Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Σχετικά έγγραφα
Διακριτά Μαθηματικά. Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί

Γενικευμένες Μεταθέσεις και Συνδυασμοί

Διακριτά Μαθηματικά. Ενότητα 6: Απαρίθμηση: Γενικευμένες μεταθέσεις και συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Ενότητα 5: Απαρίθμηση: Διωνυμικοί συντελεστές

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

P(n, r) = n r. (n r)! n r. n+r 1

(n + r 1)! (n 1)! (n 1)!

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Gutenberg

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Υπολογιστικά & Διακριτά Μαθηματικά

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί

Διακριτά Μαθηματικά. Εξεταστέα ύλη. Ιανουάριος και Σεπτέμβριος 2016

Μεταθέσεις και Συνδυασμοί

Απαρίθμηση: Εισαγωγικά στοιχεία

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

HY118-Διακριτά Μαθηματικά

Προχωρημένη απαρίθμηση

P(n, r) = n r. (n r)! n r. n+r 1

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα

Διακριτά Μαθηματικά. Απαρίθμηση. Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα

Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13

Διακριτά Μαθηματικά. Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!

Διακριτά Μαθηματικά. Ενότητα 4: Απαρίθμηση: Μεταθέσεις και Συνδυασμοί

Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

α n z n = 1 + 2z 2 + 5z 3 n=0

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

#(A B) = (#A)(#B). = 2 6 = 1/3,

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

Γεννήτριες Συναρτήσεις

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά Γ Γυμνασίου

κ.λπ. Ισχύει πως x = 100. Οι διαφορετικές λύσεις αυτής της εξίσωσης χωρίς κανένα περιορισμό είναι

Γεννήτριες Συναρτήσεις

Διακριτά Μαθηματικά. Ενότητα 3: Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

HY118-Διακριτά Μαθηματικά

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων

Συνδυαστική. Που το πάμε. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Πέμπτη, 27/4/2017

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

Διακριτά Μαθηματικά. Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός

Υπολογιστικά & Διακριτά Μαθηματικά

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ

t = (iv) A B (viii) (B Γ) A

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

Συνδυαστική Απαρίθμηση

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μη γράφετε στο πίσω μέρος της σελίδας

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

5. 1 ΣΥΝΟΛΑ. Η έννοια του συνόλου

Συνδυαστική Απαρίθμηση

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

Φροντιστήριο #7 Λυμένες Ασκήσεις στη Συνδυαστική 24/4/2018

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.)

Λύσεις 1ης Ομάδας Ασκήσεων

ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων)

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΚΕΦΑΛΑΙΟ 4 Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση

Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ

Ορισμένες σελίδες του βιβλίου

Εγκλεισμός Αποκλεισμός

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Υπολογιστικά & Διακριτά Μαθηματικά

(ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος αν δεν μου δίνονται όλα τα απαραίτητα στοιχεία.

Συνδυαστική. Σύνθετο Πείραμα. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Τρίτη, 17/04/2018

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 20 Νοεμβρίου 2012

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση Μεταθέσεις

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016

Θεωρία Πιθανοτήτων και Στατιστική

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ. ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 6 διδακτικές ώρες

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με

a n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8

Συνδυαστική Απαρίθμηση

Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

Τι είναι πραγματική συνάρτηση πραγματικής μεταβλητής ;

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ - ΠΑΠΑΔΟΠΟΥΛΟΣ ΜΑΡΙΝΟΣ ΠΕΡΙΕΧΟΜΕΝΑ. Τίτλος Θεματικές Ενότητες Σελίδες. Δυο λόγια προς τους μαθητές.

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

Διακριτά Μαθηματικά Συνδυαστική

Σημειωματάριο μαθήματος 1ης Νοε. 2017

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Transcript:

Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές

Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί εμφανίζονται σα συντελεστές στο ανάπτυγμα δυνάμεων διωνυμικών εκφράσεων όπως η (α+b) n

Διώνυμο Ανάπτυγμα διωνύμου Αλγεβρική παράσταση με 2 όρους λέγεται διώνυμο 1+x x+y s+t Υψώνοντας το διώνυμο σε κάποια ακέραια δύναμη n λαμβάνω πολυώνυμο βαθμού n (1+x) n (x+y) n (s+t) n Κάνοντας τις πράξεις (δηλ., αναπτύσσοντας) λαμβάνω άθροισμα που λέγεται ανάπτυγμα διωνύμου

Ανάπτυγμα διωνύμου (1+x) 2 =(1+x)*(1+x)= 1+x+x+x 2 =1+2x+x 2 =1x 0 +2x 1 +1x 2 Για να σχηματίσω δυνάμεις του x, διαλέγω παρενθέσεις 1x 0 : Με πόσους τρόπους μπορώ να διαλέξω παρενθέσεις για να σχηματίσω το x 0 ; Με 1 τρόπο: διαλέγοντας καμία παρένθεση Διαλέγω 0 από 2 παρενθέσεις με C(2,0) τρόπους 2x 1 : Με πόσους τρόπους μπορώ να διαλέξω παρενθέσεις για να σχηματίσω το x 1 ; Με 2 τρόπους: διαλέγοντας τη μπλε παρένθεση ή την πράσινη παρένθεση Διαλέγω 1 από 2 παρενθέσεις με C(2,1) τρόπους 1x 2 : Με πόσους τρόπους μπορώ να παρενθέσεις για να σχηματίσω το x 2 ; Με 1 τρόπο: διαλέγοντας και τη μπλε παρένθεση και την πράσινη παρένθεση Διαλέγω 2 από 2 παρενθέσεις με C(2,2) τρόπους (C(2,2) = C(2,0))

Ανάπτυγμα διωνύμου (1+x) 3 = (1+x)*(1+x)*(1+x)= (1+2x+x 2 )*(1+x)= 1+x+2x+2x 2 +x 2 +x 3 = 1+3x+3x 2 +x 3 = 1x 0 +3x 1 +3x 2 +1x 3 Για να σχηματίσω δυνάμεις του x, διαλέγω παρενθέσεις 1x 0 : Με πόσους τρόπους μπορώ να διαλέξω παρενθέσεις για να σχηματίσω το x 0 ; Με 1 τρόπο: διαλέγοντας καμία παρένθεση Διαλέγω 0 από 3 παρενθέσεις με C(3,0) τρόπους 3x 1 : Με πόσους τρόπους μπορώ να διαλέξω παρενθέσεις για να σχηματίσω το x 1 ; Με 3 τρόπους: διαλέγοντας τη μπλε παρένθεση ή την πράσινη παρένθεση ή την καφέ παρένθεση Διαλέγω 1 από 3 παρενθέσεις με C(3,1) τρόπους 3x 2 : Με πόσους τρόπους μπορώ να διαλέξω παρενθέσεις για να σχηματίσω το x 2 ; Με 3 τρόπους: διαλέγοντας τη μπλε και την πράσινη παρένθεση ή διαλέγοντας τη μπλε και την καφέ παρένθεση ή διαλέγοντας την πράσινη και την καφέ παρένθεση Διαλέγω 2 από 3 παρενθέσεις με C(3,2) τρόπους (C(3,2) = C(3,1)) 1x 3 : Με πόσους τρόπους μπορώ να διαλέξω παρενθέσεις για να σχηματίσω το x 3 ; Με 1 τρόπο: διαλέγοντας και τη μπλε παρένθεση και την πράσινη παρένθεση και την καφέ παρένθεση Διαλέγω 3 από 3 παρενθέσεις με C(3,3) τρόπους (C(3,3) = C(3,0))

