ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)

Σχετικά έγγραφα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 8: Ανάλυση ευστάθειας & Συναγωγή και διάχυση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 4: Εξίσωση διάχυσης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 9: Συναγωγή και διάχυση (συνέχεια)

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια)

Διάλεξη 13: Σχήματα ανώτερης τάξης Οριακές συνθήκες για προβλήματα συναγωγήςδιάχυσης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 12: Σχήματα ανώτερης τάξης

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 1: Εξισώσεις διατήρησης

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθήματος. Διάλεξη 10: Ολοκλήρωση Συνήθων Διαφορικών Εξισώσεων: Προβλήματα Συνοριακών Τιμών Μίας Διάστασης (1D)

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Διάλεξη 11: Ανώτερης τάξης σχήματα στη μόνιμη συναγωγή

Αριθμητική Ανάλυση και Εφαρμογές

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Αριθμητική επίλυση του προβλήματος της Αγωγής Θερμότητας.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Πεπερασμένες Διαφορές.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

Δρ. Σταύρος Καραθανάσης

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής

προβλήµατα ανάλυσης ροής

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

Πίνακας Περιεχομένων

z είναι οι τρεις ανεξάρτητες

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Αριθµητική Ολοκλήρωση

(συνθήκη συμμετρίας) (4) Το παραπάνω πρόβλημα μπορεί να περιγράψει τη μεταβατική πλήρως ανεπτυγμένη ροή σε κυλινδρικό αγωγό.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

2.1 Αριθμητική επίλυση εξισώσεων

Ψηφιακή Επεξεργασία Σημάτων

Αστικά υδραυλικά έργα

Επίλυση δικτύων διανοµής

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL

Non Linear Equations (2)

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΥΠΟΛΟΓΙΣΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΡΥΠΩΝ

Αριθμητική Ανάλυση και Εφαρμογές

ΤΕΧΝΙΚΗ ΑΝΑΦΟΡΑ ΠΡΟΣΕΓΓΙΣΤΙΚΗ ΛΥΣΗ ΜΙΑΣ ΜΗ-ΓΡΑΜΜΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΙΣΩΣΗΣ. Τμήμα Μαθηματικών Πανεπιστημίου Πατρών Νοέμβριος 2014

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

w 1, z = 2 και r = 1

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ

ΚΑΤΑΣΚΕΥΗ ΠΙΝΑΚΑ ΣΥΝΕΚΤΙΚΟΤΗΤΑΣ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Ι. Γραμμικά τετραγωνικά στοιχεία Q4 Έστω πλέγμα ΝxΜ Έστω πλέγμα με ΝxM στοιχεία:

Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες

Παρουσίαση 3ης Άσκησης

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

Εφαρμοσμένα Μαθηματικά ΙΙ 7ο Σετ Ασκήσεων (Λύσεις) Ορίζουσες Επιμέλεια: Ι. Λυχναρόπουλος

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ανάλυση δικτύων διανομής

ΣΥΝΘΕΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ

Προβλήματα που αφορούν εντολές ελέγχου της ροής ενός προγράμματος.

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

Έστω μια συνεχής (και σχετικά ομαλή) συνάρτηση f( x ), x [0, L]

Ενδεικτικές Ερωτήσεις Θεωρίας

ΔΥΝΑΜΙΚΗ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

2. Επίλυση μη Γραμμικών Εξισώσεων

Φόρτος εργασίας. 4 ( ώρες): Επίπ εδο μαθήματος: Ώρες διδασκαλίας: 7 διδασκαλίας εβδομαδιαίως:

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων

Υδραυλική των Υπόγειων Ροών

Προσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel. Δημιουργία κώδικα στο Matlab

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΠΛΗ 12- Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008

Προηγούμενη παρουσίαση... Εξετάσαμε την εξίσωση διάχυσης σε δύο διαστάσεις (2D) σε Καρτεσιανό δομημένο πλέγμα. Συγκεκριμένα, Εισάγαμε την έννοια της συνδυασμένης μετάδοσης θερμότητας (Conjugate heat transfer) Μελετήσαμε την γραμμικοποίηση των όρων πηγής Εξετάσαμε τη μέθοδο της υποχαλάρωσης (Under-relaxation)

