ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

Σχετικά έγγραφα
ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

Τυχαίες Μεταβλητές Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

Τυχαίες Μεταβλητές (τ.µ.)

Βιομαθηματικά BIO-156

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ιωνυµική Κατανοµή(Binomial)

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

Σημειώσεις Στατιστική & Πιθανότητες

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

Η «ύλη» του προπτυχιακού µαθήµατος

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

17/10/2016. Στατιστική Ι. 3 η Διάλεξη

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΣΤΑΤΙΣΤΙΚΗ I: ΕΚΤΙΜΗΤΙΚΗ

Συστήματα Αναμονής. Ενότητα 2: Τυχαίες Μεταβλητές. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

ρ. Ευστρατία Μούρτου

Τυχαία Διανύσματα και Ανεξαρτησία

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)

3. Κατανομές πιθανότητας

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας.

Στατιστική. Εκτιμητική

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων

ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ

Τυχαία μεταβλητή (τ.μ.)

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

E [X ν ] = E [X (X 1) (X ν + 1)]

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ

Στατιστική Ι-Θεωρητικές Κατανομές Ι

Βιομαθηματικά BIO-156. Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Στατιστική Συμπερασματολογία

1 1 c c c c c c = 1 c = 1 28 P (Y < X) = P ((1, 2)) + P ((4, 1)) + P ((4, 3)) = 2 1/ / /28 = 18/28

Πανεπιστήμιο Πελοποννήσου

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Πιθανότητες και Στοχαστικές ιαδικασίες Θόρυβος µετρήσεων είκτης Χρηµατιστηρίου Σήµα Πληροφορίας (φωνή, data) Ατµοσφαιρικός Θόρυβος Πως δηµιουργείται

Κατανομές Πιθανοτήτων. Γεωργία Φουτσιτζή, Καθηγήτρια, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων Ακαδ.

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις

200, δηλαδή : 1 p Y (y) = 0, αλλού

xp X (x) = k 3 10 = k 3 10 = 8 3

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας.

Συνεχείς Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Συνεχείς Κατανομές. τεχνικές. 30 ασκήσεις.

X i = Y = X 1 + X X N.

Θεωρία Πιθανοτήτων & Στατιστική

Υπολογιστικά & Διακριτά Μαθηματικά

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

3. Κατανομές πιθανότητας

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του όγδοου φυλλαδίου ασκήσεων.

II. Τυχαίες Μεταβλητές

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης

Μέρος ΙΙ. Τυχαίες Μεταβλητές

Μέση Τιµή. Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.

Στατιστική Επιχειρήσεων Ι

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός.

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA

Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

P(200 X 232) = =

Βασικά στοιχεία της θεωρίας πιθανοτήτων

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Συνδυαστική Απαρίθµηση

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβλητής

n i P(x i ) P(X = x i ) = lim

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

Θεωρητικές Κατανομές Πιθανότητας

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4

Ορισμός της Πιθανότητας (Ι)

Transcript:

Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

Στοιχεία Θεωρίας Συνόλων Θεωρούµε Ω το σύνολο αναφοράς. σ-άλγεβρα Εστω A είναι µια κλάση υποσυνόλων του Ω. τ.ω. A είναι µη κενή. 2 A A A c A. 3 A, A 2,... A A A 2... A. τότε A ονοµάζεται σ-άλγεβρα. Μετρήσιµος Χώρος Εστω Ω είναι ένα σύνολο αναφοράς και A είναι σ-άλγεβρα, τότε η δυάδα (Ω, A) ονοµάζεται µετρήσιµος χώρος και τα σύνολα που ανήκουν στην A ονοµάζονται µετρήσιµα σύνολα.

Τυχαία Πειράµατα Ως Πείραµα εννοούµε µια συγκεκριµένη ενέργεια, η οποία µπορεί να επαναληφθεί άπειρες ϕορές, κάτω από τις ίδιες συνθήκες, και σαν συνέπεια έχει την έκβαση κάποιων αποτελεσµάτων.. Αιτιοκρατικά Άµεση σχέση αιτίου και αποτελέσµατος αφού καταλήγουµε σε καθορισµένο είδος αποτελεσµάτων. 2. Τυχαία Μας οδηγούν σε πλήθος δυνατών αποτελεσµάτων. Παραδείγµατα. Ρίψη ενός νοµίσµατος. {Κ, Γ}. 2 Ρίψη ενός Ϲαριού. {, 2, 3, 4, 5, 6}. 3 Λήψη ενός χαρτιού από µια τράπουλα. 4 Πλήθος τηλεφωνηµάτων που ϕτάνουν σε ένα τηλεφωνικό κέντρο µέσα σε µία ώρα. {0,, 2,...}. 5 Μέτρηση ϐάρους, ύψους, κ.λ.π. 6 ιάρκεια Ϲωής κάποιου µηχανήµατος. {t : t 0}.

Χώρος Πιθανότητας Το πλήθος των δυνατών αποτελεσµάτων ενός τυχαίου πειράµατος καλείται δειγµατοχώρος. (Ω) Τα σηµεία του δειγµατοχώρου ονοµάζονται δειγµατοσηµεία. Εστω A µία σ-άλγεβρα εφοδιασµένη στον Ω, τότε A ονοµάζεται σ-άλγεβρα ενδεχοµένων (ή γεγονότων) και κάθε µέλος της (δηλ. σύνολο) ονοµάζεται ενδεχόµενο (ή γεγονός). Αξιωµατικός Ορισµός της Πιθανότητας (Kolmogorov) Θεωρούµε (Ω, A) έναν µετρήσιµο χώρο. Ενα πιθανοθεωρητικό µέτρο (ή µια πιθανότητα) P είναι µια συνολοσυνάρτηση, P : A R, µε τις εξής ιδιότητες, A A, P(A) 0. 2 P(Ω) =. 3 Αν A, A 2,... γεγονότα ανά δύο ξένα µεταξύ τους (δηλ. A i A j =, i j), τότε P( i= A i) = i= P(A i). Η τριάδα (Ω, A, P) ονοµάζεται πιθανοθεωρητικός χώρος.

