ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2012 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΜΑΙΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ. Άρα ο γ.τ. των Μ(z) είναι κύκλος µε κέντρο το Ο(0, 0) και ακτίνα ρ=1

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1. Θεωρία (θεώρηµα Fermat) σχολικό βιβλίο, σελ Α2. Θεωρία (ορισµός) σχολικό βιβλίο, σελ Α3.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 28 ΜΑΪΟΥ 2012

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2012

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2012

ΛΥΣΕΙΣ ΙΟΥΝΙΟΣ (

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ Α : Α1. Σχολικό βιβλίο σελίδα 253. Α2. Σχολικό βιβλίο σελίδα 191. Α3. Σχολικό βιβλίο σελίδα 150. Α4. Α)Σ β)σ γ)λ δ)λ ε)λ ΘΕΜΑ Β : Β1.

( ) ( ) ΘΕΜΑ 2 ο Α. Είναι. f (x) > 0 e 1 x > 0 1 x > 0 1 > x x < 1. η f είναι γνησίως αύξουσα Στο [ 1, + ) η f είναι γνησίως φθίνουσα.

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

( ) ( ) ( ) ( ) ( ) ( )

ÏÑÏÓÇÌÏ ÇÑÁÊËÅÉÏ ( )( ) ( )( ) Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. w w + 1= + 1. α= α.

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

Κατεύθυνσης. Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Κατεύθυνσης. Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 28 MAΪΟΥ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 253 σχολικού βιβλίου. Έστω x1,

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

Πανελλαδικές εξετάσεις 2015

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

1 1 1 (x yi) x yi = = = 2 (x - 1) + y 2

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. c είναι παράγουσες της f στο Δ και κάθε άλλη παράγουσα G της f στο Δ παίρνει τη μορφή G( x) F( x) c,

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ( ) ( ) ( ) ( )

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x

2015zi 2015zi 2015zi 2015zi 4030zi 4030zi z z

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 Σχολικό βιβλίο σελ Α2 Σχολικό βιβλίο σελ. 28 Α3. α σωστό, β σωστό, γ λάθος, δ λάθος, ε σωστό. ΘΕΜΑ Β

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ:28/05/2012

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013

ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2015

ΜΑΘΗΜΑ ΣΥΝΕΠΕΙΕΣ ΤΟΥ Θ.Μ.Τ Μονοτονία συνάρτησης Ασκήσεις Εξισώσεις Θεωρητικές Συνέχεια του µαθήµατος 31. e 3 = 0. e + e 3, x R.

Επομένως ο γεωμετρικός τόπος των εικόνων του z είναι ο κύκλος με κέντρο

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

Α1. Θεωρία Σελίδες Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ 2014

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

- + Απαντήσεις. Θέμα Β Β1. Από την Cf παρατηρούμε ότι 0. f x για κάθε (0,4) συνεπώς η f είναι γνήσια αύξουσα στο [4, 5] και γνήσια φθίνουσα στο [0,4].

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x


z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0

ΘΕΜΑ o Αν για τους µιγαδικούς αριθµούς z και w ισχύουν: z 6 i και w i w 3 3i τότε να βρείτε: α. το γεωµετρικό τόπο των εικόνων των µιγαδικών αριθµών z

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2015 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

z 2 2z z 1 Θ Ε Μ Α Β Α 1 : Θεώρημα ςελ. 304 (Σχολικό βιβλίο) Α 2 : Οριςμόσ ςελ. 279 (Σχολικό βιβλίο) Α 3 : Οριςμόσ ςελ. 273 (Σχολικό βιβλίο)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Δευτέρα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ. Α4.) α) Λάθος, β) Σωστό, γ) Λάθος, δ) Σωστό, ε) Σωστό

Θεµατικές διαδροµές στην Ανάλυση

Για να προσδιορίσουμε τη μονοτονία της συνάρτησης η πρέπει να βρούμε το πρόσημο της h, το οποίο εξαρτάται από τη συνάρτηση φ(x) = e x 1

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

( ) ( ) ΘΕΜΑ Β Β1. Θέτουμε z = x + yi, x, y ΙR Είναι: 2 x + y + 2xi 4 2i = 0 2x + 2y 4 + (2x 2)i = 0. 2y = 2 y = 1 ήy= 1 = = = Άρα = 1+ i, z2. z 1 Β2.