Οργάνωση παρουσίασης Θα συνεχίσουμε: Εξετάζοντας ειδικές περιπτώσεις γραμμικών επιλυτών» αλγόριθμο τριδιαγώνιου πίνακα (TDMA)» line-by-line (TDMA) Εξετάζοντας την χρονικά μεταβαλλόμενη (unsteady) αγωγή

Γραμμικοί επιλυτές Θα μελετήσουμε γραμμικούς επιλυτές για δομημένα πλέγματα σε δύο διαστάσεις Ας θεωρήσουμε την μονοδιάστατη διακριτή εξίσωση γύρω από το σημείο P:

Γραμμικοί επιλυτές (συνέχεια) Γράφουμε ξανά την εξίσωση χρησιμοποιώντας το παρόμοιο συμβολισμό Έχουμε μία εξίσωση όπως αυτή για κάθε σημείο του πλέγματος i = 1, 2, 3,, N Για i=1, c 1 =0. Επίσης, b N =0

Αλγόριθμο τριδιαγώνιου πίνακα (TDMA) Για κάθε i σημείο του πλέγματος: Για τα σημεία όπου υπάρχουν οριακές συνθήκες: c 1 =0; b N =0 Χρησιμοποιώντας την εξίσωση για το σημείο 1 γράφουμε φ 1 = f(φ 2 ). Αντικαθιστούμε το φ 1 στην εξίσωση για το φ 2 και το εξαλείφουμε γράφοντας φ 2 = f(φ 3 ) Επαναλαμβάνουμε την παραπάνω διαδικασία μέχρι την Ν-οστη εξίσωση και βρίσκουμε το φ N Αντικαθιστούμε ανάποδα και βρίσκουμε τα φ N-1. φ 1 Σημείωση: η μέθοδος είναι παρόμοια με τις άμεσες μεθόδους (πχ. Gaussian elimination)

TDMA (συνέχεια) Σχηματίζοντας την διαδικασία, ορίζουμε τους συντελεστές P i και Q i έτσι ώστε: Είναι εύκολο να δειχθεί ότι: P 1 = b 1 /a 1 ; P N =0 φ N = Q N

TDMA (συνέχεια) Διαδικασία επίλυσης: Στην προς τα εμπρός επανάληψη, βρίσκουμε τα P i, Q i, i=1,2 N Στο τέλος της διαδικασίας βρίσκουμε φ N = Q N Στην προς τα πίσω επανάληψη, χρησιμοποιούμε Άγνωστο Γνωστό Συνεχίζοντας την ανάποδη επανάληψη βρίσκουμε τα φ N-1,,φ 1

Line-by-line TDMA Χρησιμοποιείται για πολυδιάστατα προβλήματα σε δομημένα πλέγματα Υποθέτουμε ότι οι τιμές στις γραμμές σε κάθε πλευρά είναι προσωρινά γνωστές Σε κάθε γραμμή, χρησιμοποιούμε τη TDMA για να λύσουμε το γραμμικό σύστημα Επαναλαμβάνουμε την λύση πάνω στις γραμμές ξανά και ξανά έως ότου να έχουμε σύγκλιση Η διεύθυνση που εφαρμόζουμε τη TDMA ονομάζεται διάβαση TDMA (traverse) Η διεύθυνση όπου οι γραμμές επιλύονται σειριακά ονομάζεται Sweep Μερικές φορές η μέθοδο ονομάζεται Line Gauss Seidel (LGS)

Line-by-line TDMA Εφαρμόζουμε TDMA σε κάθε γραμμή Μπορούμε να κάνουμε το ίδιο και για τις άλλες διευθύνσεις Επιλύουμε από γραμμή σε γραμμή

Line-by-line TDMA Ποια διεύθυνση θα επιλέγαμε για να λύσουμε τη TDMA στις παρακάτω περιπτώσεις;

