ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Σχετικά έγγραφα
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α. Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα. Αν η f είναι συνεχής στο και για κάθε εσωτερικό σημείο x του ισχύει f (x)

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

Φροντιστήρια ΠΡΟΟΠΤΙΚΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

A ένα σημείο της C. Τι

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

f ( x) 0 για κάθε εσωτερικό σημείο x του Δ,

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

στο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4

f(x ) 0 O) = 0, τότε το x

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

ΘΕΜΑ Α. A2. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Μονάδες 2. Α3. Να διατυπώσετε το θεώρημα Rolle. Μονάδες 6

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α2. Να διατυπώσετε το θεώρημα του Βolzano. Μονάδες 5

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Μονάδες 9 B. Έστω μια συνάρτηση f και x o ένα σημείο του πεδίου ορισμού της. Πότε θα λέμε ότι η f είναι συνεχής στο x o ; Μονάδες 6

f(x ) 0 O) = 0, τότε το x

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΕΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ. MyΤeachers.gr ΘΕΜΑΤΑ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ

x του Δ». ΘΕΜΑ Α Α1. Έστω μία συνάρτηση f και x Αν η πρόταση είναι αληθής να το αποδείξετε, ενώ αν είναι ψευδής να δώσετε κατάλληλο αντιπαράδειγμα.

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5

ΘΕΜΑ 1ο Α. α) Να αποδείξετε ότι, αν z 1 =α+βi και. είναι δύο μιγαδικοί αριθμοί, τότε

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. x ισχύει: 1 ln x = x

γ) Αν μια συνάρτηση f είναι γνησίως μονότονη σε ένα διάστημα τότε είναι και 1-1 στο διάστημα αυτό.

α,β,γ και α 0 στο σύνολο των μιγαδικών

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

G(x) = G(x) = ΘΕΜΑ 1o

= 1-3 i, να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα σε κάθε αριθμό το γράμμα της Στήλης Β έτσι, ώστε να προκύπτει ισότητα.

A. Να αποδείξετε ότι, αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο x 0, τότε είναι και συνεχής στο σημείο αυτό. Μονάδες 8

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3

ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή. Γενικού Λυκείου. Ημερησίου-Εσπερινού-Ομογενών

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4)

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ


ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Παράρτημα Χίου ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΔΙΕΥΘΥΝΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f; Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει

β) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

Transcript:

ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 7 ΜΑΪΟΥ - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ () A. Έστω f μια συνεχής συνάρτηση σε ένα διάστημα [ α, β ]. Αν G είναι μια παράγουσα της f στο [ α, β ], τότε να αποδείξετε ότι: β () = ( ) ( ) α f t G β G α Μονάδες 7 A. Να διατυπώσετε το Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού (Θ.Μ.Τ.) Μονάδες A. Πότε λέμε ότι μια συνάρτηση f είναι παραγωγίσιμη σε ένα κλειστό διάστημα [ ] α, β του πεδίου ορισμού της; Μονάδες A. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Η εξίσωση z z = ρ, ρ> παριστάνει τον κύκλο με κέντρο το σημείο K( z ) και ακτίνα β) Αν lim f ( ) <, τότε ( ) ρ, όπου z, z μιγαδικοί αριθμοί. f < κοντά στο γ) Ισχύει ότι: ημ για κάθε δ) Ισχύει ότι: συν lim = ε) Μια συνεχής συνάρτηση f διατηρεί πρόσημο σε καθένα από τα διαστήματα στα οποία οι διαδοχικές ρίζες της f χωρίζουν το πεδίο ορισμού της. Μονάδες ΤΕΛΟΣ ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Β Θεωρούμε τους μιγαδικούς αριθμούς z για τους οποίους ισχύει: ( z )( z ) + z = B. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών z, K, και ακτίνα ρ = (μονάδες 5) είναι κύκλος με κέντρο ( ) Στη συνέχεια, για κάθε μιγαδικό z που ανήκει στον παραπάνω γεωμετρικό τόπο, να αποδείξετε ότι z (μονάδες ) Μονάδες 8 B. Αν οι μιγαδικοί αριθμοί z, z που ανήκουν στον παραπάνω γεωμετρικό τόπο είναι ρίζες της εξίσωσης w + βw + γ =, με w μιγαδικό αριθμό, β,γ, και τότε να αποδείξετε ότι: ( ) ( ) Im z Im z = β = και γ = 5 Μονάδες 9 B. Θεωρούμε τους μιγαδικούς αριθμούς α, α, α οι οποίοι ανήκουν στον γεωμετρικό τόπο του ερωτήματος Β. Αν ο μιγαδικός αριθμός v ικανοποιεί τη σχέση: ΘΕΜΑ Γ τότε να αποδείξετε ότι: v + α v + α v + α = v < Θεωρούμε τις συναρτήσεις f,g: ώστε: ( ) ( ( ) ) ( ) f( ) = και f + f + =, για κάθε g = + ( ) Μονάδες 8, με f παραγωγίσιμη τέτοιες ΤΕΛΟΣ ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ Γ. Να αποδείξετε ότι: f( ) = +, Γ. Να βρείτε το πλήθος των πραγματικών ριζών της εξίσωσης ( ( )) f g = Μονάδες 9 Μονάδες 8 π Γ. Να αποδείξετε ότι υπάρχει τουλάχιστον ένα, τέτοιο, ώστε: π f() t = f εφ π Μονάδες 8 ΘΕΜΑ Δ Έστω f: (, + ) μια παραγωγίσιμη συνάρτηση για την οποία ισχύουν: Η f είναι γνησίως αύξουσα στο (, + ) f() = ( ) ( ) f + 5 f lim = Θεωρούμε επίσης τη συνάρτηση f() t g( ) = t α Να αποδείξετε ότι:, (, ) + και α > Δ. f () = (μονάδες ), καθώς επίσης ότι η f παρουσιάζει ελάχιστο στο = (μονάδες ). Μονάδες 6 Δ. η g είναι γνησίως αύξουσα (μονάδες ), και στη συνέχεια, να λύσετε την ανίσωση στο 8+ 6 + 6 g(u)du > 8+ 5 + 5 g(u)du (μονάδες 6) Μονάδες 9 ΤΕΛΟΣ ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ Δ. η g είναι κυρτή, καθώς επίσης ότι η εξίσωση f() t α = ( f( α) ) ( α ), > t α ( ) έχει ακριβώς μια λύση. Μονάδες ΟΔΗΓΙΕΣ (για τους εξεταζομένους). Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μην γράψετε πουθενά στις απαντήσεις σας το όνομά σας.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Μολύβι επιτρέπεται, και μόνο για πίνακες, διαγράμματα κλπ.. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. Διάρκεια εξέτασης: τρεις () ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης:. π.μ. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

ΠΑΝΕΛΛΗΝΙΕ ΜΑΘΗΜΑΣΙΚΑ ΚΑΣΕΤΘΤΝΗ ΕΝΔΕΙΚΣΙΚΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑ Α Α. Απόδειξθ ςχ. βιβλίου ςελ. 5 Α. Θεώρθμα ςελ. 6 f ( ) f ( ) Α. Οριςμόσ ςελ. «Η f είναι παραγωγίςιμθ και lim R Α. α. Λ: θ ακτίνα είναι το ρ β. γ. ε. ΘΕΜΑ Β δ. Λ: είναι lim ( z )( z ) z Β. (z-)( z ) + z ( z )( z ) z z z z z Θετω z Δ=- (-)=9,,.

Οπότε z Ο γεωμετρικόσ τόποσ του z είναι κφκλοσ με κζντρο Κ(,) και ρ= y Ο μιγαδικόσ z του οποίου το z γίνεται μζγιςτο είναι ο z= οπότε z Β. z, z ρίηεσ τθσ w +βw+γ= (Ι) Im( z ) Im( z ) Οι z και z ρίηεσ τθσ (Ι) οπότε z = z άρα αν z = κ+λi τότε z =κ-λi Οπότε ( ) Άρα λ= ι λ=- Ιςχφει ότι z άρα i ( ) ( ) ( ) Άρα κ= Οι z και z είναι: z =+i και z =-i Ιςχφει από Vieta: z z άρα z z ά 5 B. Ζχω v a v a v a a v a v a v v v Άρα v v v v v v ( v ) ( v v ) (χιμα Horner)

