Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση ( ) ( λ + λ x+ λ ) y + λ( λ+ ) = 0 i. Να παριστάνει ευθεία ii. Να είναι παράλληλη στη x x iii. Να είναι παράλληλη στον y y iv. Να διέρχεται από την αρχή των αξόνων. A. Αν β 0 Θέµα ο και α = α + α µε α //β και α β αποδείξτε ότι αβ αβ α = β και α = α β. β β B. ίνονται οι ευθείες µε εξισώσεις : ( ε ): αx + βy = και ( ε ): βx ( α -β) y = - + µε α,β R και β 0, α β. i. Βρείτε σχέση µεταξύ των α, β ώστε οι ευθείες να είναι παράλληλες. ii. Υπάρχουν τιµές των α, β ώστε οι ευθείες να ταυτίζονται; iii. Στην περίπτωση που οι ευθείες τέµνονται να αποδείξετε ότι το σηµείο τοµής τους κινείται σε σταθερή ευθεία. Θέµα 3 ο A. Τα διανύσµατα α, β, γ του επιπέδου, επαληθεύουν την σχέση ( α x) β= γ + x (). i. Να αποδείξετε ότι: ( βα )( αx ) = γ α ii. Εάν β α, να εκφράσετε το x ως συνάρτηση των α, β, γ. B. Να βρείτε ένα σηµείο Μ της έλλειψης c: + =, τέτοιο ώστε να ισχύει o Ε ME = 90. 5 9
8. Επαναληπτικά συνδυαστικά θέµατα Θέµα ο A. Σε τρίγωνο ΑΒΓ οι κορυφές είναι Α0, ( ), ( ) Γ3+ 3,3+ 3. Να υπολογιστούν οι γωνίες του τριγώνου. B. Μεταβλητά σηµεία Α και Β ολισθαίνουν πάνω στους άξονες x x και y y αντίστοιχα έτσι ώστε ( OA) ( OB) από σταθερό σηµείο. Β, και ( ) + = λ, µε λ σταθερό και λ R *. Nα δείξετε ότι η ευθεία ΑΒ διέρχεται Θέµα 5 ο Α. Αν σε τρίγωνο ΑΒΓ και ισχύει ( + κ) ΑΒ+ ΑΓ+ ( κ λ) ΒΓ= 0, υπολογίστε τους πραγµατικούς κ, λ. Β. Βρείτε την υπερβολή µε εστίες στον y y,όταν διέρχεται από το σηµείο Μ(, ) και έχει ασύµπτωτες τις ευθείες y = x και y = x. Α. Αν ρ =, q = Β. ίνεται η ευθεία παραβολή C :y κύκλου C :( x+ ) + y =. Θέµα 6 ο o και η γωνία ( ρ,q) = 5, να βρείτε τη γωνία ρ q,q. ε:k x ky + 30 = 0. Να αποδειχθεί ότι για κάθε ( ) * k R εφάπτεται στην = 30x, κατόπιν να βρεθούν οι κοινές εφαπτοµένες της C και του Θέµα 7 ο Ενός τετραγώνου ΑΒΓ µια πλευρά βρίσκεται στην ευθεία ε:x y+ = 0, το κέντρο του Κ είναι το σηµείο (, ) και µια κορυφή του είναι η Λ(,8 ). Να βρεθούν οι άλλες κορυφές του. Θέµα 8 ο π Α. Αν α =, β = 3, γ = και ( α,β) = ( β, γ) =, να βρεθεί το µέτρο του α + 3β+ γ. Β. Να βρεθεί η εξίσωση της υπερβολής που εφάπτεται στην ευθεία c:x y + = 0 και έχει τις ίδιες εστίες µε την έλλειψη + =. 5 6 Θέµα 9 ο Α. Αν α = β = γ = και α+ β+ γ = 0, να βρεθεί το µέτρο του α + 3β+ γ. Β. Να αποδειχθεί ότι ο λόγος των αποστάσεων τυχαίου σηµείου Μ της έλλειψης α C: = από την εστία Ε και την ευθεία δ:x= είναι ίσος µε γ α β γ α.