Χρονικά μεταβαλλόμενη διάχυση Γενική εξίσωση: Την ολοκληρώνουμε στον όγκο ελέγχου και το χρονικό βήμα:

Χρονικός όρος Γράφουμε τον όρο της χρονικής μεταβολής ως προς την τρέχουσα τιμή του (1) και μια προηγούμενη (0): Υποθέτουμε: Έτσι ο χρονικός όρος γίνεται:

Όρος ροής Θεωρούμε το ολοκλήρωμα του όρου ροής Γράφουμε τον όρο ως: Για την ολοκλήρωση υποθέτουμε ότι ο όρος της ροής μεταβάλλεται γραμμικά σε κάθε χρονικό βήμα.

Όρος ροής Για κάθε χρονικό βήμα διακριτοποιούμε τον όρο ροής σε σχέση με το προηγούμενο χρονικό βήμα Τρέχον χρόνος: Παλαιότερος χρόνος:

Όρος πηγής Πρέπει να υπολογιστεί: Το χωρικό κομμάτι προσεγγίζεται ως: Επίσης, υποθέτουμε ότι οι όροι πηγής μεταβάλλονται γραμμικά σε κάθε χρονικό βήμα:

Σύστημα διακριτών εξισώσεων Για διευκόλυνση έχουμε διώξει τους εκθέτες (1) Προσέξτε τις παλιές τιμές της μεταβλητής στο σύστημα τον εξισώσεων Για να απλοποιήσουμε την περιγραφή της εξίσωσης θα τη μελετήσουμε για συγκεκριμένες τιμές του συντελεστή προσέγγισης του χρόνουf (f = 0, 1, 0.5)

Ρητό σχήμα (Explicit) Ρητό (Explicit) ονομάζεται το σχήμα που προκύπτει θεωρώντας f=0 Προφίλ που υποτίθεται για κάθε χρονικό βήμα

Σχήμα Explicit: Διακριτές εξισώσεις Το αριστερό μέρος της εξίσωσης (RHS) είναι συνάρτηση μόνο των παλαιών τιμών της φ Συνέπειες;

Ιδιότητες του σχήματος Explicit Το RHS είναι γνωστό από το προηγούμενο χρονικό βήμα (αρχικές συνθήκες) Δεν υπάρχει λόγος να λύσουμε γραμμικό σύστημα αλγεβρικών εξισώσεων για να βρούμε το φ P Ότανηλύσηγίνεταιμόνιμηισχύειότιφ P = φ 0 P. Σε αυτό το όριο, ξαναβρίσκουμε τις σταθερές διακριτές εξισώσεις.» Η μόνιμη κατάσταση (Steady state) δεν εξαρτάτε από την ιστορία των προηγούμενων χρονικών βημάτων Θα δείξουμε αργότερα ότι το σφάλμα αποκοπής είναι τάξης O(Δt)

Ιδιότητες του σχήματος Explicit (συνέχεια) Τι γίνεται όταν Πρέπει να διαλέξουμε το πλέγμα / χρονικό βήμα ώστε να δίνουν Προκύπτει (για τη μονοδιάστατη περίπτωση) Μπορούμε να καταλήξουμε στο ίδιο συμπέρασμα μέσω ανάλυσης ευστάθειας Von Neumann

Όρια ευστάθειας για το σχήμα Explicit Το ρητό σχήμα (Explicit) έχει τα παρακάτω όρια ευστάθειας (όρια Von Neumann): Η τετραγωνική εξάρτηση από το πλέγμα περιορίζει πάρα πολύ την εφαρμογή της μεθόδου για πρακτικές εφαρμογές

Επίλογος Στη παρούσα διάλεξη» Είδαμε τον αλγόριθμο του τριδιαγώνιου πίνακα (TDMA), που είναι μια άμεση μέθοδο επίλυσης τριδιαγώνιων συστημάτων» Είδαμε πως ο αλγόριθμος TDMA, χρησιμοποιείται ως επαναληπτική μέθοδο για να λύσουμε προβλήματα σε πολλές διαστάσεις» Αρχίσαμε να βλέπουμε την εξίσωση της χρονικά μεταβαλλόμενης διάχυσης