Αρμονικός Ταλαντωτής

Σχετικά έγγραφα
Η Αναπαράσταση της Θέσης (Position Representation)

Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

. Να βρεθεί η Ψ(x,t).

Μετασχηματισμοί Καταστάσεων και Τελεστών

Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου

Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ

ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι

Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή

Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Άσκηση 1. Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli

Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών

Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης.

Â. Θέλουμε να βρούμε τη μέση τιμή

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

Κβαντικές Καταστάσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

( x) Half Oscillator. Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού

Ιδιοσυναρτήσεις του αρμονικού ταλαντωτή Πολυώνυμα Hermite

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

Εύρεση των ιδιοτιμών της στροφορμής

ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

Είναι (1) Έστω (2) Τότε η (1) γράφεται (3) Από την (3) βλέπουμε ότι η y ( x; a ) περιγράφει μια συνοχική κατάσταση μάλιστα

Αρμονικός ταλαντωτής Ασκήσεις

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Συστήματα Πολλών Σωματίων

Κβαντομηχανική σε μία διάσταση

Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα

ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κβαντομηχανική Ι 3o Σετ Ασκήσεων. Άσκηση 1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.

Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα

Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις

ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0.

Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 )

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες.

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5

1. Μετάπτωση Larmor (γενικά)

Θεωρία Χρονοεξαρτώμενων Διαταραχών

ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή

Δύο διακρίσιμα σωμάτια με σπιν s 1

Η άλγεβρα της στροφορμής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

= + =. cos ( ) sin ( ) ˆ ˆ ˆ. Άσκηση 4.

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ ΔΙΔΑΣΚΩΝ: Δ. ΣΚΑΡΛΑΤΟΣ, ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Πρόσθεση Στροφορμών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

Κεφάλαιο 9: Συστήματα Πολλών σωματίων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

( x) (( ) ( )) ( ) ( ) ψ = 0 (1)

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013

Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή

Κεφάλαιο 14: Πρόσθεση Στροφορμών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Χρονοεξαρτώμενη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση

ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7.

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κεφάλαιο 7: Μετασχηματισμοί Καταστάσεων και Τελεστών

Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L.

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)

Το θεώρημα virial1 στην κβαντική μηχανική

x όπου Α και a θετικές σταθερές. cosh ax [Απ. Οι 1, 2, 5] Πρόβλημα 3. Ένα σωματίδιο μάζας m κινείται στο πεδίο δυναμικής ενέργειας ( x) exp

Εφαρμογές κβαντικής θεωρίας

S ˆz. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α. 2αβ

Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1

Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

ˆ pˆ. παραγωγίστε ως προς το χρόνο και χρησιμοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυματοσυνάρτησης. Θα βρείτε.

Λυμένες ασκήσεις στροφορμής

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

(1) (3) x a. Από την (3) βλέπουµε ότι η ( ) τυχαία συνοχική κατάσταση ενός αρµονικού ταλαντωτή µε κλίµακα µήκους a. â a, θα είναι,

Για να υπολογίσουμε το ολοκλήρωμα στο δεξιό μέλος της (3), κάνουμε την αλλαγή μεταβλητής

( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε

Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.

2( ) ( ) ψ είναι οι ιδιοκαταστάσεις του τελεστή. ψ x, θα πάρουµε

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Transcript:

Αρμονικός Ταλαντωτής

Δομή Διάλεξης Η χρησιμότητα του προβλήματος του αρμονικού ταλαντωτή Η Hamiltonian και οι τελεστές δημιουργίας και καταστροφής Το φάσμα ιδιοτιμών της Hamiltonian Οι ιδιοκαταστάσεις (eigenkets) της Hamiltonian. Αναμενόμενες τιμές θέσης και ορμής Χρονική εξέλιξη καταστάσεων και αναμενόμενων τιμών. Σύνοψη

Αρμονικός Ταλαντωτής: Ορισμός και Χρησιμότητα Σωμάτιο που υπακούει σε δυναμικό V(x)=1/2 k x 2 (όπου k θετική σταθερά) λέγεται αρμονικός ταλαντωτής και για την δύναμη ισχύει F=-k x. Όλα τα δυναμικά κοντα στα ελάχιστά τους (θέσεις ισορροπίας) συμπεριφέρονται σαν αρμονικοί ταλαντωτές. Ανάπτυγμα Taylor δυναμικού κοντά στο ελάχιστό του: Αντίστοιχο ανάπτυγμα δύναμης: 6a+ Τα περισσότερα συστήματα στην φύση είναι κοντά στην ισορροπία. Άρα συμεριφέρονται κατά προσέγγιση σαν αρμονικοί ταλαντωτές!