Επαναληπτικά συνδυαστικά θέµατα 9. A. Έστω α = Θέµα 0 ο ο, β = 3 και ( α,β) = 60. Προσδιορίστε το x R στις παρακάτω περιπτώσεις. α+ 3β α xβ = α+ 3β α xβ i. Αν ( )( ) B. ίνεται η εξίσωση ( ) λ( ) 3x 5y 0 και ii. Αν ( ) ( ) κ + + + + =, κ,λ R. α. Να δειχθεί, ότι παριστάνει ευθεία για κάθε κ,λ R. β. Να δειχθεί ότι όλες οι ευθείες της παραπάνω µορφής διέρχονται από σταθερό σηµείο. Θέµα ο A. Για τα διανύσµατα α, β, γ του επιπέδου ισχύουν α+ β+ γ = 0 και 3 α = β = γ, να αποδειχθεί ότι: i. α β και ii. β γ. B. Οι κορυφές Α, Γ τετραγώνου ΟΑΒΓ βρίσκονται αντίστοιχα στους άξονας x x και y y συστήµατος συντεταγµένων xoy και η διαγώνιος ΑΓ περνά από το σηµείο Ρ (,). Υπολογίστε τις συντεταγµένες των κορυφών του τετραγώνου. A. Έστω x,x,y, y B. ίνεται η εξίσωση Θέµα ο R µε x 5y+ = 0 και x 5y 5 = 0, να αποδειχθεί ότι: ( x x ) + ( y y ) x y λ y-λx-3λ = 0, λ R α. είξτε ότι η παραπάνω εξίσωση παριστάνει δύο ευθείες ( ) και ( ) τους για κάθε λ R. ε κάθετες µεταξύ ε β. Αν Β και Γ σηµεία των ευθειών ε και ε αντίστοιχα µε τετµηµένη λ +,δείξτε ότι το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α και έχει σταθερό εµβαδόν, για κάθε γ. Για κάθε λ R δείξτε ότι το Α κινείται σε σταθερή ευθεία. Θέµα 3 ο ίνεται η εξίσωση C : + =. λ + λ + 5 α. Για ποιές τιµές των λ R η παραπάνω εξίσωση παριστάνει υπερβολή; β. Για τις παραπάνω τιµές των λ να βρεθούν οι εστίες της. λ R. Θέµα ο Α. Αν για τα διανύσµατα α, β, γ ισχύει α β γ =, να αποδείξετε ότι α + β + γ 3. Β. Να βρείτε τον γεωµετρικό τόπο των σηµείων Μ του επιπέδου των οποίων ο λόγος των αποστάσεων από τις ευθείες ε :x λy = 0 και ε :x+ y = 0 είναι ίσος µε. 3
0. Επαναληπτικά συνδυαστικά θέµατα Θέµα 5 ο Α.Στο σύστηµα αναφοράς Οxy θεωρούµε τα σηµεία A ( 3,), B (,0) και Γ ( 0,). Η ΑΓ τέ- µνει τον Ox στο και η ΑΒ τον Oy στο Ε. α. Να βρείτε την τετµηµένη του και την τεταγµένη του Ε. β. Αν Ι το µέσο του ΟΑ, Μ το µέσο του ΒΓ και Κ το µέσο του Ε, να δείξετε ότι τα σηµεία Ι, Μ, Κ είναι συνευθειακά. Β. Μια µεταβλητή ευθεία y = λx + β τέµνει την παραβολή C:y = x στα σηµεία Α, Β. λβ Να δειχθεί ότι οι συνεταγµένες του µέσου Μ της ΑΒ είναι,. Κατόπιν να λ λ βρεθεί ο γεωµετρικός τόπος του Μ στις παρακάτω περιπτώσεις : i. όταν είναι λ = και β R και ii. όταν β = 0 και Α. Έστω τα σηµεία ( 3, ) Θέµα 6 ο * λ R. 7 8 3 3 Α, Β,, Γ 0,,, 5 5 i. Να δείξετε ότι ΑΒ // Γ ii. Να βρεθούν οι συντεταγµένες του σηµείου Ε, ώστε το ΟΒΑΕ να είναι παραλληλόγραµµο. 3 iii. Να δείξετε ότι το σηµείο Ζ, βρίσκεται πάνω στην ευθεία Γ. 5 5 Β. Βρείτε τις εξισώσεις των πλευρών τριγώνου ΑΒΓ, όταν A(, ) και ένα ύψος του και µια 3 διάµεσός του έχουν εξισώσεις y = x και y= x+ αντίστοιχα. Θέµα 7 ο Α. Αν ν = i + 3 j, ν = i 5 j, ν 3 = 5 i j να βρεθούν : i. Oι συνεταγµένες, τα µέτρα και οι συντελεστές διεύθυνσης των διανυσµάτων: ii. Tο µέτρο = v+ 3v w, w + w 3 w. = v 3v3 w, 3 = v3 + 3v w. Β. Ορθογώνιο τρίγωνο ΟΑΒ ( o  = 90 ) είναι εγγεγραµµένο στην παραβολή C:y = px, p > 0. Αν η κορυφή Α έχει συντεταγµένες (, p ) να βρεθεί η εξίσωση της πλευράς ΑΒ. Θέµα 8 ο Α. Έστω παρ/µο ΑΒΓ. Στις απέναντι πλευρές του Α και ΒΓ παίρνουµε τα σηµεία Ε και Ζ αντίστοιχα τέτοια ώστε : ΑΕ = Α και = ΒΓ 3 3 βρεθούν οι συντεταγµένες του ΑΡ, όταν ΕΡ = ΡΖ. ΑΒ = ΒΖ. Αν Α = ( 3,0) και (,), να