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α

άρα ο γεωµετρικός τόπος είναι κύκλος µε κέντρο την αρχή Ο (0,0) και ακτίνα ρ = 2. αυτό σηµαίνει ότι οι εικόνες των µιγαδικών w

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 2014

6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51.

y = 2 x και y = 2 y 3 } ή

z - 3i + z + 3i = 2 z - 3i + z - 3i = 2 2 z - 3i = 2 z - 3i = 1 άρα ο γ.τ. των εικόνων του z είναι

ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ 2012

1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Τομέας Mαθηματικών "ρούλα μακρή"

ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου

Transcript:

ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ, γ) Λ, δ) Λ, ε) Λ ΘΕΜΑ Β Β. α τρόπος: Αν z= yi,, y R, η σχέση () γράφεται ( ) yi ( ) yi = 4 ( ) y ( ) y = 4 y =. Άρα ο γεωµετρικός τόπος των εικόνων των µιγαδικών αριθµών z στο επίπεδο είναι κύκλος µε κέντρο την αρχή των αξόνων και ακτίνα ρ =. β τρόπος: Η σχέση () γράφεται: ( z ) ( z ) ( z ) ( z ) = 4 ( z ) ( z ) ( z ) ( z ) = 4 z z z z z z z z = 4 z z = z z = z = z =. Άρα ο γεωµετρικός τόπος των εικόνων των µιγαδικών αριθµών z στο επίπεδο είναι κύκλος µε κέντρο την αρχή των αξόνων και ακτίνα ρ =. Β. Έστω z z = k, k 0. Τότε Β3. ( )( ) z z = z z = z z z z = ( z z )( z z ) ( ) = zz z z z z zz = z z zz zz = (α) ( )( ) z z = z z = z z z z = ( ) ( z z ) z z = z z z z z z z z = ( ) = (β). z z z z z z z z = k. Προσθέτοντας τις (α), (β) κατά µέλη έχουµε: ( ) Όµως z=, z= οπότε προκύπτει k k k = 4 = =, αφού k 0. 5 5 ( w 5 w) ( w 5 w) 44 w w = w w = = 5 5 5 44 ww w w ww = w 5( w w ) 5w = 44 6w 5( w w ) = 44 (3) Έστω w = yi,, y R τότε η σχέση (3) γίνεται:

6( y ) 5 ( yi) ( yi) = 44 6( y ) 5( y yi y yi) = 44 6 6y 5( y ) = 44 6 6y 0 0y = 44 6 36y = 44 y y 4 9y = 36 = =. 9 4 3 Άρα ο γεωµετρικός τόπος των εικόνων του w είναι η παραπάνω έλλειψη µε µήκος µεγάλου ηµιάξονα a = 3 και µήκος µικρού ηµιάξοναβ=. Είναι όµως γνωστό (µαθ. κατεύθυνσης Β Λυκείου, σελίδα 04) ότι για οποιοδήποτε σηµείο Μ της έλλειψης ισχύει ότι β ΟΜ α ή β ΟΜ α. Αν Α, Α, Β, Β οι κορυφές της έλλειψης, τότε: Α ( 3,0), Α(3, 0), Β (0, ), Β(0, ). Έτσι w = ( OA) = ( OA') = 3 και w = ( OB) = ( OB ') =. ma min Α 0 Α -3 - - O 0 3 - Παρατήρηση : Το παραπάνω σχήµα είναι επιβοηθητικό της κατανόησης από τους µαθητές και δεν είναι απαραίτητο για τη λύση του ερωτήµατος. Β4. Με βάση την τριγωνική ανισότητα και επειδή z w = w z έχουµε: w z w z w z w w z w (4) Όµως λόγω του Β 3 είναι w 3, άρα: w και w 4. Τότε όµως η (4) γράφεται: w z 4. Β Β w M