Ανάπτυγμα διωνύμου

Ανάπτυγμα διωνύμου

Διωνυμικοί συντελεστές: παραδείγματα Ποιος είναι ο συντελεστής του x 3 στο ανάπτυγμα του (1+x) 4 ; C(4,3)=4!/3!*1!=4 Ποιος είναι ο συντελεστής του x 4 στο ανάπτυγμα του (1+x) 4 ; C(4,4)=1 Ποιος είναι ο συντελεστής του x 2 στο ανάπτυγμα του (1+x) 4 ; C(4,2)=4!/2!*2!=6 Κάνοντας τις πράξεις: (1+x) 4 =1+4x+6x 2 +4x 3 +x 4

Διωνυμικοί συντελεστές: παραδείγματα Ποιος είναι ο συντελεστής του x 3 στο ανάπτυγμα του (1+x) 6 ; C(6,3)=6!/3!*3!=20 Ποιος είναι ο συντελεστής του x 4 στο ανάπτυγμα του (1+x) 6 ; C(6,4)=6!/4!*2!=15 Ποιος είναι ο συντελεστής του x 2 στο ανάπτυγμα του (1+x) 6 ; C(6,2)=C(6,4)=15 Ποιος είναι ο συντελεστής του x 5 στο ανάπτυγμα του (1+x) 6 ; C(6,5)=C(6,1)=6 Κάνοντας τις πράξεις: (1+x) 6 =1+6x+15x 2 +20x 3 +15x 4 +6x 5 +x 6

Διωνυμικοί συντελεστές: παραδείγματα Ποιος είναι ο συντελεστής του x 2 y στο ανάπτυγμα του (x+y) 3 ; Μπορώ να σχηματίσω το x 2 με όσους τρόπους μπορώ να διαλέξω 2 από τις 3 παρενθέσεις του (x+y) 3 C(3,2)=C(3,1)=3 ΙΣΟΔΥΝΑΜΑ μπορώ να θέσω την ερώτηση για το y Μπορώ να σχηματίσω το y με όσους τρόπους μπορώ να διαλέξω 1 από τις 3 παρενθέσεις του (x+y) 3 C(3,1)=3 Κάνοντας τις πράξεις: (x+y) 6 =x 3 +3x 2 y+3xy 2 +y 3

Διωνυμικοί συντελεστές: παραδείγματα Ποιος είναι ο συντελεστής του x 3 στο ανάπτυγμα του (x+y) 3 ; Μπορώ να σχηματίσω το x 3 με όσους τρόπους μπορώ να διαλέξω 3 από τις 3 παρενθέσεις του (x+y) 3 C(3,3)=1 ΙΣΟΔΥΝΑΜΑ μπορώ να θέσω την ερώτηση για το y Μπορώ να σχηματίσω το y 0 με όσους τρόπους μπορώ να διαλέξω 0 από τις 3 παρενθέσεις του (x+y) 3 C(3,0)=1 Κάνοντας τις πράξεις: (x+y) 6 =x 3 +3x 2 y+3xy 2 +y 3

Διωνυμικοί συντελεστές: παραδείγματα Ποιο είναι το ανάπτυγμα του (x+y) 4 ; Ο συντελεστής του όρου x 0 y 4 είναι C(4,0)=1 Ο συντελεστής του όρου x 1 y 3 είναι C(4,1)=4 Ο συντελεστής του όρου x 2 y 2 είναι C(4,2)=4!/2!*2!=6 Ο συντελεστής του όρου x 3 y 1 είναι C(4,3)=C(4,1)=4 Ο συντελεστής του όρου x 4 y 0 είναι C(4,4)=C(4,0)=1 Άρα: (x+y) 4 = C(4,0)*x 0 y 4 + C(4,1)*x 1 y 3 + C(4,2)*x 2 y 2 + C(4,3)*x 3 y 1 + C(4,4)*x 4 y 0 = 1*x 0 y 4 + 4*x 1 y 3 + 6*x 2 y 2 + 4*x 3 y 1 + 1*x 4 y 0 = y 4 + 4xy 3 + 6x 2 y 2 + 4x 3 y + x 4

Διωνυμικοί συντελεστές: παραδείγματα Ποιος είναι ο συντελεστής του x 12 y 13 στο ανάπτυγμα του (x+y) 25 ; Μπορώ να σχηματίσω το x 12 με όσους τρόπους μπορώ να διαλέξω 12 από τις 25 παρενθέσεις του (x+y) 25 C(25,12)=25!/12!*13!=5.200.300 ΙΣΟΔΥΝΑΜΑ μπορώ να θέσω την ερώτηση για το y Μπορώ να σχηματίσω το y 13 με όσους τρόπους μπορώ να διαλέξω 13 από τις 25 παρενθέσεις του (x+y) 3 C(25,13)=C(25,12)

Διωνυμικοί συντελεστές: παραδείγματα Ποιος είναι ο συντελεστής του x 12 y 13 στο ανάπτυγμα του (2x- 3y) 25 ; Πρέπει να φτιάξω το ανάπτυγμα στη μορφή που γνωρίζω Οπότε το x στον τύπο είναι πλέον το 2x και το y στον τύπο είναι το -3y Για να ασχοληθώ με το συντελεστή του x 12 θέτω στον τύπο k=12 Ο όρος του αθροίσματος είναι: C(25,12)(2x) 12 (-3y) 25-12 = -C(25,12)2 12 3 13 x 12 y 13 Επομένως, ο συντελεστής του όρου x 12 y 13 στο ανάπτυγμα του (2x-3y) 25 είναι: -C(25,12)2 12 3 13

Διωνυμικοί συντελεστές: παραδείγματα Πρέπει να φτιάξω το ανάπτυγμα στη μορφή που γνωρίζω Μπορώ να γράψω το ανάπτυγμα ως: (x 3 +1) 12 *x -12 Ψάχνω το σταθερό όρο του αναπτύγματος δηλ., το συντελεστή του x 0 Για να προκύψει από το ανάπτυγμα (x 3 +1) 12 *x -12 το x 0 πρέπει από τον παράγοντα (x 3 +1) 12 να ασχοληθώ με το x 12 και να προσδιορίσω το συντελεστή του Οπότε το x στον τύπο είναι πλέον το x 3 και το y στον τύπο είναι το 1 Για να ασχοληθώ με το συντελεστή του x 12 θέτω στον τύπο k=4 Ο όρος του αθροίσματος είναι: C(12,4)(x 3 ) 4 1 12-4 = C(12,4) x 12 Επομένως, ο συντελεστής του όρου x 0 =x 12* x -12 στο ανάπτυγμα του (x 2 +1/x) 12 είναι: C(12,4)=12!/4!*8!=12*11*10*9/4*3*2*1=45*11=495

