a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6.

Σχετικά έγγραφα
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017

Φροντιστήριο #5 Λυμένες Ασκήσεις σε Σχέσεις 22/3/2018

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

Υπολογιστικά & Διακριτά Μαθηματικά

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2018 Λύσεις ασκήσεων προόδου

Ισοδυναµίες, Μερικές ιατάξεις

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016

LÔseic Ask sewn sta Jemèlia twn Majhmatik n I

Πέμπτη 8 εκεμβρίου 2016 Θεόδωρος Τζουραμάνης Επίκουρος Καθηγητής. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3/ΣΕΜΦΕ/ y x= ( ) ( ) .( ) , τότε

Σύνολα, Σχέσεις, Συναρτήσεις

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους

Σύνοψη Προηγούµενου. Ισοδυναµίες, Μερικές ιατάξεις. Σχέσεις Ισοδυναµίας. Σχέσεις, Ιδιότητες, Αναπαράσταση. Ανακλαστικές (a, a) R

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

HY118- ιακριτά Μαθηµατικά

Θεωρία Υπολογισμού και Πολυπλοκότητα

Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Την προηγούµενη φορά. Αντισυµµετρικότητα. 13 Σχέσεις

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2017 Τελική Εξέταση Ιουνίου - Τετάρτη, 14/06/2017 ΛΥΣΕΙΣ

ιµελής σχέση HY118- ιακριτά Μαθηµατικά n-µελείς σχέσεις Σχέσεις 13 - Σχέσεις

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Κλάσεις ισοδυναµίας. Σχέσεις ισοδυναµίας. 15 -Σχέσεις

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

HY118-Διακριτά Μαθηματικά

ΑΛΕΞΑΝΔΡΑ ΠΟΥΛΟΠΟΥΛΟΥ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ SUDOKU

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων Λύσεις

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Σχέσεις ισοδυναµίας. 15 Σχέσεις

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

Σχέσεις Ισοδυναµίας και Πράξεις

HY118-Διακριτά Μαθηματικά

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 14/4/2016

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Υπολογιστικά & Διακριτά Μαθηματικά

Εφαρμοσμένη Κρυπτογραφία Ι

Σχέσεις, Ιδιότητες, Κλειστότητες

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

( ( )) ( 3 1) 2( 3 1)

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1}

1 (6) 9 (6) 2 (3) 10 (9) 3 (6) 11 (6) 4 (8) 12 (6) 5 (6) 13 (8) 6 (5) 14 (6) 7 (6) 15 (11) 8 (8)

Σχέσεις Μερικής Διάταξης

of Mathematics των I.Stewart και D.Tall, Oxford University Press.

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 1: Μαθηματικό Υπόβαθρο

Σχέση Μερικής ιάταξης Σχέση Μερικής ιάταξης (ή µερική διάταξη): ανακλαστική, αντισυµµετρική, και µεταβατική. Αριθµοί: α β (αλλά όχι α < β), α β, Σύνολ

of Mathematics των I.Stewart και D.Tall, Oxford University Press.

x (a 1 + a 2 ) mod 9, y (a 1 a 2 ) mod 9.

HY118- ιακριτά Μαθηµατικά

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

(β ) ((X c Y ) (X c Y c )) c

Σχέσεις Μερικής ιάταξης

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!

m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G

Σχέσεις Μερικής ιάταξης

HY118- ιακριτά Μαθηµατικά

Σχέσεις Μερικής ιάταξης

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Πόσες από αυτές τις σκακιέρες είναι αλήθεια διαφορετικές;

, για κάθε n N. και P είναι αριθμήσιμα.

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι

(ii) X P(X). (iii) X X. (iii) = (i):

a = a a Z n. a = a mod n.

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

* * * ( ) mod p = (a p 1. 2 ) mod p.

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

Φροντιστήριο #6 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 4/4/2019

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

x < A y f(x) < B f(y).

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Μαθηματική Ανάλυση Ι

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).

HY118- ιακριτά Μαθηµατικά

ΜΑΣ121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ I Εαρινό εξάμηνο , Διδάσκων: Γιώργος Γεωργίου ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ, Διάρκεια: 2 ώρες 18 Νοεμβρίου, 2017

Γραμμική Άλγεβρα Ενότητα 2: Εισαγωγικές έννοιες

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Η συνεπαγωγή. Η Ισοδυναμία ή διπλή συνεπαγωγή. Ο σύνδεσμος «ή» Ο σύνδεσμος «και»

1.Σύνολα. 2. Υποσύνολα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

Αριθμοθεωρητικοί Αλγόριθμοι

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Transcript:

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 4 η Σειρά Ασκήσεων - Λύσεις Άσκηση 4.1 [1 μονάδα] Βρείτε όλα τα διατεταγμένα ζεύγη στη σχέση R από το Α={0,1,2,3} στο Β={0,1,2,3,4} όπου (a,b) R αν και μόνο αν: a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6. a. {(0, 3), (1, 2), (2, 1), (3, 0)} b. {(1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 0), (2, 2), (2, 4), (3, 0), (3, 3)} c. {(0, 0), (1, 1), (2, 2), (3, 3)} d. {(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (3, 1), (3, 2), (3, 4)} e. {(2, 3), (3, 2)} Άσκηση 4.2 [1.5 μονάδα] Δίνονται οι παρακάτω σχέσεις επι του συνόλου των ακεραίων: (x,y) R αν και μόνο αν: 1. Το x διαιρεί ακέραια το y 2. x y 3. y=x+1 ή y=x-1 4. x=y 2 5. xy 1 Έχουν οι παραπάνω σχέσεις την ανακλαστική, συμμετρική, αντισυμμετρική ή μεταβατική ιδιότητα; Δικαιολογείστε τις απαντήσεις σας

1. Είναι ανακλαστική (κάθε αριθμός διαιρεί τον εαυτό του) Δεν είναι συμμετρική (2 6 αλλά 6 2) Δεν είναι αντισυμμετρική (1-1 και -1 1 αλλά 1-1) Είναι μεταβατική (αν x y και y z εύκολα αποδεικνύεται ότι x z) 2. Δεν είναι ανακλαστική. (1,1) R Είναι συμμετρική μια και αν x y τότε και y x Δεν είναι αντισυμμετρική ((2,3) και (3,2) R αλλά δεν ισχύει ότι 2=3) Δεν είναι μεταβατική μια και 1 2 και 2 1 αλλά δεν ισχύει ότι 1 1 3. 4. Δεν είναι ανακλαστική. (1,1) R Είναι συμμετρική μια και οι x = y + 1 και y = x 1 είναι ισοδύναμες εξισώσεις Δεν είναι αντισυμμετρική ((2,3) και (3,2) R αλλά δεν ισχύει ότι 2=3) Δεν είναι μεταβατική μια και (1,2) R και (2,1) R αλλά (1,1) R Δεν είναι ανακλαστική: (2,2 ) R Δεν είναι συμμετρική (9, 3) R αλλά (3,9) R Είναι αντισυμμετρική ((x,y) R και (y,x) R αν και μόνο αν x=y=0 ή x=y=1 Δεν είναι μεταβατική μια και (16, 4) R and (4, 2) R αλλά (16,2) R 5. Δεν είναι ανακλαστική (0,0) R Είναι συμμετρική μια και xy = yx. Δεν είναι αντισυμμετρική ((2,3) και (3,2) R αλλά δεν ισχύει ότι 2=3) Είναι μεταβατική γιατί αν (a, b) R και (b, c) R, τότε και (a, c) R (παρατηρείστε ότι αν xry τότε x,y ομόσημα) Άσκηση 4.3 [1 μονάδα] 1. Έστω R η σχέση του «διαιρεί» επί του συνόλου των θετικών ακεραίων (a,b) R a b. Βρείτε a. την R 1 (Την αντίστροφη σχέση της R) και b. (Το συμπλήρωμα της R) 2. Έστω η σχέση ισοδυναμίας R επί του συνόλου των πραγματικών αριθμών R={(x,y) ο x-y είναι ακέραιος} Ποια είναι η κλάση ισοδυναμίας του 1 για την R

1.a. R 1 = {(b, a) a b} = {(a, b) b a} 1.b ={(a,b) a b}. 2. Το σύνολο των ακεραίων Z Άσκηση 4.4 [1.5 μονάδες] 1. Σχεδιάστε τα διαγράμματα Hasse για τη σχέση διαιρετότητας στα παρακάτω σύνολα a. {1,2,3,6,12,24} b. {2,4,6,12,24,36} 2. Σχεδιάστε το διάγραμμα Hasse της σχέσης που αναπαριστά ο παρακάτω πίνακας 3. Σχεδιάστε τον κατευθυνόμενο γράφο της σχέσης που αναπαριστά το παρακάτω διάγραμμα Hasse 1.a.

