ÈÅÌÁÔÁ 2008 ÏÅÖÅ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

Σχετικά έγγραφα
ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3)

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2.

AΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2018

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

A3. Σχολικό βιβλίο σελίδα 73 Α4. α. Λάθος, β. Σωστό, γ. Λάθος, δ. Σωστό, ε. Σωστό.

1 εφ x dx. 1 ν 1. συνx. 2 + ln1 = - ln 2. J 3-2 = 1 2 J 1 = ln 2 2, οπότε. x lnx 2 x, x > 0.

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

Πανελλαδικές εξετάσεις 2016

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο

Άγγελος Λιβαθινός, Μαθηματικός. ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ. Α1. Θεωρία ( Σχολικό Βιβλίο, Σελίδα 98. Μέτρο Μιγαδικού αριθμού- ιδιότητα)

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου

lim f x lim g x. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ

2.5. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i. 1.ii Να εξετάσετε αν η συνάρτηση

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ

( f ) ( T) ( g) ( H)

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία

( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135

Πανελλαδικές Εξετάσεις 2017

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ x. Η f είναι συνεχής στο x0. lim lim 1. Παρατηρούμε, δηλαδή, ότι μια

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 Απόδειξη θεωρήματος σελίδα 135 στο σχολικό

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (09/06/2017)

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 MAΪΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α

ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2017

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Εξετάσεις 9 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ. και g(x) =, x ΙR * τότε

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

και g(x) =, x ΙR * τότε

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ

Σχέδιο βαθμολόγησης-προσομοίωση Προσανατολισμού Γ Λυκείου - 1/2017 ΣΧΕΔΙΟ ΒΑΘΜΟΛΟΓΗΣΗΣ

( ) ( ) ΘΕΜΑ 2 ο Α. Είναι. f (x) > 0 e 1 x > 0 1 x > 0 1 > x x < 1. η f είναι γνησίως αύξουσα Στο [ 1, + ) η f είναι γνησίως φθίνουσα.

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α

Μαθηματικά Προσανατολισμού x 0 x 0. , 0,, οπότε η f είναι γνησίως αύξουσα στο 0, και

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2013

ΕΥΤΕΡΑ 27 ΜΑΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ


ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Ηµεροµηνία: Κυριακή 10 Μαΐου 2015 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

Aριστοβάθμιο ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΟΠ ΓΕΛ 2017 ΘΕΜΑ Α. β) Αντιπαράδειγμα η f(x)= x που είναι συνεχής στο 0 αλλά όχι παραγωγίσιμη σε αυτό αφού Β) Σ

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000

{ } { ( ) } ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ

Λύσεις των θεμάτων. Παρασκευή 9 Ιουνίου 2017 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

( 1) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ A A 1. Σχολικό σελ. 260 Α 2. Σχολικό σελ. 169 Α 3 Α 4 ΘΕΜΑ Β Β1. Άρα. Β2. Άρα από την δεύτερη σχέση έχω: = 1

Προτεινόμενες λύσεις. , β) και η f είναι συνεχής στο x. , η f είναι γνησίως αύξουσα στο (α,x. 0]. Έτσι έχουμε: f(x) f(x

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΘΕΜΑ Β. Β1.. Η f παραγωγίσιμη στο πεδίο ορισμού της R (διότι. x άρα. x 1 0 για κάθε x R)

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελ Ορισμός σχολικού βιβλίου σελ. 303 Α2.

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι ΛΥΣΕΙΣ 4 ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. 1 (γ) lim. 1/ x

ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ TΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ÏÑÏÓÇÌÏ ÇÑÁÊËÅÉÏ ( )( ) ( )( ) Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. w w + 1= + 1. α= α.

