ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Σχετικά έγγραφα
Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Θεωρία Πιθανοτήτων & Στατιστική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Θεωρία Πιθανοτήτων & Στατιστική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Υπολογιστικά & Διακριτά Μαθηματικά

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Στατιστική Επιχειρήσεων

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

Στατιστική Ι. Ενότητα 6: Kατανομή Poisson. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Λογιστικές Εφαρμογές Εργαστήριο

Θεωρία Πιθανοτήτων & Στατιστική

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι

Πληροφορική. Εργαστηριακή Ενότητα 3 η : Επεξεργασία Κελιών Γραμμών & Στηλών. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

Στατιστική Επιχειρήσεων Ι

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΠΛΗΡΟΦΟΡΙΚΗ. Ενότητα: Εργαστηριακές Ασκήσεις. Καθηγήτρια: Ι.

Λογιστικές Εφαρμογές Εργαστήριο

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Θεωρία Πιθανοτήτων & Στατιστική

Μαθηματικά για Οικονομολόγους

Θεωρία Πιθανοτήτων & Στατιστική

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

Υδραυλικά & Πνευματικά ΣΑΕ

Θεωρία Πιθανοτήτων & Στατιστική

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

Μαθηματικά. Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF

9 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

Πληροφορική. Εργαστηριακή Ενότητα 1 η : Εισαγωγή στα Λογιστικά Φύλλα με το MS Excel. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 3: Αποκατάσταση Εικόνας.

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

Πληροφορική. Εργαστηριακή Ενότητα 5 η : Μαθηματικοί Τύποι. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Συστήματα Αυτομάτου Ελέγχου II

Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Ανάλυση Λογιστικών Καταστάσεων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Πληροφορική. Εργαστηριακή Ενότητα 8 η : Γραφήματα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Περιβαλλοντική Χημεία

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

Θεωρία Πιθανοτήτων & Στατιστική

Στατιστική Επιχειρήσεων Ι

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

Ανάλυση Λογιστικών Καταστάσεων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Πληροφορική. Εργαστηριακή Ενότητα 6 η : Ταξινόμηση & Ομαδοποίηση Δεδομένων

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

8 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

Συστήματα Αναμονής. Ενότητα 2: Τυχαίες Μεταβλητές. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

II. Τυχαίες Μεταβλητές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Α

Θεωρία Πιθανοτήτων & Στατιστική

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

Πανεπιστήμιο Πελοποννήσου

Βιομηχανικοί Ελεγκτές

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

Διωνυμική Κατανομή. x Αποδεικνύεται ότι για την διωνυμική κατανομή ισχύει: Ε(Χ)=np και V(X)=np(1-p).

Δομημένος Προγραμματισμός

7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις.

Μαθηματικά στην Πολιτική Επιστήμη:

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Συστήματα Αυτόματου Ελέγχου

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου

Transcript:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 12: Ασυνεχείς Κατανομές Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

ΧΡΗΜΑΤΟΔΟΤΗΣΗ Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

ΘΕΩΡΙΑ

ΑΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ Διωνυμική κατανομή Κατανομή Poisson Υπεργεωμετρική κατανομή Γεωμετρική κατανομή Κατανομή Pascal

ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Daniel Bernoulli, 1700-1782

ΟΡΙΣΜΟΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ (1) Θεωρούμε ένα πείραμα τύχης που αποτελείται από n δοκιμές. Αν σε κάθε δοκιμή μπορούν να εμφανισθούν δύο μόνο δυνατά αποτελέσματα τα οποία θα συνήθως τα χαρακτηρίζουμε σαν επιτυχία (Ε) ή αποτυχία (Α). Οι δοκιμές είναι ανεξάρτητες μεταξύ τους έτσι ώστε το αποτέλεσμα οποιασδήποτε δοκιμής να μην επηρεάζει τα αποτελέσματα των υπολοίπων. η πιθανότητα επιτυχίας p και αποτυχίας q=1-p δεν μεταβάλλεται από δοκιμή σε δοκιμή.

ΟΡΙΣΜΟΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ (2) Η πιθανότητα η επιτυχία (Ε) να παρουσιαστεί x φορές και επομένως η αποτυχία (Α) να παρουσιαστεί n-x φορές, δίνεται από τον τύπο: Px n! x!( n x)! p x q x n x p x q nx

ΟΡΙΣΜΟΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ (3) Η μεταβλητή Χ είναι το πλήθος των επιτυχιών (Ε) κατά την εκτέλεση των n δοκιμών. Επομένως μπορεί να πάρει τις τιμές 0,1,2,3,,n.

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ F( x) P( X x) x k0 n k p k q nk

ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ (1) ( x) n p V ( x) n p q

ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ (2) V( x) n p q 1 ( q p) 2 n pq

ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ (3) 1 6 p q 2 3 n p q

ΚΑΤΑΝΟΜΗ POISSON S.D. Poisson, 1781-1840

ΟΡΙΣΜΟΣ (1) Πρόκειται για n ανεξάρτητες δοκιμές με n>50, ενώ η πιθανότητα πραγματοποίησης της επιτυχίας Ε είναι σχετικά μικρή δηλ. P<0,10. Επομένως np<10.

ΟΡΙΣΜΟΣ (2) Όπως και στη διωνυμική κατανομή, έτσι και στην Poisson η μεταβλητή Χ είναι το πλήθος των επιτυχιών (Ε) κατά την εκτέλεση των n δοκιμών. Επομένως μπορεί να πάρει τις τιμές 0,1,2,3,,n.

ΣΥΝΑΡΤΗΣΗ ΠΙΘΑΝΟΤΗΤΑΣ e x Px P( X x) x! Με λ=np

ΧΡΗΣΙΜΟΤΗΤΑ ΚΑΤΑΝΟΜΗΣ POISSON Χρησιμοποιείται όταν ένα από τα δύο αποτελέσματα εμφανίζεται πιο σπάνια, ενώ ταυτόχρονα το μέγεθος του δείγματος είναι μεγάλο.

ΙΔΙΟΤΗΤΕΣ ΚΑΤΑΝΟΜΗΣ POISSON (1) ( ) n p V ( ) n p

ΙΔΙΟΤΗΤΕΣ ΚΑΤΑΝΟΜΗΣ POISSON (2) 1 1 3 2 1

ΥΠΕΡΓΕΩΜΕΤΡΙΚΗ ΚΑΤΑΝΟΜΗ Αν θεωρήσουμε ότι έχουμε N διακεκριμένα αντικείμενα από τα οποία Μ έχουν μια ορισμένη ιδιότητα, ενώ τα υπόλοιπα Ν-Μ δεν έχουν την ιδιότητα αυτή. Αν από τα Ν αντικείμενα εκλέξουμε n, ζητάμε να βρούμε την πιθανότητα x από αυτά να έχουν την ορισμένη ιδιότητα.

ΣΥΝΑΡΤΗΣΗ ΠΙΘΑΝΟΤΗΤΑΣ n x n N x n M N x M P x X P x f x,..., 0,1,2, ) ( ) (

ΙΔΙΟΤΗΤΕΣ ΥΠΕΡΓΕΩΜΕΤΡΙΚΗΣ ΚΑΤΑΝΟΜΗΣ M E( X ) m N nm ( N n)( N M ) V ( X ) 2 N ( N 1)

ΓΕΩΜΕΤΡΙΚΗ ΚΑΤΑΝΟΜΗ Αν θεωρήσουμε ότι έχουμε την πραγματοποίηση μιας δοκιμής μέχρι να εμφανιστεί το επιθυμητό αποτέλεσμα το οποίο το χαρακτηρίζουμε ως επιτυχία «Ε». Επομένως κατά την εκτέλεση της δοκιμής αυτής θα έχουμε x-1 συνεχόμενες εμφανίσεις αποτυχίας «Α» μέχρι την επίτευξη της επιτυχίας στην x η δοκιμή.