Ιςχφει ότι: v v Επειδι Δ< Άρα v ΘΕΜΑ Γ Γ. ( f ( ) )( f ( ) ) ( f ( ) ) οπότε ( f ( ) ) C C R f()= οπότε για = ιςχφει: ( f ()) C C ( f ( ) ) Άρα ά ( f ( ) ) Και +> για κάκε f()=- R οπότε f ( ) ή f ( ) ΑΠΟΡ. Γιατί Άρα f ( ) και R Γ. f (g()) οπότε f (g()) f () g() f R Οπότε g '() ( ) - g () + - + g()

(, ] g lim g() lim ( ) g( ) g( ) (, ] [, ] οπότε g( ) [, ] g( ) g() [, ) ά g( ) [, ) g() lim g() lim ( ) Ιςχφει ότι g( ) οπότε υπάρχει ώςτε g( ) Επειδι g είναι γνθςίωσ αφξουςα ςτο θ g() ζχει μία ακριβώσ ρίηα. Γ. Θεωρώ ( ) f ( t) f ( ) Για τθ φ Θεώρθμα Bolzano ςτο *, ] Φ ςυνεχισ ςτο *, ] ωσ αλγεβρικό άκροιςμα ςυνεχών ςυναρτιςεων Φ()= f ( t) f ( ) f ( t) Γιατί: f γνησίως φθίνουσα ςτο R

t f ( ) f ( t) f () f ( ) f ( t) f ( ) με f ( ) f () 6 Οπότε f ( t) ά f ( t) ό f ( t) 6 ( ) f ( t) f () Άρα υπάρχει ζνα τουλάχιςτον (, ) τζτοιο ώςτε Φ( )= ΘΕΜΑ Δ Δ. f ( 5) f ( ) Ζχω lim f ( 5) f () lim f () f ( ) lim[ f ( 5) f () f ( ) f ( lim[5 5) 5 f () f ( ) f f () ] () ] Άρα 5. f () f () 6 f () f () f ( 5) f ) f ( ) f () με lim lim f () 5 Θζτω u=5 f ( ) f () f ( t) f () Και lim lim f () t t Θζτω t=- f ()= και f γνθςίωσ αφξουςα ςτο (,+ ) Για το πρόςθμο τθσ f κα ιςχφει:

f () - + f() O.E. Δ. g '( ) f ( ),, ύ f ( ) f (), (από Δ θ f ζχει ολικό ελάχιςτο) Άρα g γνθςίωσ αφξουςα. Θεωρώ F ( ) g( u) du, F ί ί g ή Με F '( ) g( ) g( ), ύ g( ) g( ) άρα θ F είναι γνθςίωσ αφξουςα. Ζχω 8 8 6 6 g( u) du g( u) du F(8 5) F( 5) 8 5 5 5 5 8 ( ) (,) (, ) Δ. Ζχω g '( ) f ( ) g ''( ) f ( ) [ ]' f '( )( ) [ f ( ) ( ) ] ( ) ( ) με ( ) f '( )( ) [ f ( ) ], Πρζπει () f '( )( ) f ( ) f '( ) f ( ) f ( ) f () Θ.Μ.Σ για τθν f ςτο *, ], άρα υπάρχει (, ) : f '( ) ()

άρα πρζπει f '( ) f '( ) θ οποία ιςχφει αφοφ f γνθςίωσ αφξουςα και () f ( ) f () f '( ) f '( ) f '( ) ( ), ά g''( ) g ή (, ) ή Θεωρώ H ( ) ( a ) g( ) [ f ( a) ]( a), H ( a) ( a ) g( a) [ f ( a) ]( a a) ( a ) [ f ( a) ] αφοφ g( a) a a f ( t) t άρα ζχει ρίηα το α. H '( ) ( a ) ) [ f ( a) ], αφοφ g γνθςίωσ αφξουςα και g κυρτι a a) ) f ( a) a ) a f ( a) )( a ) Δθλαδι H '( ), ά H( ) ί ύ [, ). Με a ) a) ) f ( a) a H'( ), ά ( ) γνθςίωσ φκίνουςα ςτο (, α+, δθλαδι θ () ζχει min ( a) και ( ) ( a), a Επομζνωσ θ =α είναι μοναδικι ρίηα.