Τυχαία Μεταβλητή Ορισµός Εστω (Ω, A, P) είναι ένας χώρος πιθανότητας, τότε X : Ω R ονοµάζεται τυχαία µεταβλητή, εάν {ω Ω : X(ω) x} A, x R. Ετσι εξασφαλίζεται η ύπαρξη της P({ω Ω : X(ω) x}) = P(X x) = F(x) Εµπειρικός Ορισµός Τυχαία µεταβλητή είναι οποιαδήποτε ποσότητα για την οποία έχει έννοια να µιλήσουµε για πιθανότητα η ποσότητα αυτή να πάρει κάποια τιµή ή η τιµή της να είναι µέσα σε κάποιο διάστηµα.

Είδη τυχαίων µεταβλητών. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας πιθανότητας, Ιδιότητες: (i) f(x i) 0, i =, 2,..., (ii) + i= f(x i) =. 2. Συνεχούς τύπου X ονοµάζεται συνεχής τ.µ. αν υπάρχει f : R R, τέτοια ώστε P(X B) = f(x)dx B f(x) ονοµάζεται συνάρτηση πυκνότητας πιθανότητας, Ιδιότητες: (i) f(x) 0, x R, (ii) + f(x)dx =.

Ροπές τυχαίων µεταβλητών Ορισµός - Μέση τιµή x f(x), X διακριτή τ.µ. x EX = + x f(x)dx, X συνεχής τ.µ. Γενίκευση Eg(X) = g(x)f(x) x + g(x)f(x)dx, X διακριτή τ.µ., X συνεχής τ.µ. Παρατήρηση g(x) = (X EX) 2, τότε E(X EX) 2 = VarX διαπορά της τ.µ. X.

Ροπές τυχαίων µεταβλητών Ιδιότητες - Μέση τιµή Ec = c, c σταθερά. 2 E(aX + b) = aex + b 3 X 0 EX 0. 4 EX E X. Ιδιότητες - ιασπορά Varc = 0, c σταθερά. 2 Var(aX + b) = a 2 VarX 3 VarX = EX 2 (EX) 2 4 VarX = EX(X )+EX (EX) 2

Μέση τιµή και ιασπορά γνωστών κατανοµών ιωνυµική κατανοµή, X B(n, p) f(x) = P(X = x) = ( n x) px ( p) n x, x = 0,,...,n, 0 < p <. EX = np, VarX = np( p). Poisson κατανοµή, X P(λ) f(x) = P(X = x) = e λλx x! Γεωµετρική κατανοµή, X Ge(p), x = 0,,..., λ > 0. EX = VarX = λ. f(x) = P(X = x) = p( p) x, x = 0,, 2,... EX = p p, VarX = p p 2.

Μέση τιµή και ιασπορά γνωστών κατανοµών Κανονική κατανοµή ή κατανοµή του Gauss, X N(µ,σ 2 ) f(x) = 2πσ 2 e (x µ)2 2σ 2, x R, µ R, σ > 0. Γάµµα κατανοµή, X G(a, β) f(x) = EX = µ, VarX = σ 2. Γ(a)β a xa e x/β, x > 0, a,β > 0. Εκθετική κατανοµή, X E(σ) f(x) = σ e x σ, x > 0, σ > 0. EX = aβ, VarX = aβ 2. Παρατήρηση: E(σ) G(a =,β = σ). EX = σ, VarX = σ 2.

Μετασχηµατισµοί τυχαίων µεταβλητών Θεώρηµα Εστω g( ) µια παραγωγίσιµη και γνησίως µονότονη συνάρτηση. Αν X είναι µια συνεχής τ.µ. µε πυκνότητα πιθανότητας f X (x), τότε η τ.µ. Y = g(x) είναι συνεχής τ.µ. µε πυκνότητα πιθανότητας f Y (y) = f X (g (y)) dg (y) dy Παράδειγµα Αν X G(n,θ), τότε Y = cx G(n, cθ), c > 0. Παρατήρηση Αν c = 2 θ, τότε Y = 2X θ G(n, 2) X 2 2n.

Ροπογεννήτρια Τυχαίας Μεταβλητής Ορισµός M X (t) = Ee tx, για εκείνα τα t που υπάρχει η µέση τιµή. Παρατήρηση Αν γνωρίζουµε τη ϱοπογεννήτρια µιας τ.µ. X και υπάρχει σε µια περιοχή του 0, τότε γνωρίζουµε την κατανοµή αυτής και αντίστροφα. Ιδιότητες M X (0) = 2 M ax+b = e tb M X (at) d k M ax+b (t) 3 t=0 = EX k dt k

Ροπογεννήτρια Τυχαίας Μεταβλητής Παραδείγµατα γνωστών κατανοµών X B(n, p), M X (t) = (pe t + p) n, t R. 2 X P(λ), 3 X N(µ,σ 2 ), M X (t) = e λet λ, t R. M X (t) = e tµ+ 2 σ2 t 2, t R. Παρατήρηση : X N(0, ), M X (t) = e 2 t2, t R. 4 X G(a,β), M X (t) = ( tβ) a, t < β.