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ΕΥΤΕΡΑ, 12 ΙΟΥΝΙΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 βλ. σχολικό βιβλίο σελ Α.2 βλ. σχολικό βιβλίο σελ. 246 Α.3 βλ. σχολικό βιβλίο σελ. 222 Α.4 α Λ, β Σ, γ Σ, δ Λ, ε Σ

( 1 ) ( 2) ΘΕΜΑ 1 ο Α. 1 Θεώρημα σχ. βιβλίου σελ. 98 Α. 2 Ορισμός σχ. βιβλίου σελ. 141 Α. 3 Ορισμός σχ. βιβλίου σελ. 280

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1. Θεωρία (θεώρηµα Fermat) σχολικό βιβλίο, σελ Α2. Θεωρία (ορισµός) σχολικό βιβλίο, σελ Α3.

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

x (x ) (x + 1) - x (x + 1)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

7 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 61. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε. (e + 1)dt = x 1

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

Θεµατικές διαδροµές στην Ανάλυση

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.

1 η δεκάδα θεµάτων επανάληψης

z - 3i + z + 3i = 2 z - 3i + z - 3i = 2 2 z - 3i = 2 z - 3i = 1 άρα ο γ.τ. των εικόνων του z είναι

3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

Transcript:

Εαναλητικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΠΑΝΤΗΣΕΙΣ Α. α. Βλέε Πόρισµα σελίδα 5 σχολικού βιβλίου. β. Βλέε σελίδα 4 σχολικού βιβλίου. Β. α. (Σ), β. (Σ), γ. (Σ), δ. (Σ). Γ. α., β. 8, γ. 44 ΘΕΜΑ ο ΜΑΘΗΜΑΤΙΚΑ α. Η f είναι συνεχής για <, ως ολυωνυµική και για >, ως άθροισµα της τριγωνοµετρικής ηµ µε την σταθερή c() λ. Στο έχουµε: f() (ηµ λ) λ f() ((µ ) ) Ακόµα f(). Για να είναι η συνάρτηση συνεχής στο ρέει και αρκεί: f() f() f() λ Εοµένως, η ζητούµενη τιµή είναι λ. β. Για > έχουµε: Για < έχουµε: f() f() ηµ λ ηµ ηµ ÈÅÌÁÔÁ 8 f() f() (µ ) (µ ) µ Για να είναι η συνάρτηση αραγωγίσιµη στο ρέει και αρκεί: f() f() f() f() µ µ Εοµένως, η ζητούµενη τιµή είναι µ. γ. Είναι.χ. f () f() λ, άρα η συνάρτηση δεν είναι.

Εαναλητικά Θέµατα ΟΕΦΕ 8 δ. Είναι ηµ, f(), αν > αν και ΘΕΜΑ 3 ο f() d f() d f() d ( ) d α. i. Για κάθε IR είναι : f () ( )' ( [ συν ] )' (ηµ ) d Εειδή > είναι f () < στο IR, άρα η f είναι γνησίως φθίνουσα στο IR ii. Για κάθε IR είναι: f () ( )' ( )' ( ) ( ÈÅÌÁÔÁ 8 ) Έτσι:f () ( ) και f () > >, f () < < H f είναι συνεχής στο IR µε f () < στο διάστηµα (, ), άρα στρέφει τα κοίλα κάτω στο διάστηµα (, ]. Ακόµα είναι f () > στο διάστηµα (, ), άρα η f στρέφει τα κοίλα άνω στο [, ). Τέλος, η συνάρτηση έχει σηµείο καµής το (, f ()), γιατί εκατέρωθεν του αλλάζει κυρτότητα και υάρχει η εφατοµένη της γραφικής της αράστασης σ αυτό, αφού είναι αραγωγίσιµη. Είναι f () έτσι, η συνάρτηση έχει σηµείο καµής το (, ). β. Θα βρούµε, αν υάρχουν, τα όρια: f() ( ) και f() ( ) Θέτουµε u οότε: Τότε είναι: u (- ) και u (- ) - και - f() ( ) u u