Επαναληπτικά συνδυαστικά θέµατα. Β. ίνονται οι ευθείες: ( ε ): x + y 3 = 0, ( ε ): 3x y = 0 και ( ε 3 ): ( µ ) x + ( µ ) y + µ = 0 α. Να βρεθεί το µ R, ώστε οι τρείς ευθείες να διέρχονται από το ίδιο σηµείο. β. Από όλες τις ευθείες του επιπέδου, που διέρχονται από το παραπάνω σηµείο, να βρεθούν εκείνες που σχηµατίζουν µε τους άξονες ισοσκελές τρίγωνο. Θέµα 9 ο Α. Το διάνυσµα α έχει το ίδιο µήκος µε το διάνυσµα β = ( 8, 6) γ = (, 3). Να υπολογισθούν οι συντεταγµένες του. και την διεύθυνση του Β. Να αποδείξετε ότι η εξίσωση x + y + xy 3x 3y + = 0 παριστάνει δύο παράλληλες ευθείες και στη συνέχεια να βρείτε το εµβαδόν του τραπεζίου που σχηµατίζουν οι ευθείες αυτές µε τους άξονες. Α. Έστω σηµεία Α και Β της ευθείας Θέµα 0 ο 7 x y = µε x A = και x B =. Να βρεθεί ση- 3 3 µείο Μ τέτοιο ώστε MA+ 3MB = AB. Β. Ορθογώνιο ΟΑΒΓ έχει σταθερή περίµετρο κ και τις κορυφές του Α, Γ στους θετικούς ηµιάξονες Οx, Οy αντίστοιχα. είξτε ότι η κάθετος από το Β στη διαγώνιο ΑΓ περνά από σταθερό σηµείο. Θέµα ο Α. Να αποδείξετε ότι το σηµείο M( x,y ) µε x = 3+ συνθ και y= + συνθ, θ R βρίσκεται για κάθε θ R πάνω σε ευθειά. Β. Να βρεθεί ο γεωµετρικός τόπος των σηµείων M( x 0,y 0) των οποίων η απόσταση από τον y y ισούται µε το µήκος της εφαπτόµενης ΜΑ στον κύκλο C: ( x ) + y =. Θέµα ο Α. ίδονται τα σηµεία Α (,3) και Β(, ). Βρείτε τον γεωµετρικό τόπο των σηµείων για τα οποία ισχύει ΜΑ ΜΒ = 5. Β. α. Η προβολή της αρχής των αξόνων στην ευθεία (ε), είναι το σηµείο (,3 ). Να βρείτε την εξίσωση της ευθείας ε. β. ίνεται η ευθεία (ε) y= x+ και το σηµείο A3,. ( ) Να βρείτε τις συντεταγµένες του συµµετρικού του Α ως προς την ευθεία (ε). 5
. Επαναληπτικά συνδυαστικά θέµατα Θέµα 3 ο Α. Ένα τρίγωνο ΑΒΓ έχει κορυφή A, ( ) και οι εξισώσεις των δύο διαµέσων του είναι y = και y = x+. Να βρείτε τις εξισώσεις των πλευρών του. 3 3 Β. Αν ο κύκλος ( ) ( ) c : x + 8 + y 6 = ρ εφάπτεται στον κύκλο c που έχει κέντρο Ο( 0,0) και ακτίνα ρ, να βρείτε : α. Την ακτίνα ρ. β. Τα σηµεία της ευθείας y = x -5 απο τα οποία οι εφαπτόµενες προς τον κύκλο c είναι κάθετες., 7, 5,5 ) (Απ.: α. ρ = 5, β. ( )( ) Θέµα ο Α. Οι ευθείες πάνω στις οποίες βρίσκονται οι πλευρές ενός ισόπλευρου τριγώνου ΑΒΓ έχουν συντελεστές διεύθυνσης λ,λ,λ 3. Να αποδείξετε ότι λλ + λλ 3 + λλ 3 = 3. Β. Θεωρούµε την έλλειψη c: + = και έστω Μ ένα τυχαίο σηµείο της. Να δειχτεί 9 ότι ο γεωµετρικός τόπος ορθόκεντρων των τριγώνων AMA ( A,A είναι σηµεία τοµής της έλλειψης µε τον άξονα x x) είναι επίσης έλλειψη. Θέµα 5 ο Α. Αν Β,6 ( ) και οι εξισώσεις του ύψους και της διχοτόµου της γωνίας που φέρνουµε από 5 την ίδια κορυφή είναι αντίστοιχα y = x+ και y = 7x 5. Να βρείτε τις εξισώσεις 7 7 των πλευρών του τριγώνου. Β. Να βρεθεί η εξίσωση της παραβολής: y = px ( p > 0) που εφάπτεται στην ευθεία ε:3x y+ 3= 0. Θέµα 6 ο Α. Έστω M( α,β ) µε α, β 0. Να βρείτε την εξίσωση της ευθείας που διέρχεται από το Μ και τέµνει τους άξονες σε σηµεία τα οποία ορίζουν ευθύγραµµο τµήµα που έχει µέσο το Μ. Β. ίνονται τα σηµεία K( 7,0 ) και Λ( 7,0). Να βρεθούν τα σηµεία Μ( x,y ) που απέχουν από την αρχή των αξόνων απόσταση και για τα οποία ισχύει 5 ( MK) + ( MΛ) = 8. Κατόπιν να βρεθεί το είδος του τετραπλεύρου που αυτά ορίζουν. 6