Hamiltonian και τελεστές A, A H Hamiltonian ενος αρμονικού ταλαντωτή έχει την μορφή Η δυναμική ενός συστήματος καθορίζεται απο τις ιδιοκαταστάσεις και τις ιδιοτιμές της Hamiltonian. Θα τις βρούμε για τον αρμονικό ταλαντωτή. Θα βρούμε την θεμελιώδη ιδιοτιμή και την ιδιοκατάσταση απο αυτές θα βρούμε τις υπόλοιπες με χρήση των τέλεστών A kai A (τελεστές δημιουργίας και καταστοφής). Η διαδικασία είναι αρκετά γενική. Ορίζουμε τον αδιάστατο τελεστή: Ο συζηγής του είναι:

Hamiltonian και τελεστές A, A Θα βρούμε την σχέση μεταξύ A A και Hamiltonian Όμοια δείχνουμε ότι: 6b+ 6c+

Ο τελεστής δημιουργίας A Ο τελεστής Α όταν δρά σε ιδιοκαταστάσεις της ενέργειας δημιουργεί νέες ιδιοκαταστάσεις με αυξημένες ιδιοτιμές: προσθαφαίρεση 6d+ Άρα το ket είναι ιδιοκατάσταση της Hamiltonian με ιδιοτιμή Ε n +ћω

Ο τελεστής δημιουργίας A Άρα το ket είναι ιδιοκατάσταση της Hamiltonian με ιδιοτιμή Ε n +ћω αν είναι μη μηδενικό. Το μέτρο του b> στο τετράγωνο είναι Ακόμα, οι ιδιοτιμές της Hamiltonian είναι μη αρνητικές αφού: Άρα Α Ε n > 2 > 0 (μή μηδενικό) και μπορούμε να βρούμε όλες τις ιδιοτιμές και τις ιδιοκαταστάσεις αν γνωρίζουμε την θεμελιώδη ιδιοκατασταση και ιδιοτιμή (ιδιοκατάσταση ελάχιστης ενέργειας) και δράσουμε με τον τελεστή A

Ο τελεστής καταστοφής A Όμοια δείχνουμε ότι ο τελεστής Α όταν δρά σε ιδιοκαταστάσεις της ενέργειας δημιουργεί νέες ιδιοκαταστάσεις με μειωμένες ιδιοτιμές. 6e+ Αφού όλες οι ιδιοτιμές είναι μη αρνητικές θα πρέπει να υπάρχει ελάχιστη ιδιοτιμή E 0 με αντίστοιχη κατάσταση (θεμελιώδη) την Ε 0 >. Όταν ο τελεστής καταστροφής δράσει στην θεμελιώδη κατάσταση θα πρέπει να δώσει 0 αφού δεν υπάρχει ιδιοκατάσταση με μικρότερη ιδιοτιμή. Άρα έχουμε: 6f+

Ιδιοτιμές της Hamiltonian Αφού όλες οι ιδιοτιμές είναι μη αρνητικές θα πρέπει να υπάρχει ελάχιστη ιδιοτιμή E 0 με αντίστοιχη κατάσταση (θεμελιώδη) την Ε 0 >. Όταν ο τελεστής καταστροφής δράσει στην θεμελιώδη κατάσταση θα πρέπει να δώσει 0 αφού δεν υπάρχει ιδιοκατάσταση με μικρότερη ιδιοτιμή. Άρα έχουμε: Άρα οι ιδιοτιμές της Hamiltonian είναι: Στην κβαντική θεωρία πεδίου οι τελεστές δημιουργιάς και καταστροφής δεν μας ανεβολατεβάζουν απλά στο φάσμα αλλά δημιουργουν και καταστρέφουν σωμάτια σε κβαντικές ποlυσωματιδιακές καταστάσεις!