Διωνυμικοί συντελεστές: παραδείγματα

Διωνυμικοί συντελεστές: παραδείγματα

Διωνυμικοί συντελεστές: παραδείγματα

Ιδιότητες διωνυμικών συντελεστών Τρόποι για να διαλέξω k από n αντικείμενα = Τρόποι για να διαλέξω n-k από n αντικείμενα C(n,r): πλήθος τρόπων να επιλέξω τα r άτομα από τα n στα οποία θα δώσω καπέλα Μα αυτό είναι ίδιο με το να επιλέξω σε ποια n-r άτομα από τα n δε θα δώσω καπέλο: C(n,n-r)

Ιδιότητες διωνυμικών συντελεστών Ταυτότητα του Pascal Πλήθος υποσυνόλων μεγέθους k ενός συνόλου Τ με n+1 στοιχεία Πώς σχηματίζονται αυτά τα υποσύνολα; Διαλέγω αυθαίρετο στοιχείο α του T Τα υποσύνολα του Τ με k στοιχεία μπορεί: να περιέχουν το α: οπότε διαλέγω k-1 στοιχεία από n+1-1 διαθέσιμα (αφού ήδη γνωρίζω ότι το α είναι στοιχείο των υποσυνόλων αυτών, διαλέγω τα υπόλοιπα k-1 στοιχεία τους από τα n+1-1 στοιχεία που μένουν εκτός του α) να μην περιέχουν το α: οπότε διαλέγω k στοιχεία από n+1-1 διαθέσιμα (αφού ήδη γνωρίζω ότι το α ΔΕΝ είναι στοιχείο των υποσυνόλων αυτών, διαλέγω και τα k στοιχεία τους από n στοιχεία εκτός του α)

Ιδιότητες διωνυμικών συντελεστών Ταυτότητα του Pascal 6 6 7 + = 4 5 5

Τρίγωνο του Pascal Αναδρομικός τύπος υπολογισμού διωνυμικών συντελεστών n 0 1 2 3 4 5 6 7 8 9 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 8 28 56 70 56 28 1 9 36 84 126 126 84 1 1 8 1 36 9 1 n k = n 1 n 1 + k 1 k 1 αν 0 < k < n διαφορετικά

Τρίγωνο του Pascal: λειτουργία 0 1 2 3 4 6 6 7 + = 4 5 5 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 5 1 5 10 10 5 1 6 7 1 6 15 20 15 6 1 V 1 7 21 35 35 21 7 1 8 1 8 28 56 70 56 28 8 1

Τρίγωνο του Pascal: λειτουργία Στο περίγραμμα μόνο 1 0 1 2 3 Τρόποι να επιλέξω 0,1,2 από αυτά 6 6 7 + = 4 5 5 1 1 1 1 2 1 1 3 3 1 4 5 1 4 6 4 1 1 5 10 10 5 1 6 7 1 6 15 20 15 6 1 V 1 7 21 35 35 21 7 1 8 1 8 28 56 70 56 28 8 1

Ασκήσεις (1) Πόσοι όροι υπάρχουν στο ανάπτυγμα (x+y) 100 ; Οι όροι προκύπτουν περιέχουν το x υψωμένο σε κάθε δυνατή δύναμη από 0 έως και 100 στο ανάπτυγμα υπάρχουν 101 όροι

Ασκήσεις (2) Ποιος είναι ο συντελεστής του x 9 στο ανάπτυγμα (2-x) 19 ; Φτιάχνω το ανάπτυγμα στη μορφή που ξέρω Οπότε όπου x στον τύπο θα έχω x και όπου y θα έχω 2 Για να βρω το συντελεστή του όρου που περιέχει το x 9, θέτω k=9 στον τύπο Ο ζητούμενος συντελεστής είναι: C(19,9)*(-1) 9 *2 10 = - C(19,9)*2 10

Ασκήσεις (3) Ποιος είναι ο συντελεστής του x 101 y 99 στο ανάπτυγμα (3x-2y) 200 ; Φτιάχνω το ανάπτυγμα στη μορφή που ξέρω Οπότε όπου x στον τύπο θα έχω 3x και όπου y θα έχω -2y Για να βρω το συντελεστή του όρου που περιέχει το x 101, θέτω k=101 στον τύπο Ο ζητούμενος συντελεστής είναι: C(200,101)*3 101 *(- 2) 99 = -C(200,101)*3 101 *2 99

Ασκήσεις (4) 1 10 45 120 210 252 210 120 45 10 1 1 11 55 165 330 462 462 330 165 55 11 1

Ασκήσεις (5) C(9,0) C(9,1) C(9,2) C(9,3) C(9,4) C(9,5) (C(9,6) C(9,7) C(9,8) C(9,9) C(9,0) C(9,1) C(9,2) C(9,3) C(9,4) C(9,4) (C(9,3) C(9,2) C(9,1) C(9,0) 1 9 36 84 126 126 84 36 9 1

Ασκήσεις (6)

Ασκήσεις (7) Διαλέγω πρώτα τα k στοιχεία από τα n και μετά ξεχωρίζω ένα από τα k Ξεχωρίζω ένα από τα n στοιχεία και μετά διαλέγω τα υπόλοιπα k-1 από τα υπόλοιπα n-1

Ασκήσεις (8) Κάνω πράξεις και υπολογίζω τις σχέσεις πριν και μετά το =

Ασκήσεις (9)

Διακριτά Μαθηματικά Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί

Διατάξεις και Συνδυασμοί όταν υπάρχουν πολλαπλά αντίγραφα των αντικειμένων

Μέχρι τώρα Μετράγαμε τρόπους να διαλέξουμε (συνδυασμούς) ή να διαλέξουμε και να βάλουμε σε σειρά (διατάξεις) διακριτά (=διαφορετικά) αντικείμενα που μπορούσαν να χρησιμοποιηθούν το πολύ 1 φορά Τι γίνεται όταν υπάρχουν πολλά αντίγραφα των αντικειμένων που διαλέγουμε (συνδυάζουμε) ή διαλέγουμε και βάζουμε στη σειρά (διατάσσουμε); Τι γίνεται όταν καλούμαστε να απαριθμήσουμε συνδυασμούς ή διατάξεις στοιχείων που ΔΕΝ είναι διακριτά; Π.χ., με πόσους τρόπους μπορούν να αναδιαταχθούν τα γράμματα της λέξης SUCCESS;