Α 0 Α -3 - - O 0 3 - - Η παραπάνω ανίσωση είναι η αλγεβρική έκφραση της (ΛΜ) 3, µε (ΟΛ) = z, ΟΜ = w και (ΛΜ) = z w η οποία προκύπτει από το παραπάνω σχήµα. Παρατήρηση : Το σχήµα και εδώ δεν είναι απαραίτητο. Θα µπορούσε όµως πιθανώς και µια τέτοια «γεωµετρική λύση», αν και όχι τόσο αυστηρή όσο η αλγεβρική, να γίνει κατά ένα ποσοστό µονάδων βαθµολογίας αποδεκτή ανεξάρτητη λύση, καθόσον αναδεικνύει κατανόηση της έννοιας της µετρικής στο µιγαδικό επίπεδο. Παρατήρηση 3: Τα δύο πρώτα ερωτήµατα του δεύτερου θέµατος θα µπορούσαν να απαντηθούν χρησιµοποιώντας την άσκηση Α9 του σχολ. Βιβλίου σελ. 0, γνωστή ως κανόνα του παραλληλογράµµου (αφού πρώτα αποδειχθεί) : Για κάθε z, z C ισχύει ότι Απόδειξη: Β Β Λ M z z z z = z z z z z z = ( z z )( z z ) ( z z )( z z ) = zz zz zz z z zz zz zz z z = zz z z = z z B. γ τρόπος: για z = z και z = έχουµε : z z = z 4 = z z = z = z = Άρα ο γεωµετρικός τόπος των εικόνων του z είναι κύκλος µε κέντρο την αρχή των αξόνων Ο και ακτίνα ρ =. Β. β τρόπος: Από τον κανόνα του παραλληλογράµµου έχουµε ότι z z z z = z z ( ) z z = z z = z z = 3

ΘΕΜΑ Γ Γ. Η f είναι συνεχής στο (0, ) ως αποτέλεσµα πράξεων µεταξύ συνεχών συναρτήσεων και παραγωγίσιµη µε f '( ) = ln = ln, (0 ). Όταν (0, ) είναι < και επειδή η συνάρτηση ln είναι γνησίως αύξουσα έχουµε ln < ln ln < 0. Επίσης < 0 και > 0 άρα < 0. Έτσι ln < 0 για κάθε (0, ), άρα η f είναι γν. φθίνουσα στο (0, ]. Όταν (, ) είναι > και επειδή ln γνησίως αύξουσα είναι ln > ln ln > 0. Επίσης είναι > 0 για κάθε (, ), οπότε ln > 0 για κάθε (, ). ηλαδή f () > 0 για κάθε (, ). Έτσι όµως η f είναι γνησίως αύξουσα στο [, ). Από τα προηγούµενα προκύπτει ο επόµενος πίνακας µεταβλητών για την f: 0 f min (-) Επειδή f γνησίως φθίνουσα στο (0, ] είναι f( (0,]) = f ( ), lim f ( ) ) 0 Όµως lim f ( ) = lim [( ) ln ] =. 0 0 f (0,] = [, ) (). Άρα ( ) Επίσης επειδή η f είναι γνησίως αύξουσα στο [, ) είναι f [, = f (), lim f ( ). ( ) ) Όµως lim f ( ) lim [( ) ln ] Άρα ( ) = =. f [, ) = [, ) (). Από (), () προκύπτει ότι το σύνολο τιµών της f είναι το [, ). Παρατήρηση: Η µονοτονία της f στα διαστήµατα (0, ] και [, ) µπορεί να προκύψει και από το πρόσηµο της δεύτερης παραγώγου: f ( ) = 0 = >, για κάθε > 0. Άρα η f είναι γνησίως αύξουσα στο (0, ) και επειδή f () = 0 η = είναι µοναδική ρίζα της f () = 0. Ακόµη, είναι:. 4