Ιδιοκαταστάσεις της Hamiltonian Αφου βρούμε την θεμελίωδη ιδιοκατάσταση 0> στην αναπαράσταση της θέσης θα βρούμε και όλες τις υπόλοιπες με χρήση του τελεστη της δημιουργίας A. Έστω Για την θεμελιώδη κατάσταση ισχύει: 6g+

Θεμελιώδης Ιδιοκατάσταση της Hamiltonian Θα πρέπει να λύσουμε την διαφορική εξίσωση: Με απλή ολοκλήρωση και κανονικοποίηση έχουμε: 6h+ όπου η διασπορά σl σ x = l είναι: Παρατήρηση 1: Η λύση είναι μοναδική άρα δεν υπάρχει εκφυλισμός Παρατήρηση 2: Η κυματοσυνάρτηση είναι Gaussian με διασπορά l.

Θεμελιώδης Ιδιοκατάσταση της Hamiltonian Θεμελιώδης κατάσταση στην αναπαράσταση της ορμής: 6i+ Ικανοποιείται η αρχή της αβεβαιότητας αφού σ x σ p =ћ/2: 6j+

Ενέργεια Μηδενικού Σημείου Η αρχή της αβεβαιότητας δεν επιτρέπει την ελαχιστοποίηση της ενέργειας σε τιμή μηδεν! Απόδειξη: Δυναμικός Όρος H = 1 4 ħω + 1 4 ħω = ħω 2 Ενέργεια μηδενικού σημείου (θεμελιώδης κβαντική πρόβλεψη) 6k+ Κινητικός Όρος Ελάχιστη τιμή της ενέργειας H(p,x)=Η(σ p,σ x ) με τον περιορισμό αβεβαιότητας σ x σ p > ћ/2 (να δειχτεί)

Διεγερμένες Καταστάσεις Για να βρούμε τις διεγερμένες καταστάσεις (n>0) εφαρμόζουμε n φορές με τον τελεστή δημιουργίας A στην θεμελιώδη κατάσταση <x 0>. σταθερά κανονικοποίησης Εύρεση σταθεράς κανονικοποίησης: n + 1 2 + 1 2 = n + 1 1=< n + 1 n + 1 > = α 2 n + 1 α = 1/ n + 1

Διεγερμένες Καταστάσεις Για να βρούμε τις διεγερμένες καταστάσεις (n>0) εφαρμόζουμε n φορές με τον τελεστή δημιουργίας A στην θεμελιώδη κατάσταση <x 0>. σταθερά κανονικοποίησης α = 1/ n + 1 6l+ α = 1/ n + 1 Απομνημόνευση: ρίζα του μέγιστου n που εμφανίζεται στην εξίσωση Όμοια βρίσκουμε την σταθερά κανονικοποίησης για την δράση του τελεστή καταστροφής (θα χρειαστεί και ο μεταθέτης [Α,Α]=-1 για τον υπολογισμό του Α n> 2 ) συναρτήσει της Hamiltonian): 6m+

1 η Διεγερμένη Κατάσταση n=1 Εφαρμόζουμε τον τελεστή δημιουργίας στην θεμελιώδη ιδιοσυνάρτηση της Hamiltonian (n=0) για να βρούμε την 1 η διεγερμένη ιδιοσυνάρτηση <x 1> : 6n+ Περιττός τελεστής (Parity =-1) Ερμητειανός τελεστής μέρος της Hamiltonian (number operator) Άρτια συνάρτηση Γενικά ισχύει: Περιττή συνάρτηση (πολυώνυμο Hermite επι εκθετικό)

Αναμενόμενες τιμές Οι τελεστές της θέσης και της ορμής μπορούν να εκφραστούν συναρτήσει των τελεστών A και Α. Έτσι μπορούμε να βρούμε αναμενόμενες τιμές των τελεστών σε ιδιοκαταστάσεις της Hamiltonian: Ισχύει και στην κλασική μηχανική (το ћ απλοποιήται) 6o+

Χρονική Εξέλιξη Οι ιδιοκαταστάσεις της Hamiltonian εξέλίσονται χρονικα με την φανταστική φάση που έχουμε δει: 6p+ Χρονική εξέλιξη γενικής κατάστασης: Χρονική εξέλιξη ανεμενόμενης τιμής της θέσης σε γενική κατάσταση: 6q+

Χρονική Εξέλιξη Χρονική εξέλιξη ανεμενόμενης τιμής της θέσης σε γενική κατάσταση: Χρησιμοποιούμε τους τελεστές Α και Α : 6r+