Μεταθέσεις r από n στοιχείων όταν επιτρέπονται επαναλήψεις Πόσες λέξεις μήκους n μπορούμε να φτιάξουμε με σύμβολα του αγγλικού αλφαβήτου; Για κάθε μία από τις n θέσεις υπάρχουν 26 επιλογές (αφού δεν υπάρχουν περιορισμοί) 26*26* *26=26 n λέξεις Γενικεύοντας: αν έχω διαθέσιμα n αντικείμενα οι διαφορετικές λέξεις μήκους r που μπορώ να φτιάξω (όταν δεν υπάρχουν περιορισμοί όταν επιτρέπονται οι επαναλήψεις) είναι: n*n* *n=n r

Συνδυασμοί r από n στοιχείων όταν επιτρέπονται επαναλήψεις Δίνεται πιατέλα που περιέχει τουλάχιστον 4 μήλα, τουλάχιστον 4 πορτοκάλια και τουλάχιστον 4 αχλάδια Με πόσους τρόπους μπορώ να διαλέξω (δε με νοιάζει η σειρά) 4 φρούτα από την πιατέλα αυτή; Δεν υπάρχει διάκριση μεταξύ φρούτων του ίδιου είδους????

15 τρόποι????

15 τρόποι Τα στοιχεία είναι λίγα και δεν είναι χρονοβόρο να τα «μετρήσω» ψάχνοντας Όταν το πρόβλημα είναι πιο περίπλοκο ;;;????

Συνδυασμοί r από n στοιχείων όταν επιτρέπονται επαναλήψεις Δίνεται συρτάρι ταμείου που περιέχει χαρτονομίσματα 1$, 2$, 5$, 10$, 20$, 50$, 100$ Με πόσους τρόπους μπορώ να διαλέξω (δε με νοιάζει η σειρά) 5 χαρτονομίσματα από το συρτάρι αυτό, όταν: Δεν υπάρχει διάκριση μεταξύ χαρτονομισμάτων του ίδιου είδους Στο συρτάρι υπάρχουν τουλάχιστον 5 χαρτονομίσματα από κάθε είδος 100$ 50$ 20$ 10$ 5$ 2$ 1$

Συνδυασμοί r από n στοιχείων όταν επιτρέπονται επαναλήψεις Να κάποιοι πιθανοί τρόποι να διαλέξω

Συνδυασμοί r από n στοιχείων όταν επιτρέπονται επαναλήψεις Να κάποιοι πιθανοί τρόποι να διαλέξω

Συνδυασμοί r από n στοιχείων όταν επιτρέπονται επαναλήψεις Να κάποιοι πιθανοί τρόποι να διαλέξω Χωρίσματα που ορίζουν διαφορετικές θέσεις στο συρτάρι Ένδειξη για το ότι διάλεξα χαρτονόμισμα από αυτή τη θέση του συρταριού

Συνδυασμοί r από n στοιχείων όταν επιτρέπονται επαναλήψεις 100$ 50$ 20$ 10$ 5$ 2$ 1$ Χρειαζόμαστε 6 χωρίσματα για να ορίσουμε τις διαφορετικές θέσεις του συρταριού Στην αρχή ή στο τέλος ή ανάμεσά τους πρέπει να εμφανίσουμε 5 * * * * * Η ερώτηση γίνεται: με πόσους τρόπους μπορώ να ανακατέψω 11 αντικείμενα (6 χωρίσματα και 5 ενδείξεις *); Ή ισοδύναμα: με πόσους τρόπους μπορώ να διαλέξω τις 5 από τις 11 διαθέσιμες θέσεις που θα «φιλοξενήσουν» τις ενδείξεις *; Με C(11,5) τρόπους!!!

Συνδυασμοί r από n στοιχείων όταν επιτρέπονται επαναλήψεις 100$ 50$ 20$ 10$ 5$ 2$ 1$ Συμπέρασμα: το πλήθος των τρόπων να διαλέξω r από n στοιχεία όταν επιτρέπονται επαναλήψεις είναι C(n+r-1,r)

Παραδείγματα (I) Βρισκόμαστε σε ζαχαροπλαστείο με 4 διαφορετικά είδη γλυκισμάτων Με πόσους τρόπους μπορούμε να διαλέξουμε 6 γλυκίσματα; Δε μας ενδιαφέρει η σειρά επιλογής Δεν υπάρχει διάκριση μεταξύ γλυκισμάτων του ίδιου είδους Ουσιαστικά, θέλω να μετρήσω τους συνδυασμούς με επανάληψη 6 από 4 αντικειμένων Χρειάζομαι 3 «χωρίσματα» (= 4-1) για να ορίσω θέσεις για τα 4 αντικείμενα και διαθέτω 6 ενδείξεις * για τα γλυκίσματα που θα διαλέξω Με πόσους τρόπους μπορώ να διαλέξω τις 6 από τις 6+3=9 θέσεις για να «φιλοξενήσουν» τις ενδείξεις *; C(9,6) Με πόσους τρόπους μπορώ να διαλέξω τις 3 από τις 6+3=9 θέσεις για να «φιλοξενήσουν» τα χωρίσματα; C(9,3) C(9,3)=C(9,6)=9!/(6!*3!)=9*8*7/3*2*1=3*4*7=84

Παραδείγματα (II) Μπορώ να βρίσκω το πλήθος λύσεων κάποιων γραμμικών εξισώσεων χρησιμοποιώντας την ιδέα απαρίθμησης συνδυασμών r από n αντικειμένων με επανάληψη ΠΩΣ; Πόσες λύσεις έχει η εξίσωση x1+x2+x3=11, όπου x1,x2,x3 είναι μη αρνητικοί ακέραιοι; Λύση της εξίσωσης = επιλογή 11 από 3 αντικείμενα όταν επιτρέπονται επαναλήψεις Σαν να θέλω να «μοιράσω» τις 11 μονάδες σε 3 θέσεις Θέλω 2 χωρίσματα για να ορίσω τις 3 θέσεις και διαθέτω 11 ενδείξεις * Με πόσους τρόπους μπορώ να διαλέξω τις 11 από τις 11+2=13 θέσεις για να «φιλοξενήσουν» τις ενδείξεις *; C(13,11) Με πόσους τρόπους μπορώ να διαλέξω τις 2 από τις 11+2=13 θέσεις για να «φιλοξενήσουν» τα χωρίσματα; C(13,2) C(13,11)=C(13,2)=13!/(11!*2!)=13*12/2=13*6=78 τρόπους