1.b 2. 3. Άσκηση 4.5 [0.6 μονάδα] Δίνεται η σχέση R ={(1, 1),(1, 2),(2, 1),(2, 2),(3, 4),(4, 1),(4, 4)} επί του {1,2,3,4} a. Βρείτε τη μεταβατική κλειστότητα R * της R.

b. Σχεδιάστε τον κατευθυνόμενο γράφο για την R και την R * a. R * ={(1, 1),(1, 2),(2, 1),(2, 2),(3, 4),(4, 1),(4, 4),(3,1),(3,2),(4,2)} b. Άσκηση 4.6 [0.6 μονάδα) Έστω R={(1,1),(1,3),(2,1),(3,2)} επί του {1,2,3} Δώστε την αναπαράσταση πίνακα a. για την R b. την ανακλαστική κλειστότητα της R και c. τη συμμετρική κλειστότητα της R

a. b. c. Άσκηση 4.7 (0.8 μονάδα) Έστω σχέση R από το Α στο Β. Αποδείξτε ότι ( ) =, όπου το συμπλήρωμα της R Έστω (b,a) () (a,b) () (από τον ορισμό της αντίστροφης σχέσης) (a,b) R (b,a) R -1 (από τον ορισμό του συμπληρώματος) (από τον ορισμό της αντίστροφης σχέσης) (b,a) ( από τον ορισμό του συμπληρώματος) Άσκηση 4.8 (1.5 μονάδες) Έστω S σύνολο και για Α,Β (S) ορίζουμε Α Β να σημαίνει Α Β. Είναι η σχέση αυτή σχέση μερικής διάταξης στο (S); Εξηγείστε το. Υπόδειξη: Θεωρείστε περιπτώσεις, το S να είναι κενό, να έχει ένα στοιχείο ή να έχει περισσότερα του ενός στοιχεία. Περίπτωση 1. S=. Τότε το (S) περιέχει μόνο ένα στοιχείο, το. Σ αυτή την περίπτωση η σχέση είναι μερική διάταξη μια και: Προφανώς Α Α για όλα τα Α (S) μια και 0= (Ανακλαστική) Αν Α Β και Β Ατότε Α=Β μια και το (S) περιέχει μόνο ένα στοιχείο (Αντισυμμετρική) Αν Α Β και Β C, τότε Α C μια και αναγκαστικά A=B=C και όπως είπαμε προηγουμένως Α Α (Μεταβατική)

Περίπτωση 2. S =1. Σ αυτή την περίπτωση το (S) = {,S} περιέχει 2 στοιχεία. Και πάλι η σχέση είναι μερική διάταξη μια και: Α Α για όλα τα Α (S) επειδή Α Α (Ανακλαστική) Αν Α Β και Β Α τότε Α Β και Β Α, άρα Α = Β. Μια και το (S) δεν περιλαμβάνει διαφορετικά σύνολα ίδιου πληθικού αριθμού, συνεπάγεται ότι Α=Β (Αντισυμμετρική) Έστω ότι Α Β και Β C. Αν Α=, τότε Α =0 C, οπότε Α C. Αν Α=S, τότε Α Β σημαίνει ότι Β=S και Β C σημαίνει ότι C=S, άρα A=B=C=S και Α C (Μεταβατική) Περίπτωση 3. S 2 Σ αυτή την περίπτωση η δεν είναι σχέση μερικής διάταξης γιατί δεν είναι αντισυμμετρική Αν θεωρήσουμε a,b S με a b, τότε {α} {b} επειδή {a} {b}. Για τον ίδιο λόγο {b} {a}. Ωστόσο {a} {b} Άσκηση 4.9 (1.5 μονάδες) Έστω η σχέση R={(m,n): m,n Z, m n (mod 3)} (Υπενθύμιση: m n (mod 3) 3 (m-n)) 1. 1. Αποδείξτε ότι είναι σχέση ισοδυναμίας 2. Βρείτε τις κλάσεις ισοδυναμίας για την R 3. Βρείτε τη διαμέριση του Z που προκύπτει από αυτές τις κλάσεις ισοδυναμίας Η σχέση είναι ανακλαστική ((a,a) R α Z Είναι συμμετρική (αν m n (mod 3) (m-n)=3k (n-m)=-3k 3 (n-m) n m (mod 3) Είναι μεταβατική: (αν a b (mod 3) και b c (mod 3) τότε (a-b)=3k, b-c=3m άρα προσθέτοντας κατά μέλη- a-c=3(k+m) a c(mod3) Άρα είναι σχέση ισοδυναμίας 2. Διαλέγουμε ένα τυχαίο στοιχείο του Z, έστω το 0.

[0]R={,-6,-3,0,3,6, } Διαλέγουμε ένα τυχαίο στοιχείο του Z -[0] R, έστω το 1 [1] R={,-5,-2,1,4,7 } Διαλέγουμε ένα τυχαίο στοιχείο του Z -([0] R [1] R), έστω το 5 [5] R={..., -4, -1, 2, 5, 8,... } Z -([0] R [1] R [5] R)= άρα δεν υπάρχουν άλλες κλάσεις ισοδυναμίας 3. Τα [0] R, [1] R, [5] R αποτελούν μια διαμέριση του Z