικά κατεύθυνσης :

Παρατηρήσεις. Παρατήρηση Ισχύουν οι επόµενες ισότητες: Προσέχουµε: Αν α 0και ν θετικός ακέραιος τότε η µη αρνητική ρίζα της εξίσωσης.

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Η θεωρία στα Μαθηματικά κατεύθυνσης :

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Ορισμοί των εννοιών και θεωρήματα χωρίς απόδειξη

α+ βi, όπου α, ii) Ο µιγαδικός α+ βi είναι ίσος µε το µηδέν αν και µόνο αν α= 0 και β = 0

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι

ΜΑΘΗΜΑΤΙΚΑ Θεωρία & Σχόλια

, µε α και β, πραγµατικούς αριθµούς. Τα στοιχεία του C λέγονται µιγαδικοί αριθµοί και το C σύνολο των µιγαδικών αριθµών. Εποµένως:

ΜΑΘΗΜΑΤΙΚΑ. Γ Τάξης Ενιαίου Λυκείου Θετική Κατεύθυνση

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ

Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ

Μαθηματικά Γ Λυκείου 2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑ ΙΚΟΥ ΑΡΙΘΜΟΥ. Το Σύνολο των Μιγαδικών Αριθµών

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx

ΚΕΦΑΛΑΙΟ 1 ο Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους.

ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

Επανάληψη Τελευταίας Στιγμής

Ε 1. Διαφορικός λογισμός (Κανόνες παραγώγισης)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΤΥΠΟΛΟΓΙΑ.

Παρατηρήσεις 1 Για α ααζητήσουµε το όριο της f στο, πρέπει η f α ορίζεται όσο θέλουµε κοτά στο, δηλαδή η f α είαι ορισµέη σ έα σύολο της µορφής ( α, )

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ορισμός : Ακολουθία ονομάζεται κάθε συνάρτηση με πεδίο ορισμού το σύνολο Ν* των θετικών ακεραίων και παίρνει τιμές στο R. a: Ν* R

Παραδείγµατα στις ακολουθίες. 2. Να γράψετε τους 4 πρώτους όρους των ακολουθιών. 2ν +1. i) α. =, ii)α. = (-1) v. ΛΥΣΗ

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 21 ΔΕΚΕΜΒΡΙΟΥ 2014

[ ] ( ) [( ) ] ( ) υ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

+ 4 µε x >0. x = f(x) f(t) dt. Άρα από κριτήριο παρεµβολής lim f(t) dt = 4.

ΟΡΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ( ) Στο σχήμα 1, έχουμε τη γραφική παράσταση της συνάρτησης (1) και παρατηρούμε ότι όσο το x πλησιάζει στο xο = 2 από τα μικρά ( x

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ τοποθετημένους σε μ γραμμές και v στήλες. Το σύμβολο. λέγεται πίνακας διάστασης μ x ν. α α

ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

α β α < β ν θετικός ακέραιος.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

Η έννοια της συνάρτησης

γ λυκειου κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο3 ολοκληρωτικος λογισμος επιμελεια : τακης τσακαλακος T Ш τ

ταυτότητες διάταξη α 2 +β 2 = (α+β) 2-2αβ (α+β) 2 = α 2 +β 2 +2αβ (α+β) 3 = α 3 +β 3 +3α 2 β+3αβ 2 =α 3 +β 3 +3αβ(α+β) α 3 +β 3 = (α+β) 3-3αβ(α+β)

Άλγεβρα και Στοιχεία Πιθανοτήτων Θεωρία & Σχόλια

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

1o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ ( ) Αριθµητική τιµή του πολυώνυµου ( ) Το πολυώνυµο ( ) = = =.

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο

! ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ

Ορισμοί των εννοιών Τύποι και ιδιότητες Βασική μεθοδολογία

ΟΡΙΑ. 0 : Παραγοντοποιώ αριθµητή και παρονοµαστή και διώχνω τους παράγοντες x, x 0 που προκύπτουν.

(, )

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.

Ορισμος Μια ακολουθια ονομαζεται αριθμητικη προοδος, αν και μονο αν, υπαρχει ω, τετοιος ωστε για κάθε ν να ισχυει: α. ν ν

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Ταυτότητες ΤΑΥΤΟΤΗΤΕΣ

ΟΛΟΚΛΗΡΩΜΑ ΚΑΙ ΙΑΤΑΞΗ

3. ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Λύσεις των θεμάτων ΤΕΤΑΡΤΗ 20 MAΪΟΥ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συνχ = συνθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z

ν παραγοντες 1 ( ) β β α β α α α γ + β γ = α+ γ γ

Μαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

Φροντιστήρια 2001-ΟΡΟΣΗΜΟ

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

ΕΡΩΤΗΣΕΙΣ ΜΕ ΥΠΑΡΧΕΙ ( ) τέµνει σε άπειρα σηµεία την πλάγια ασύµπτωτή της; 9. Υπάρχει συνάρτηση που να µην είναι η σταθερή η οποία έχει άπειρες

Π ρ ό λ ο γ ο ς. Το βιβλίο αυτό γράφτηκε με στόχο την πληρέστερη προετοιμασία των μαθητών μας.