Εαναλητικά Θέµατα ΟΕΦΕ 8 3 f() ( u ) ( ) Εοµένως, η γραφική αράσταση της συνάρτησης έχει οριζόντια ασύµτωτη την y στο και την y στο. u γ. Με βάση τις ληροφορίες των ροηγουµένων ερωτηµάτων σχεδιάζουµε την γραφική αράσταση της συνάρτησης: y δ. Στο α ερώτηµα βρήκαµε f () <, οότε f () f () και έτσι: E f ' () d f ' () d ΘΕΜΑ 4 ο / [ ()] τµ f f() f α. Εειδή οι συναρτήσεις f, g είναι συνεχείς, οι συναρτήσεις f(t) dt και g(t) dt, ου ορίζονται αό ολοκλήρωµα, είναι αραγωγίσιµες, έτσι µορούµε να αραγωγίσουµε και τα δύο µέλη της (), οότε έχουµε: ( f(t) dt )' ( g(t)dt)' ÈÅÌÁÔÁ 8 ή f () g() g(t) dt (3) Για αίρνουµε: f () Με αό την (3) έχουµε: και: y Ο y f() y g(t) dt g() g(t)dt f () f () f () 3

Εαναλητικά Θέµατα ΟΕΦΕ 8 4 f() g() g(t)dt Εειδή η g είναι συνεχής στο IR, άρα και στο, είναι g( ) g(). Η συνάρτηση h(), οότε: Εοµένως, το όριο: g(t) dt, IR, είναι αραγωγίσιµη, άρα είναι συνεχής στο g(t)dt h() h() g(t)dt g(t)dt είναι µορφή / και υολογίζεται µε τον κανόνα του D L Hospital: Έτσι: οότε, τελικά: g(t)dt ( f() g() g(t)dt)' g() g() ()' g(t)dt g() f() f() f() f '() g() β. H () για δίνει g(t) dt (4) Εειδή η g() δεν µηδενίζεται και είναι συνεχής στο IR διατηρεί ρόσηµο σ αυτό. Αν ήταν g() > τότε g(t)dt > > Άτοο. Άρα είναι g() <, για κάθε IR. γ. H () για δίνει f(t) dt f(t) dt (5) Είναι g() < g() > για κάθε IR, έτσι: ÈÅÌÁÔÁ 8 µε είναι [ g(t)]dt g(t)dt, άρα: g(t) dt µε < είναι [ g(t)]dt > g(t)dt >, άρα: g(t) dt < Εοµένως, για κάθε IR αό την () είναι: g(t) dt f(t) dt 4

Εαναλητικά Θέµατα ΟΕΦΕ 8 5 f(t) dt [ f(t) dt αό (5)] f(t) dt f(t) dt ος τρόος: Έστω η συνάρτηση F() f(t) dt, IR για την οοία F () f (). Αό την (3), αφού g() <, βρίσκουµε: µε > είναι f () g() g(t) dt < F () < µε είναι f () F () µε < είναι f () g() g(t) dt > F () > οότε η F() έχει µέγιστο το F(), άρα για κάθε IR : F() F() f(t) dt f(t) dt δ. (Αόδειξη µε Roll σε αρχική). Θεωρούµε την συνάρτηση: Η() f(t) dt g(t)dt µε [, ] Εειδή οι f, g είναι συνεχείς, οι συναρτήσεις f(t) dt και g(t) dt ως οριζό- µενες αό ολοκλήρωµα, είναι αραγωγίσιµες. Ακόµα η είναι αραγωγίσιµη, ως ολυωνυµική, άρα η Η(), ως αλγεβρικό άθροισµα αραγωγίσιµων συναρτήσεων, είναι: Παραγωγίσιµη στο εδίο ορισµού της, άρα και στο (, ) µε Η () f () g() συνεχής στο [, ], ως αραγωγίσιµη σ αυτό. Ακόµα: Η() και Η() f(t) dt g(t)dt f(t) dt g(t)dt () [ αό (4) και (5) ] Εοµένως, εφαρµόζεται για την Η() το θεώρηµα του Roll, οότε υάρχει τουλάχιστον ένα ξ (, ) µε ÈÅÌÁÔÁ 8 Η (ξ) f (ξ) g(ξ) f (ξ) g(ξ), ου σηµαίνει ότι το ξ είναι ρίζα στο (, ) της εξίσωσης f () g(). 5