Παραδείγματα (III) Μπορώ να βρίσκω το πλήθος λύσεων κάποιων γραμμικών εξισώσεων ακόμα και όταν υπάρχουν περιορισμοί για τις μεταβλητές τους χρησιμοποιώντας την ιδέα απαρίθμησης συνδυασμών r από n αντικειμένων με επανάληψη ΠΩΣ; Πόσες λύσεις έχει η εξίσωση x1+x2+x3=11, όπου x1,x2,x3 είναι μη αρνητικοί ακέραιοι με x1 1, x2 2, x3 3; Σαν να θέλω να «μοιράσω» τις 11 μονάδες σε 3 θέσεις μόνο που τώρα υπάρχουν και οι εξής περιορισμοί: Πρέπει να τοποθετήσω οπωσδήποτε: 1 από τα 11 αντικείμενα στην πρώτη θέση (αφού x1 1) 2 από τα 11 αντικείμενα στη τη δεύτερη θέση (αφού x2 2) 3 από τα 11 αντικείμενα στην τρίτη θέση (αφού x3 3) Οπότε μένουν 11-1-2-3=5 αντικείμενα για να τα «μοιράσω» ΧΩΡΙΣ περιορισμούς στις 3 θέσεις Θέλω 2 χωρίσματα για να ορίσω τις 3 θέσεις και διαθέτω 5 ενδείξεις * Με πόσους τρόπους μπορώ να διαλέξω τις 5 από τις 5+2=7 θέσεις για να «φιλοξενήσουν» τις ενδείξεις *; C(7,5) Με πόσους τρόπους μπορώ να διαλέξω τις 2 από τις 11+2=13 θέσεις για να «φιλοξενήσουν» τα χωρίσματα; C(13,2) C(7,2)=C(7,5)=7!/(5!*2!)=7*6/2=7*3=21 τρόποι

Σύνοψη ΔΙΑΤΑΞΕΙΣ Με πόσους τρόπους μπορώ να διαλέξω και να βάλω σε σειρά (δηλαδή να διατάξω) r από n στοιχεία; Επιτρέπονται επαναλήψεις στοιχείων; Όχι Ναι n*(n-1)*(n-2)* *(n-r+1) n*n* *n=n r ΣΥΝΔΥΑΣΜΟΙ Με πόσους τρόπους μπορώ να διαλέξω r από n στοιχεία; Επιτρέπονται επαναλήψεις στοιχείων; Όχι C(n,r) Ναι C(n+r-1,r)

«Μπάλες σε κουτιά» ( Balls to Bins )

«Μπάλες σε κουτιά» Θα δούμε και πώς μετράμε τους τρόπους τοποθέτησης αντικειμένων σε κουτιά Π.χ., πώς μπορούν να μοιραστούν τα φύλλα μιας τράπουλας στους παίκτες ενός παιχνιδιού Π.χ., πώς μπορούν να χρονοπρογραμματιστούν διαφορετικές εργασίες σε επεξεργαστές (scheduling);

«Μπάλες σε κουτιά» όταν οι μπάλες είναι ίδιες και τα κουτιά ξεχωρίζουν Με πόσους τρόπους μπορώ να διαλέξω r από n αντικείμενα με επανάληψη; C(n+r-1,r) Με πόσους τρόπους μπορώ να τοποθετήσω r μπάλες που δεν ξεχωρίζουν σε n διαφορετικά κουτιά; C(n+r-1,r)

«Μπάλες σε κουτιά» όταν οι μπάλες είναι ίδιες και τα κουτιά ξεχωρίζουν Με πόσους τρόπους μπορώ να διαλέξω r από n αντικείμενα με επανάληψη; C(n+r-1,r) Με πόσους τρόπους μπορώ να τοποθετήσω r μπάλες που δεν ξεχωρίζουν σε n διαφορετικά κουτιά; C(n+r-1,r) Με πόσους τρόπους μπορώ να διαλέξω n-1 από τις n-1+r θέσεις για να «φιλοξενήσουν» τα χωρίσματα; C(n+r-1,n-1) Με πόσους τρόπους μπορώ να διαλέξω r από τις n-1+r θέσεις για να «φιλοξενήσουν» τις ενδείξεις *; C(n+r-1,r) (= C(n+r-1,n-1) ) r ενδείξεις * n-1 χωρίσματα για να ορίσω τα n κουτιά

Παράδειγμα Με πόσους τρόπους μπορώ να τοποθετήσω 10 όμοιες μπάλες σε 8 διαφορετικά κουτιά; Θέλω 7 χωρίσματα για να ορίσω τις 8 θέσεις και διαθέτω 10 ενδείξεις * για τις μπάλες: με πόσους τρόπους μπορώ να διαλέξω τις 10 από τις 10+7=17 θέσεις που θα «φιλοξενήσουν» τις ενδείξεις *; C(17,10) με πόσους τρόπους μπορώ να διαλέξω τις 7 από τις 10+7=17 θέσεις που θα «φιλοξενήσουν» τα χωρίσματα; C(17,7) C(17,7) = C(17,10) = 17!/(10!*7!) = 19.448 τρόποι

Διατάξεις με ομάδες αντικειμένων που δεν ξεχωρίζουν Πόσες διαφορετικές λέξεις προκύπτουν με ανακάτεμα (δηλ., μετάθεση) των γραμμάτων της λέξης SUCCESS; Η λέξη SUCCESS περιέχει 7 γράμματα 7! Λέξεις ΛΑΘΟΣ ΓΙΑΤΙ; Οι 3 εμφανίσεις του S δεν αντιστοιχούν σε διαφορετικά γράμματα αλλά στο ίδιο!! Οι 2 εμφανίσεις του C δεν αντιστοιχούν σε διαφορετικά γράμματα αλλά στο ίδιο!! ΣΩΣΤΗ προσέγγιση: Θέλω να «γεμίσω» 7 θέσεις και διαθέτω 7 κάρτες: 3 ίδιες κάρτες που γράφουν S 2 ίδιες κάρτες που γράφουν C 1 κάρτα που γράφει U 1 κάρτα που γράφει Ε Διαλέγω 3 από τις 7 θέσεις για να «φιλοξενήσουν» τα S με C(7,3) τρόπους Διαλέγω 2 από τις 4 θέσεις που έμειναν για να «φιλοξενήσουν» τα C με C(4,2) τρόπους Διαλέγω 1 από τις 2 θέσεις που έμειναν για να «φιλοξενήσει» το U με C(2,1) τρόπους και η θέση που μένει «φιλοξενεί» (αναγκαστικά) το Ε που μένει οι διαφορετικές λέξεις είναι:

Διατάξεις με ομάδες αντικειμένων που δεν ξεχωρίζουν Πόσες διαφορετικές λέξεις προκύπτουν με ανακάτεμα (δηλ., μετάθεση) των γραμμάτων της λέξης SUCCESS; Η λέξη SUCCESS περιέχει 7 γράμματα 7! Λέξεις ΛΑΘΟΣ ΓΙΑΤΙ; Οι 3 εμφανίσεις του S δεν αντιστοιχούν σε διαφορετικά γράμματα αλλά στο ίδιο!! Οι 2 εμφανίσεις του C δεν αντιστοιχούν σε διαφορετικά γράμματα αλλά στο ίδιο!! ΣΩΣΤΗ προσέγγιση: Θέλω να «γεμίσω» 7 θέσεις και διαθέτω 7 κάρτες: 3 ίδιες κάρτες που γράφουν S 2 ίδιες κάρτες που γράφουν C 1 κάρτα που γράφει U 1 κάρτα που γράφει Ε Διαλέγω 3 από τις 7 θέσεις για να «φιλοξενήσουν» τα S με C(7,3) τρόπους Διαλέγω 2 από τις 4 θέσεις που έμειναν για να «φιλοξενήσουν» τα C με C(4,2) τρόπους Διαλέγω 1 από τις 2 θέσεις που έμειναν για να «φιλοξενήσει» το U με C(2,1) τρόπους και η θέση που μένει «φιλοξενεί» (αναγκαστικά) το Ε που μένει οι διαφορετικές λέξεις είναι:

Διατάξεις με ομάδες αντικειμένων που δεν ξεχωρίζουν Δεδομένο: Συλλογή n αντικειμένων όπου υπάρχουν n1 αντικείμενα που δεν ξεχωρίζουν από το είδος 1 n2 αντικείμενα που δεν ξεχωρίζουν από το είδος 2 nk αντικείμενα που δεν ξεχωρίζουν από το είδος k Ζητούμενο: Με πόσους τρόπους μπορώ να ανακατέψω τα n αντικείμενα αυτής της συλλογής;

«Μπάλες σε κουτιά» όταν και οι μπάλες και τα κουτιά ξεχωρίζουν Είδαμε ότι οι τρόποι να κατανείμουμε r μπάλες που δεν ξεχωρίζουν σε n κουτιά που ξεχωρίζουν είναι C(n+r-1,r) Τι γίνεται αν και οι μπάλες ξεχωρίζουν; Ποιο είναι τότε το πλήθος των τρόπων τοποθέτησής τους στα κουτιά;

«Μπάλες σε κουτιά» όταν και οι μπάλες και τα κουτιά ξεχωρίζουν Με πόσους τρόπους μπορώ να μοιράσω από 5 φύλλα σε 4 παίκτες από μια τράπουλα με 52 φύλλα; Και οι 4 παίκτες και τα 52 φύλλα ξεχωρίζουν Φανταστείτε: Παίκτες & αχρησιμοποίητα φύλλα κουτιά και Φύλλα μπάλες Μοιράζω φύλλα σε παίκτες ρίχνω μπάλες σε κουτιά Ο πρώτος παίκτης μπορεί να πάρει 5 φύλλα με C(52,5) τρόπους Ο δεύτερος παίκτης μπορεί να πάρει 5 φύλλα με C(47,5) τρόπους Ο τρίτος παίκτης μπορεί να πάρει 5 φύλλα με C(42,5) τρόπους» Ο τέταρτος παίκτης μπορεί να πάρει 5 φύλλα με C(37,5) τρόπους και μένουν 32 φύλλα που δε χρησιμοποιήθηκαν Συνολικά, οι ζητούμενοι τρόποι είναι:

«Μπάλες σε κουτιά» όταν και οι μπάλες και τα κουτιά ξεχωρίζουν Με πόσους τρόπους μπορώ να μοιράσω από 5 φύλλα σε 4 παίκτες από μια τράπουλα με 52 φύλλα; Εναλλακτική θεώρηση Φανταστείτε ότι υπάρχει μια συλλογή 52 φύλλων όπου 5 αντικείμενα που δεν ξεχωρίζουν ανήκουν στο είδος «Φύλλα του 1 ου παίκτη» 5 αντικείμενα που δεν ξεχωρίζουν ανήκουν στο είδος «Φύλλα του 2 ου παίκτη» 5 αντικείμενα που δεν ξεχωρίζουν ανήκουν στο είδος «Φύλλα του 3 ου παίκτη» 5 αντικείμενα που δεν ξεχωρίζουν ανήκουν στο είδος «Φύλλα του 4 ου παίκτη» 32 αντικείμενα που δεν ξεχωρίζουν ανήκουν στο είδος «Φύλλα που δε χρησιμοποιήθηκαν» Σας θυμίζει κάτι;;; Δείτε την επόμενη διαφάνεια

Διατάξεις με αντικείμενα που δεν ξεχωρίζουν Δεδομένο: Συλλογή n αντικειμένων όπου υπάρχουν n1 αντικείμενα που δεν ξεχωρίζουν από το είδος 1 n2 αντικείμενα που δεν ξεχωρίζουν από το είδος 2 nk αντικείμενα που δεν ξεχωρίζουν από το είδος k Ζητούμενο: Με πόσους τρόπους μπορώ να ανακατέψω τα n αντικείμενα αυτής της συλλογής;

«Μπάλες σε κουτιά» όταν και οι μπάλες και τα κουτιά ξεχωρίζουν Το πλήθος των τρόπων με τους οποίους μπορώ να κατανείμω n μπάλες που ξεχωρίζουν σε k κουτιά που ξεχωρίζουν έτσι ώστε το κουτί ni να λάβει τελικά i αντικείμενα (i=1,2,,k) είναι: Ανακάτεψε και βάλε σε σειρά όλα τα φύλλα με όλους τους δυνατούς τρόπους έχοντας βάλει ένδειξη σε κάθε χαρτί για το σε ποιον «παίκτη» ανήκει

«Μπάλες σε κουτιά» όταν οι μπάλες ξεχωρίζουν και τα κουτιά δεν ξεχωρίζουν Με πόσους τρόπους μπορούμε να τοποθετήσουμε 4 εργαζόμενους σε 3 ίδια γραφεία αν κάθε γραφείο χωράει οποιοδήποτε πλήθος εργαζομένων;

«Μπάλες σε κουτιά» όταν οι μπάλες ξεχωρίζουν και τα κουτιά δεν ξεχωρίζουν Με πόσους τρόπους μπορούμε να τοποθετήσουμε 4 εργαζόμενους σε 3 ίδια γραφεία αν κάθε γραφείο χωράει οποιοδήποτε πλήθος εργαζομένων; Συμβολίζω με S(n,j) τους τρόπους να τοποθετήσω n αντικείμενα που ξεχωρίζουν σε j κουτιά που δεν ξεχωρίζουν S(4,1): τρόποι να τοποθετήσω 4 εργαζόμενους σε 1 γραφείο ώστε να μη μείνει άδειο (1 τρόπος) S(4,2): τρόποι να τοποθετήσω 4 εργαζόμενους σε 2 γραφεία ώστε κανένα να μη μείνει άδειο (C(4,3)+C(4,2)/2=4+3=7 τρόποι) S(4,3): τρόποι να τοποθετήσω 4 εργαζόμενους σε 3 γραφεία ώστε κανένα να μη μείνει άδειο (C(4,2)=6 τρόποι) Συνολικά: S(4,1)+S(4,2)+S(4,3) =1+7+6=14 τρόποι