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση

Κεφάλαιο 1ο 55 Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ) αν είναι σωστές ή με (Λ) αν είναι λανθασμένες:

ΜΑΘΗΜΑΤΙΚΑ. Γ Τάξης Ενιαίου Λυκείου Θετική & Τεχνολογική Κατεύθυνση

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

Στα επόμενα παρουσιάζουμε τις τρεις βασικές μεθόδους ολοκλήρωσης των ορισμένων ολοκληρωμάτων.

Μαθηματικά κατεύθυνσης Γ Λυκείου. Όλη η θεωρία και οι ασκήσεις των πανελλαδικών εξετάσεων. Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

Transcript:

ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ Στ πράτω σχήμτ έχουμε τις γρφιές πρστάσεις τριώ συρτήσεω, g, h σε έ διάστημ της μορφής, 8 l a C g C g h γ C h Πρτηρούμε ότι θώς το υξάετι περιόριστ με οποιοδήποτε τρόπο, το προσεγγίζει όσο θέλουμε το πργμτιό ριθμό l Στη περίπτωση υτή λέμε ότι η έχει στο όριο το l ι γράφουμε l το g υξάετι περιόριστ Στη περίπτωση υτή λέμε ότι η g έχει στο όριο το ι γράφουμε g το h μειώετι περιόριστ Στη περίπτωση υτή λέμε ότι η h έχει στο όριο το ι γράφουμε ΠΑΡΑΤΗΡΗΣΗ h Από τ πρπάω προύπτει ότι γι ζητήσουμε το όριο μις συάρτησης στο, πρέπει η είι ορισμέη σε διάστημ της μορφής, Αάλογοι ορισμοί μπορού διτυπωθού, ότ γι μι συάρτηση που είι ορισμέη σε διάστημ της μορφής, Ετσι, γι τις συρτήσεις, g, h τω πράτω σχημάτω έχουμε:

4 ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 9 C l Cg g C h γ h l g ι h Γι το υπολογισμό του ορίου στο ή εός μεγάλου ριθμού συρτήσεω χρειζόμστε τ πράτω σιά όρι: ι,, -, Γι πράδειγμ, άρτιος περιττός, ι ι * *, Γι τ όρι στο, ισχύου οι γωστές ιδιότητες τω ορίω στο με τη προϋπόθεση ότι: οι συρτήσεις είι ορισμέες σε τάλληλ σύολ ι δε τλήγουμε σε προσδιόριστη μορφή Όριο πολυωυμιής ι ρητής συάρτησης Έστω η συάρτηση Α εφρμόσουμε τις ιδιότητες τω ορίω γι το υπολογισμό του, τλήγουμε σε προσδιόριστη μορφή Στη περίπτωση υτή εργζόμστε ως εξής: Γι έχουμε Επειδή ι έχουμε Γειά

ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Γι τη πολυωυμιή συάρτηση, με ι- P L σχύει: P ι P Γι πράδειγμ, 4 6 4 Έστω τώρ η συάρτηση Γι έχουμε: Επειδή ι έχουμε Γειά, Γι τη ρητή συάρτηση L L,, ισχύει: ι Γι πράδειγμ, 6

6 ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Όρι εθετιής - λογριθμιής συάρτησης Αποδειύετι ότι: 6 Α > Σχ 6, τότε, log, log a loga Α < < Σχ 6, τότε a 6, log, log Πεπερσμέο όριο ολουθίς Η έοι της ολουθίς είι γωστή πό προηγούμεες τάξεις Συγεριμέ: ΟΡΙΣΜΟΣ log a Αολουθί οομάζετι άθε πργμτιή συάρτηση : * Η ειό της ολουθίς συμολίζετι συήθως με, εώ η ολουθί συμολίζετι με Γι πράδειγμ, η συάρτηση *, είι μι ολουθί Επειδή το πεδίο ορισμού άθε ολουθίς, είι το * {,,, 4,}, έχει όημ μελετήσουμε τη συμπεριφορά της γι πολύ μεγάλες τιμές του, δηλδή ότ Ο ορισμός του ορίου ολουθίς είι άλογος του ορισμού του ορίου συάρτησης στο ι διτυπώετι ως εξής: ΟΡΙΣΜΟΣ Η πόδειξη πρλείπετι

ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Θ λέμε ότι η ολουθί έχει όριο το l ι θ γράφουμε l, * ότ γι άθε ε >, υπάρχει τέτοιο, ώστε γι άθε > ισχύει l < ε Οι γωστές ιδιότητες τω ορίω συρτήσεω ότ, που μελετήσμε στ προηγούμε, ισχύου ι γι τις ολουθίες Με τη οήθει τω ιδιοτήτω υτώ μπορούμε υπολογίζουμε όρι ολουθιώ Γι πράδειγμ, 4 4 ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ N ρείτε τ όρι: i ii iii 8 ii vii 4 v vi 4 viii Ν ρείτε τ όρι: i 4 iii v 4 4 Ν ρείτε τ όρι: ii 9 iv, i ii iii iv

8 ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ v vi B ΟΜΑΔΑΣ Γι τις διάφορες πργμτιές τιμές του μ, υπολογίσετε τ πράτω όρι: i μ ii μ μ 6 N προσδιορίσετε το λ, ώστε το λ υπάρχει στο Α, ρείτε τις τιμές τω,, γι τις ο- ποίες ισχύει 4 Ν ρείτε τ όρι: i ii 8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 4 iii ρισμός της συέχεις Έστω οι συρτήσεις, g, h πράτω σχήμτ τω οποίω οι γρφιές πρστάσεις δίοτι στ C h 6 l C l g C g l l a Πρτηρούμε ότι: Η συάρτηση είι ορισμέη στο ι ισχύει: γ

ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 9 Η συάρτηση g είι ορισμέη στο λλά g g Η συάρτηση h είι ορισμέη στο λλά δε υπάρχει το όριό της Από τις τρεις γρφιές πρστάσεις του σχήμτος μόο η γρφιή πράστση της δε διόπτετι στο Είι, επομέως, φυσιό οομάσουμε συεχή στο ΟΡΙΣΜΟΣ μόο τη συάρτηση Γειά, έχουμε το όλουθο ορισμό Εστω μι συάρτηση ι έ σημείο του πεδίου ορισμού της Θ λέ- με ότι η είι συεχής στο, ότ Γι πράδειγμ, η συάρτηση είι συεχής στο, φού Σύμφω με το πρπάω ορισμό, μι συάρτηση δε είι συεχής σε έ σημείο του πεδίου ορισμού της ότ: Δε υπάρχει το όριό της στο ή Υπάρχει το όριό της στο, λλά είι διφορετιό πό τη τιμή της,, στο σημείο Γι πράδειγμ:, Η συάρτηση δε είι συεχής στο, φού, >, εώ, οπότε δε υπάρχει το όριο της στο Η συάρτηση, δε είι συεχής στο, φού,, εώ

8 ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Μί συάρτηση που είι συεχής σε όλ τ σημεί του πεδίου ορισμού της, θ λέγετι, πλά, συεχής συάρτηση Γι πράδειγμ: Κάθε πολυωυμιή συάρτηση Ρ είι συεχής, φού γι άθε ισχύει P P Κάθε ρητή συάρτηση Q P είι συεχής, φού γι άθε του πεδίου ο- ρισμού της ισχύει P P Q Q Οι συρτήσεις ημ ι g συ είι συεχείς, φού γι άθε ισχύει ημ ημ Τέλος, ποδειύετι ότι: ι συ συ Οι συρτήσεις ι g log, < είι συεχείς Πράξεις με συεχείς συρτήσεις Από το ορισμό της συέχεις στο πράτω θεώρημ: ΘΕΩΡΗΜΑ Α οι συρτήσεις ι g είι συεχείς στο ι οι συρτήσεις: g, c, όπου c, g, ι τις ιδιότητες τω ορίω προύπτει το, τότε είι συεχείς στο, g ι με τη προϋπόθεση ότι ορίζοτι σε έ διάστημ που περιέχει το Γι πράδειγμ: Οι συρτήσεις εφ ι g σφ είι συεχείς ως πηλί συεχώ συρτήσεω Η συάρτηση είι συεχής στο πεδίο ορισμού της,, φού η συάρτηση g είι συεχής

ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8 Η συάρτηση ημ είι συεχής, φού είι της μορφής g, όπου g ημ η οποί είι συεχής συάρτηση ως γιόμεο τω συεχώ συρτήσεω ι ημ Τέλος, ποδειύετι ότι γι τη σύθεση συεχώ συρτήσεω ισχύει το όλουθο θεώρημ: ΘΕΩΡΗΜΑ Α η συάρτηση είι συεχής στο, τότε η σύθεσή τους go είι συεχής στο ι η συάρτηση g είι συεχής στο Γι πράδειγμ, η συάρτηση φ ημ είι συεχής σε άθε σημείο του πεδίου ορισμού της ως σύθεση τω συεχώ συρτήσεω ι g ημ o g g ωημημ ΕΦΑΡΜΟΓΗ Γι ποι τιμή του η συάρτηση, ημ είι συεχής;, >