Χρονική Εξέλιξη Θα χρησιμοποιήσουμε την ορθοκανονικότητα των ιδιοκαταστάσεων της Hamiltonian: j > 0 k = j 1 j + 1 j > 0 k = j + 1 Μετά τις παραπάνω αντικαταστάσεις παίρνουμε: j > 0 κλασικό αποτέλεσμα! 6s+ Το k να είναι μικρότερο από το j κατά 1 Το k να είναι μεγαλύτερο από το j κατά 1

Σύνοψη Το πρόβλημα του αρμονικού ταλαντωτή είναι θεμελιώδους σημασίας στην φυσική γιατί περιγράφει όλα τα φυσκά συστήματα κοντά στην ισορροπία. Η Hamiltonian μπορεί να εκφραστεί συναρτήσει τελεστών δημιουργίας και καταστροφής που όταν δρουν σε ιδιοκατστάσεις της Hamiltonian δημιουργούν νέες ιδιοκαταστάσεις με μεγαλύτερες ή μικρότερες ιδιοτιμές. Με χρήση των τελεστών δημιουργίας και καταστροφής μπορούμε να βρούμε τις ιδιοκαταστάσεις και τις ιδιοτιμές της Hamiltonian του αρμονικού ταλαντωτή: Οι αναμενόμενες τιμές τελεστών της θέσης και της ορμής σε ιδιοκαταστάσεις της Hamiltonian μπορούν να βρεθούν αν εκφράσουμε τους τελεστές αυτούς συναρτήσει των τελεστών δημιουργίας και καταστροφής.

Άσκηση 1 Βρείτε την πιθανότητα να βρεθεί αρμονικός ταλαντωτής εκτος της κλασικά επιτρεπόμενης περιοχής στον χώρο αν βρίσκεται στην θεμελιώδη και στην 1 η διεγερμένη κατάσταση. Λύση Για τον κλασικό αρμονικό ταλαντωτή έχουμε: Κλασικά απαγορευμένη περιοχή: Πιθανότητα να βρεθεί το κβαντικό σωμάτιο στην κλασικά απαγορευμένη περιοχή:

Άσκηση 1 Πιθανότητα να βρεθεί το κβαντικό σωμάτιο στην κλασικά απαγορευμένη περιοχή: Για την θεμελιώδη κατάσταση παίρνουμε: όπου: λ = 2 l = ħ/mω

Άσκηση 1 Για την θεμελιώδη κατάσταση παίρνουμε: όπου: λ = 2 l = ħ/mω Θέτουμε νέα μεταβλητή: λ = 2 l = ħ/mω Αριθμητικά βρίσκουμε: 6t+

Άσκηση 1 Για την 1 η διεγερμένη κατάσταση παίρνουμε: Η τάση μείωσης της πιθανότητάς να βρούμε το σωμάτιο στην κλασικά απαγορευμένη περιοχή αυξάνεται για μεγάλα n (ψηλά διεγερμένες καταστάσεις). Άρα όσο αυξάνει το n τόσο πιο κλασικά συμπεριφέρεται ο αρμονικός ταλαντωτής.

Άσκηση 2 Χρησιμοποιήστε την αρχή της αβεβαιότητας Δx Δp ћ/2 για να κάνετε μια εκτίμηση της ελάχιστης ενέργειας του κβαντικού αρμονικού ταλαντωτή Λύση Για την Hamiltonian έχουμε: Για τις αβεβαιότητες (διασπορές) των x και p έχουμε: Αλλά για ιδιοκαταστάσεις της Hamiltonian έχουμε: < x > = < p > = 0 Άρα :

Άσκηση 2 Άρα : Από την αρχή της αβεβαιότητας, η ελάχιστη τιμή του Δp είναι : Για ελαχιστοποίηση απαιτούμε μηδενισμό της παραγώγου: 6u+

Άσκηση 2 Για ελαχιστοποίηση απαιτούμε μηδενισμό της παραγώγου: Είναι ελάχιστο διότι: 6v+ Άρα η ελάχιστη τιμή της ενέργειας είναι: που τυχαίνει να είναι ακριβώς η ελάχιστη ιδιοτιμή της ενέργειας (μπορούσε να είναι μικρότερη)

Άσκηση 3 Βρείτε τα στοιχεία πίνακα του τελεστή της ορμής στην βάση ιδιοκαταστάσεων του αρμονικού ταλαντωτή Λύση