«Μπάλες σε κουτιά» όταν οι μπάλες ξεχωρίζουν και τα κουτιά δεν ξεχωρίζουν Με πόσους τρόπους μπορούμε να τοποθετήσουμε 4 εργαζόμενους σε 3 ίδια γραφεία αν κάθε γραφείο χωράει οποιοδήποτε πλήθος εργαζομένων; Συμβολίζω με S(n,j) τους τρόπους να τοποθετήσω n αντικείμενα που ξεχωρίζουν σε j κουτιά που δεν ξεχωρίζουν S(4,1): τρόποι να τοποθετήσω 4 εργαζόμενους σε 1 γραφείο ώστε να μη μείνει άδειο (1 τρόπος) S(4,2): τρόποι να τοποθετήσω 4 εργαζόμενους σε 2 γραφεία ώστε κανένα να μη μείνει άδειο (C(4,3)+C(4,2)/2=4+3=7 τρόποι) S(4,3): τρόποι να τοποθετήσω 4 εργαζόμενους σε 3 γραφεία ώστε κανένα να μη μείνει άδειο (C(4,2)=6 τρόποι) Συνολικά: S(4,1)+S(4,2)+S(4,3) =1+7+6=14 τρόποι Αριθμός Stirling δεύτερης τάξης

«Μπάλες σε κουτιά» όταν οι μπάλες και τα κουτιά δεν ξεχωρίζουν Με πόσους τρόπους μπορούμε να τοποθετήσουμε 6 αντίγραφα του ίδιου βιβλίου σε 4 ίδια πακέτα όταν κάθε πακέτο μπορεί να περιέχει το πολύ 6 βιβλία;

«Μπάλες σε κουτιά» όταν οι μπάλες και τα κουτιά δεν ξεχωρίζουν Με πόσους τρόπους μπορούμε να τοποθετήσουμε 6 αντίγραφα του ίδιου βιβλίου σε 4 ίδια πακέτα όταν κάθε πακέτο μπορεί να περιέχει το πολύ 6 βιβλία; Με πόσους τρόπους μπορώ να «πακετάρω» τα 6 αντίγραφα όταν δε θέλω να έχω άδειο πακέτο και χρησιμοποιώ: 1 από τα 4 διαθέσιμα πακέτα; Με 1 τρόπο όλα τα αντίγραφα στο 1 πακέτο 2 από τα 4 διαθέσιμα πακέτα; Με 3 τρόπους {5,1}, {4,2}, {3,3} 3 από τα 4 διαθέσιμα πακέτα; Με 3 τρόπους {1,1,4}, {1,2,3}, {2,2,2} 4 από τα 4 διαθέσιμα πακέτα; Με 2 τρόπους {1,1,1,3}, {1,1,2,2} Συνολικά: 1+3+3+2=9 τρόποι Υπολόγισα το πλήθος των διαμερίσεων (partitions) του συνόλου των αντιγράφων του βιβλίου στα διαθέσιμα πακέτα Δεν υπάρχει γενικός τύπος για τον υπολογισμό αυτόν

Σύνοψη «Μπάλες σε κουτιά» Τα κουτιά ξεχωρίζουν Οι μπάλες δεν ξεχωρίζουν Οι μπάλες ξεχωρίζουν C(n+r-1,r) Τα κουτιά δεν ξεχωρίζουν Οι μπάλες δεν ξεχωρίζουν Τύπος του Stirling Οι μπάλες ξεχωρίζουν Υπολογισμός διαμερίσεων

Ασκήσεις

Με πόσους τρόπους μπορούν να διαταχθούν 5 αντικείμενα από σύνολο με 3 αντικείμενα όταν επιτρέπονται οι επαναλήψεις; Θέση 1 Θέση 2 Θέση 3 Θέση 4 Θέση 5 3 επιλογές 3 επιλογές 3 επιλογές Συνολικά: 3*3*3*3*3=3 5 τρόποι

Με πόσους τρόπους μπορούν να διαταχθούν 5 αντικείμενα από σύνολο με 5 αντικείμενα όταν επιτρέπονται οι επαναλήψεις; Θέση 1 Θέση 2 Θέση 3 Θέση 4 Θέση 5 5 επιλογές 5 επιλογές 5 επιλογές Συνολικά: 5*5*5*5*5=5 5 τρόποι

Πόσες λέξεις των 6 γραμμάτων υπάρχουν (όταν χρησιμοποιούμε το λατινικό αλφάβητο); Θέση 1 Θέση 2 Θέση 3 Θέση 4 Θέση 5 Θέση 6 26 επιλογές 26 επιλογές 26 επιλογές Συνολικά: 26 6 τρόποι

Κάθε μέρα διαλέγετε για φαγητό ένα σάντουιτς. Υπάρχουν 6 είδη σάντουιτς. Πόσοι διαφορετικοί τρόποι υπάρχουν για να διαλέξετε φαγητό για τις 7 μέρες της εβδομάδας, αν έχει σημασία η σειρά επιλογής των σάντουιτς; Μέρα 1 Μέρα 2 Μέρα 3 Μέρα 4 Μέρα 5 Μέρα 6 Μέρα 6 6 επιλογές 6 επιλογές 6 επιλογές Συνολικά: 6 7 τρόποι

Πόσοι τρόποι υπάρχουν για ανάθεση 3 εργασιών σε 5 εργαζόμενους αν σε κάθε εργαζόμενο μπορούν να δοθούν περισσότερες από 1 εργασίες; Εργασία 1 Εργασία 2 Εργασία 3 5 επιλογές 5 επιλογές 5 επιλογές Συνολικά: 5*5*5=5 3 τρόποι

Με πόσους τρόπους μπορούμε να επιλέξουμε 3 από σύνολο με 5 στοιχεία όταν επιτρέπονται επαναλήψεις; Έχουμε 5 τύπους στοιχείων δηλαδή 5 θέσεις Για να τις ορίσουμε χρειαζόμαστε 4 χωρίσματα * * * Θέλουμε να διαλέξουμε 3 στοιχεία Αντιστοιχίζουμε κάθε στοιχείο σε ένα * οπότε έχουμε και 3 * Έχουμε επομένως 7 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 4 που θα φιλοξενήσουν τα χωρίσματα (C(7,4)) είτε (ισοδύναμα) τις 3 που θα φιλοξενήσουν * (C(7,3)) Οι ζητούμενοι τρόποι είναι: C(7,4)=C(7,3)=35

Με πόσους τρόπους μπορούμε να επιλέξουμε 5 από σύνολο με 3 στοιχεία όταν επιτρέπονται επαναλήψεις; Έχουμε 3 τύπους στοιχείων δηλαδή 3 θέσεις Για να τις ορίσουμε χρειαζόμαστε 2 χωρίσματα * * * Θέλουμε να διαλέξουμε 5 στοιχεία Αντιστοιχίζουμε κάθε στοιχείο σε ένα * οπότε έχουμε και 5 * Έχουμε επομένως 7 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 2 που θα φιλοξενήσουν τα χωρίσματα (C(7,2)) είτε (ισοδύναμα) τις 5 που θα φιλοξενήσουν * (C(7,5)) Οι ζητούμενοι τρόποι είναι: C(7,2)=C(7,5)=21