0 < < f ( ) < f () f ( ) < 0 άρα η f είναι γν. φθίνουσα στο (0, ]. > f ( ) > f () f ( ) > 0, άρα η f είναι γν. αύξουσα στο [, ). Η f παρουσιάζει (ολικό) ελάχιστο στο = το f () = ( ). ln =. Γ. Η εξίσωση = 03 (επειδή η συνάρτηση y = ln είναι γνησίως αύξουσα και άρα ) γράφεται ισοδύναµα: 03 ln( ) = ln( ) ( ) ln = 03 ( ) ln = 0 f ( ) 0 = 0. Από το Γ ερώτηµα είναι: f (0,] = [, ) άρα υπάρχει (0, ] ώστε f( ) = 0 και επειδή η f α) ( ) είναι γνησίως φθίνουσα είναι και, άρα η τιµή είναι µοναδική στο διάστηµα (0,]. f [, ] = [, ), άρα υπάρχει [, ) ώστε f ( ) = 0 και β) ( ) επειδή η f είναι γνησίως αύξουσα είναι και, άρα η τιµή είναι µοναδική στο διάστηµα [, ). Από α) και β) προκύπτει ότι η δοσµένη εξίσωση έχει ακριβώς θετικές ρίζες. Γ3. Θεωρούµε τη συνάρτηση h() = f () 0. µε (0, ). Η h είναι συνεχής στο [, ] ως αποτέλεσµα πράξεων συνεχών συναρτήσεων. Η h είναι παραγωγίσιµη στο (, ) ως αποτέλεσµα πράξεων παραγωγίσιµων συναρτήσεων µε ( ) h ( ) = f ( ) f ( ) 0. h f ( ) = ( ) 0 = 0 0 = 0 h( ) = f ( ) 0 = 0 0 = 0 Άρα ισχύουν οι προϋποθέσεις του Θ. Roll για την h στο [, ], οπότε υπάρχει 0 (, ), ώστε h ( 0 ) = 0 0 0 0 ( f 0 f 0 ) f 0 f 0 B τρόπος ( ) ( ) 0 = 0 ( ) ( ) 0 = 0. Θεωρούµε τη συνάρτηση h( ) = f ( ) f ( ) 0 µε > 0. Η f είναι συνεχής στο (0, ) ως γινόµενο συνεχών. H f είναι συνεχής στο (0, ) ως άθροισµα συνεχών. Άρα η h είναι συνεχής στο (0, ) ως άθροισµα συνεχών. Άρα η h είναι συνεχής στο [, ]. Γ h( ) = f ( ) f ( ) 0 = f ( ) 0 0 = f ( ) < 0, αφού από το Γ για (0, ) είναι f ( ) < 0. Γ h( ) = f ( ) f ( ) 0 = f ( ) 0 0 = f ( ) > 0, αφού από το Γ για (0, ) είναι f ( ) > 0. ηλαδή είναι h( ) h( ) < 0. Από το Θεώρηµα Bolzano θα υπάρχει ένα τουλάχιστον 0 (, ) ώστε: h( ) = 0 f ( ) f ( ) 0 = 0 f ( ) f ( ) = 0. 0 0 0 0 0 5

Γ4. Είναι: g( ) = f ( ) = ( ) ln = ( ) ln > 0 για κάθε (0, ). Άρα: ΘΕΜΑ Ε( Ω ) = ( )ln d = ln d ln d ( ) ln d ( ) ln d = = = ln d [ ln ] d d [ ] = = 3 3 = = = = τ.µ. 4 4 4 4 4 4. Θεωρούµε τη συνάρτηση G( ) = f ( t) dt, (0, ). f( t) dt = Η( ), όπου Η() = ( ) f t dt. H f είναι συνεχής στο (0, ) άρα η Η() είναι παραγωγίσιµη στο στο (0, ). Επίσης η y = είναι παραγωγίσιµη στο (0, ) ως πολυωνυµική, άρα και η Η( ) είναι παραγωγίσιµη ως σύνθεση παραγωγίσιµων συναρτήσεων. Επίσης παραγωγίσιµη είναι και η ως πολυωνυµική. Έτσι η G είναι παραγωγίσιµη ως άθροισµα παραγωγίσιµων µε G ( ) = f ( )( ) ( ), για κάθε (0, ). Η δοσµένη σχέση f( t) dt επειδή G() = 0 γράφεται ισοδύναµα: f ( t) dt 0 G( ) G(), για κάθε (0, ). Η συνάρτηση G είναι συνεχής και παραγωγίσιµη στο (0, ) και παρουσιάζει τοπικό ελάχιστο για = που είναι εσωτερικό σηµείο του (0, ). Από το θεώρηµα Frmat προκύπτει τότε ότι G () = 0 f () =. Επειδή η f συνεχής στο (0, ) και f ( ) 0 για κάθε (0, ), η f διατηρεί σταθερό πρόσηµο στο (0, ) και επειδή f () = < 0, είναι f ( ) < 0, (0, ). Έτσι f( ) = f( ) και από τη δοσµένη σχέση προκύπτει ln t t ln = dt ( f ( ) ). f ( t) ln Για τη συνάρτηση ( ) t t h = dt ισχύει h( ) 0 για κάθε > 0, διότι αν f ( t) υπήρχε ξ (0, ) ώστε h(ξ) = 0 τότε θα ήταν ln ξ ξ = 0. Αυτό όµως είναι άτοπο επειδή για τη συνάρτηση φ() = ln ισχύει ϕ ( ) < 0 για κάθε (0, ) (σύµφωνα µε τη γνωστή εφαρµογή στη σελ.66 του σχολ. βιβλίου) αλλά 6