ΣΥΝΑΡΤΗΣΗ ΠΙΘΑΝΟΤΗΤΑΣ ΓΕΩΜΕΤΡΙΚΗΣ ΚΑΤΑΝΟΜΗΣ Αν έχουμε λοιπόν μια διακριτή τυχαία μεταβλητή, η οποία λαμβάνει τις τιμές Χ=1,2,3, n, με συνάρτηση πιθανότητας της Χ είναι: P x P( X x) Λέμε ότι η τυχαία μεταβλητή Χ ακολουθεί την γεωμετρική κατανομή. q x1 p

ΙΔΙΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗΣ ΚΑΤΑΝΟΜΗΣ ( ) 1 p p V ( X ) q 2

KATANOMH PASCAL H ΑΡΝΗΤΙΚΗ ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ (1) Για να κατανοηθεί καλύτερα η κατανομή αυτή θα πρέπει να σκεφτούμε την ύπαρξη μιας κάλπης στην οποία περιέχονται Α λευκά και Β μαύρα σφαιρίδια και εξάγουμε σφαιρίδια με επανατοποθέτηση, έτσι ώστε να έχουμε r επιτυχίες στις μ δοκιμές. Επομένως η Χ: πλήθος εξαγωγών ώστε να έχουμε r επιτυχίες. Άρα Χ=r, r+1,r+2,.

KATANOMH PASCAL H ΑΡΝΗΤΙΚΗ ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ (2) Αν θεωρήσουμε ότι ως και την μ-1 δοκιμή έχουμε r- 1 επιτυχίες και στην μ δοκιμή έρθει επιτυχία, τότε η πιθανότητα το πλήθος των επιτυχιών στις μ δοκιμές να είναι ίσο με r, δίνεται από τον τύπο: P( X x) r 1 1 p r q r

ΑΣΚΗΣΕΙΣ (ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ)

ΑΣΚΗΣΗ (1) Μια μηχανή παράγει ένα προϊόν, με πιθανότητα ελαττωματικού p=0,005. Να υπολογιστούν οι πιθανότητες: α) Από 10 προϊόντα που παράγονται από τη μηχανή να μην υπάρχει ελαττωματικό. β) Από 10 προϊόντα που παράγονται από τη μηχανή το πολύ 2 να είναι ελαττωματικά.

ΑΣΚΗΣΗ (2) γ) Από 5 προϊόντα που παράγονται από τη μηχανή τουλάχιστον 3 να είναι ελαττωματικά. δ) Από 5 προϊόντα που παράγονται από τη μηχανή το ένα να είναι ελαττωματικό. Να υπολογιστούν η μέση τιμή και η διακύμανση της κατανομής των ελαττωματικών προϊόντων σε 100 προϊόντα μηχανής.

ΑΣΚΗΣΕΙΣ (ΥΠΕΡΓΕΩΜΕΤΡΙΚΗ ΚΑΤΑΝΟΜΗ)

ΑΣΚΗΣΗ Σε μία κάλπη με 30 σφαιρίδια από τα οποία 20 είναι λευκά και 10 μαύρα. Αν εκλέξουμε 8 σφαιρίδια το ένα μετά το άλλο χωρίς επανατοποθέτηση, ποια η πιθανότητα 5 από αυτά να είναι λευκά;

ΑΣΚΗΣΕΙΣ (ΓΕΩΜΕΤΡΙΚΗ ΚΑΤΑΝΟΜΗ)

ΑΣΚΗΣΗ Ένας τοξοβόλος πετυχαίνει το κέντρο του στόχου του με πιθανότητα p=75%. Να υπολογίσετε: 1. την πιθανότητα να πετύχει το κέντρο του στόχου του στην 3 η προσπάθεια. 2. Ποιος είναι ο αναμενόμενος αριθμός προσπαθειών που πρέπει να κάνει ώστε να πετύχει το κέντρο του στόχου του;

ΛΥΣΗ (1) P( X 3) q 31 p 0,25 2 0,75 0,046875 2. Ο αναμενόμενος αριθμός προσπαθειών ώστε να πετύχει το κέντρο του στόχου του είναι: 1 1 ( ) 1,3245 p 0,75

ΛΥΣΗ (2) p 75% o,75 q 1 p 1 0,75 0,25 Ορίζουμε το ενδεχόμενο Χ: το πλήθος των προσπαθειών μέχρι ο τοξοβόλος να πετύχει το κέντρο του στόχου του. 1. Η πιθανότητα να πετύχει το κέντρο του στόχου του στην 3 η προσπάθεια δίνεται από την συνάρτηση πιθανότητας για x=3.

ΤΕΛΟΣ ΕΝΟΤΗΤΑΣ