Άσκηση 3 Βρείτε τα στοιχεία πίνακα του τελεστή της ορμής στην βάση ιδιοκαταστάσεων του αρμονικού ταλαντωτή Λύση Άρα: Μπορεί επίσης να δειχτεί με παρόμοιο τρόπο ότι για την αναμενομένη τιμή <n p 2 n> ισχύει: 6w+

Άσκηση 4 Δείξτε ότι οι τελεστές δημιουργίας και καταστροφής μπορούν να γραφούν σαν: όπου: Μετά βρείτε την 2 η διεγερμένη ιδιοσυνάρτηση του αρμονικού ταλαντωτή. Λύση Στην αναπαράσταση της θέσης έχουμε: Όμοια: 6x+ Άρα για την θεμελιώδη κατάσταση έχουμε: Απαιτώντας κανονικοποίηση έχουμε:

Άσκηση 4 Άρα για την θεμελιώδη κατάσταση έχουμε: Απαιτώντας κανονικοποίηση έχουμε: Αφού θέσουμε: Βρίσκουμε την 1 η διεγερμένη κατάσταση ως: Βρίσκουμε την 2 η διεγερμένη κατάσταση ως: 6y+ Άρα:

Άσκηση 5 Αρμονικός ταλαντωτής βρίσκεται την t=0 στην κατάσταση: Δείξτε ότι σε επόμενες χρονικές στιγμές η ανεμενόμενη τιμή της θέσης εκτελεί αρμονική ταλάντωση ως: όπου: Δείξτε ακόμα ότι το πλάτος ταλάντωσης κλασικού αρμονικού ταλαντωτή με ενέργεια Ε=ћω(Ν+1/2) είναι Λύση Για την αναμενόμενη τιμή της θέσης έχουμε:

Άσκηση 5 Λύση Για την αναμενόμενη τιμή της θέσης έχουμε: Για τον κλασικό ταλαντωτή έχουμε: 6z+ 6aa+ Που έχει διπλάσιο πλάτος ταλάντωσης από τον κβαντικό ταλαντωτή ακόμα και για μεγάλα Ν!

Άσκηση 5 Για τον κλασικό ταλαντωτή έχουμε: Που έχει διπλάσιο πλάτος ταλάντωσης από τον κβαντικό ταλαντωτή ακόμα και για μεγάλα Ν! Ε: Που πήγε η αρχή της αντιστοιχίας;; Α: Η αρχή της αντιστοιχίας αποκαθίσταται αν έχουμε μεγάλη αβεβαιότητα στην ενέργεια. Θεωρείστε πχ αρχική κατάσταση: Να δειχτεί 6bb+

Άσκηση 6 Αφού εκφράσετε τον τελεστή καταστροφής Α στην αναπαράσταση της ορμής βρείτε την θεμελιώδη ιδιοκατάσταση του αρμονικού ταλαντωτή στην αναπαράσταση της ορμής. Λύση Για να ικανοποιείται η σχέση μετάθεσης [x,p]=iћ θα πρέπει ο τελεστής της θέσης στην αναπαράσταση της ορμής να έχει την μορφή Άρα: ώστε: Εναλλακτικά:

Άσκηση 6 Αφού εκφράσετε τον τελεστή καταστροφής Α στην αναπαράσταση της ορμής βρείτε την θεμελιώδη ιδιοκατάσταση του αρμονικού ταλαντωτή στην αναπαράσταση της ορμής. Λύση Εναλλακτικά: 6cc+

Άλυτες Ασκήσεις 1. Πόσοι δεσμοί (μηδενισμοί) υπαρχουν στην κυματοσυνάρτηση <x n>; 2. Σε ποια διεγερμένη κατάσταση n βρίσκεται κβαντικός αρμονικός ταλαντωτής που έχει περίοδο 1s, πλάτος ταλάντωσης 3cm και μάζα 0.3kg; 3. Αποδείξτε ότι: 4. Δείξτε ότι τα στοιχεία πίνακα του τελεστή της θέσης στην αναπαράσταση των ιδιοκαταστάσεων την Hamiltonian του αρμονικού ταλαντωτή είναι της μορφής:

Άλυτες Ασκήσεις 5. Ο ταλαντωτής Fermi έχει Hamiltonian: όπου ο τελεστής f ικανοποιεί τις σχέσεις: Αφού δείξετε ότι H 2 =H βρείτε τις ιδιοτιμές της H. Αν η βασική κατάσταση (ελάχιστης ενέργειας) είναι η 0>, βρείτε τις καταστάσεις f 0> και f 0>.