µπορεί και να αποδειχθεί: ϕ ( ) = = οπότε όπως προκύπτει από τον πίνακα µεταβολών της φ είναι ϕ ( ) < 0 για κάθε (0, ). 0 φ ( ) φ( ) ma φ() = - ln (*) Η συνάρτηση f ( ) = είναι παραγωγίσιµη ως πηλίκο ln t t dt f ( t) ln ln t t παραγωγίσιµων συναρτήσεων, ενώ προκύπτει = dt f ( ). f ( t) Οι συναρτήσεις και στα δύο µέλη είναι παραγωγίσιµες οπότε: ln ln t t ln ln = dt, f ( ) άρα =. f ( t) f ( ) f ( ) ln Αν θέσουµε g( ) = έχουµε g ( ) = g( ) για κάθε (0, ), οπότε f ( ) σύµφωνα µε την εφαρµογή της σελίδας 5 του σχολικού βιβλίου είναι: g( ) = c, δηλαδή ln = c. f ( ) Για = προκύπτει = c = c c =. f () Άρα τελικά f () = ln (ln ) =, (0, ). (*) Παρατήρηση: Από το σηµείο αυτό θα µπορούσε να ακολουθηθεί και η εξής πορεία: ln t t Για την συνάρτηση h() = dt έχουµε ότι είναι παραγωγίσιµη στο (0, ) f ( t) διότι η ln t t είναι συνεχής ως πηλίκο συνεχών. Είναι h () = f ( t ln, οπότε από ) f ( ) ln t t την σχέση ln = dt ( f ( ) ) προκύπτει ln = h() f() f ( t) ln = h() h () = h(), (0, ). Τότε όµως είναι h() = c. f ( ) Επειδή h() = προκύπτει c =, άρα h() =. 7

. Είναι: ηλαδή ln f ( ) Άρα 0 lim 0 0 = f() = (ln ), (0, ). = =, lim ln =, lim ( ) = 0. 0 lim (ln ) =. 0 Τότε όµως lim = 0. 0 f ( ) Αν θέσουµε u f ( ) = έχουµε u < 0 και 0 0 ηµ u u συν u lim f ( )ηµ f ( ) lim ηµ u lim lim ( ) 0 f ( ) = u 0 u u = = = u 0 u u 0 u συν u = lim ( ) = 0 = 0. u 0 u 3. Η F είναι δύο φορές παραγωγίσιµη στο (0, ) µε F ( ) = f( ) και F ( ) = f ( ) = (ln ) ( ) = ( ln ). Επειδή ln 0 και > 0, για κάθε >0 είναι ( ) 0 F >, για κάθε >0. Άρα η F είναι κυρτή στο (0, ). Η σχέση τώρα F( ) F(3 ) > F( ), >0 γράφεται: F(3 ) F( ) F( ) F( ) F(3 ) F( ) > F( ) F( ), > 0 >, > 0. 3 Από Θ.Μ.Τ. για την F στα διαστήµατα [, ] και [, 3] αντίστοιχα υπάρχουν F( ) F( ) F(3 ) F( ) ξ (, ) και ξ (, 3) ώστε F ( ξ) = και F ( ξ) =, 3 οπότε αρκεί να δειχθεί ότι F ( ξ) > F ( ξ) µε < ξ < < ξ < 3. Η τελευταία είναι αληθής διότι η F είναι κυρτή και άρα η F γνησίως αύξουσα στο (0, ). 4. Θεωρούµε τη συνάρτηση h() = F() F(β) F(3β), [β, β]. Η F είναι συνεχής και παραγωγίσιµη στο (0, ) άρα και η h. h(β) = F(β) F(3β) h(β) = F(β) F(β) F(3β). Επειδή F () = f() < 0 για κάθε (0, ) η F είναι γνησίως φθίνουσα στο (0, ). Έτσι από β < 3β έπεται: F(β) > F(3β) F(β) F(3β) > 0 h(β) > 0. Λόγω τώρα του 3 είναι h(β) = F( β) F( β) F(3 β) < 0. Άρα h( β) h( β) < 0, οπότε λόγω του θεωρ. Bolzano προκύπτει ότι υπάρχει ξ ( β, β) ώστε h( ξ ) = 0 F( β) F(3 β) = F( ξ ). Η τιµή ξ είναι µοναδική διότι η συνάρτηση h είναι γνησίως φθίνουσα και άρα, αφού h () = F () = f() < 0, για κάθε (0, ). 8