Πόσοι τρόποι υπάρχουν για επιλογή 12 ντόνατς από τις 21 ποικιλίες ενός καταστήματος; Έχουμε 21 τύπους στοιχείων δηλαδή 21 θέσεις Για να τις ορίσουμε χρειαζόμαστε 20 χωρίσματα * * * Θέλουμε να διαλέξουμε 12 στοιχεία Αντιστοιχίζουμε κάθε στοιχείο σε ένα * οπότε έχουμε και 12 * Έχουμε επομένως 32 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 20 που θα φιλοξενήσουν τα χωρίσματα (C(32,20)) είτε (ισοδύναμα) τις 12 που θα φιλοξενήσουν * (C(32,12)) Οι ζητούμενοι τρόποι είναι: C(32,20)=C(32,12)

Ένα κατάστημα πουλάει σάντουιτς με κρεμμύδι, με σπόρους παπαρούνας, με αυγό, σίκαλης, με σουσάμι, με σταφίδες, αλμυρά σάντουιτς και σκέτα σάντουιτς. Με πόσους τρόπους μπορούμε να διαλέξουμε 6 σάντουιτς; Υπάρχουν 8 είδη σάντουιτς κάθε είδος έχει πολλά «αντίγραφα» Φανταστείτε τα σαν 8 θέσεις για να οριστούν χρειαζόμαστε 7 χωρίσματα Επιθυμούμε να διαλέξουμε 6 αντικείμενα - Φανταστείτε τα σαν * Άρα έχουμε 7+6 = 13 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 7 που θα φιλοξενήσουν τα χωρίσματα (C(13,7)) είτε (ισοδύναμα) τις 6 που θα φιλοξενήσουν τα * (C(13,6)) Συνολικά, οι ζητούμενοι τρόποι είναι C(13,7)=C(13,6)=1.716

Ένα κατάστημα πουλάει σάντουιτς με κρεμμύδι, με σπόρους παπαρούνας, με αυγό, σίκαλης, με σουσάμι, με σταφίδες, αλμυρά σάντουιτς και σκέτα σάντουιτς. Με πόσους τρόπους μπορούμε να διαλέξουμε 12 σάντουιτς; Υπάρχουν 8 είδη σάντουιτς κάθε είδος έχει πολλά «αντίγραφα» Φανταστείτε τα σαν 8 θέσεις για να οριστούν χρειαζόμαστε 7 χωρίσματα Επιθυμούμε να διαλέξουμε 12 αντικείμενα - Φανταστείτε τα σαν * Άρα έχουμε 7+12 = 19 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 7 που θα φιλοξενήσουν τα χωρίσματα (C(19,7)) είτε (ισοδύναμα) τις 12 που θα φιλοξενήσουν τα * (C(19,12)) Συνολικά, οι ζητούμενοι τρόποι είναι C(19,7)=C(19,12)=50.388

Ένα κατάστημα πουλάει σάντουιτς με κρεμμύδι, με σπόρους παπαρούνας, με αυγό, σίκαλης, με σουσάμι, με σταφίδες, αλμυρά σάντουιτς και σκέτα σάντουιτς. Με πόσους τρόπους μπορούμε να διαλέξουμε 24 σάντουιτς; Υπάρχουν 8 είδη σάντουιτς κάθε είδος έχει πολλά «αντίγραφα» Φανταστείτε τα σαν 8 θέσεις για να οριστούν χρειαζόμαστε 7 χωρίσματα Επιθυμούμε να διαλέξουμε 24 αντικείμενα - Φανταστείτε τα σαν * Άρα έχουμε 7+24 = 31 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 7 που θα φιλοξενήσουν τα χωρίσματα (C(31,7)) είτε (ισοδύναμα) τις 24 που θα φιλοξενήσουν τα * (C(31,24)) Συνολικά, οι ζητούμενοι τρόποι είναι C(31,7)=C(31,24)=2.629.575

Ένα κατάστημα πουλάει σάντουιτς με κρεμμύδι, με σπόρους παπαρούνας, με αυγό, σίκαλης, με σουσάμι, με σταφίδες, αλμυρά σάντουιτς και σκέτα σάντουιτς. Με πόσους τρόπους μπορούμε να διαλέξουμε 12 σάντουιτς, στα οποία υπάρχει τουλάχιστον 1 από κάθε είδος; Υπάρχουν 8 είδη σάντουιτς κάθε είδος έχει πολλά «αντίγραφα» Παίρνουμε 1 σάντουιτς από κάθε είδος (λόγω του περιορισμού) Μένουν 12-8=4 σάντουιτς που πρέπει να επιλέξουμε από τα 8 διαθέσιμα είδη Φανταστείτε τα σαν 8 θέσεις για να οριστούν χρειαζόμαστε 7 χωρίσματα Επιθυμούμε να διαλέξουμε (χωρίς περιορισμούς πλέον) 4 αντικείμενα - Φανταστείτε τα σαν * Άρα έχουμε 7+4 = 11 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 7 που θα φιλοξενήσουν τα χωρίσματα (C(11,7)) είτε (ισοδύναμα) τις 4 που θα φιλοξενήσουν τα * (C(11, 4)) Συνολικά, οι ζητούμενοι τρόποι είναι C(11,7)=C(11,4)=330

Ένα κατάστημα πουλάει σάντουιτς με κρεμμύδι, με σπόρους παπαρούνας, με αυγό, σίκαλης, με σουσάμι, με σταφίδες, αλμυρά σάντουιτς και σκέτα σάντουιτς. Με πόσους τρόπους μπορούμε να διαλέξουμε 12 σάντουιτς, από τα οποία τουλάχιστον 3 είναι με αυγό ενώ δεν υπάρχουν περισσότερα από 2 αλμυρά σάντουιτς; Υπάρχουν 8 είδη σάντουιτς κάθε είδος έχει πολλά «αντίγραφα» Παίρνουμε 3 σάντουιτς με αυγό (λόγω του περιορισμού) Μένουν 12-3=9 σάντουιτς που πρέπει να επιλέξουμε από τα 8 διαθέσιμα είδη Διακρίνουμε περιπτώσεις για να ικανοποιήσουμε και τον άλλον περιορισμό: Περίπτωση 1: υπάρχουν 0 αλμυρά σάντουιτς Τότε έχουμε 7 διαθέσιμα είδη δηλ. 7 θέσεις για να οριστούν χρειαζόμαστε 6 χωρίσματα Επιθυμούμε να διαλέξουμε (χωρίς περιορισμούς πλέον) 9 αντικείμενα - Φανταστείτε τα σαν * Άρα έχουμε 6+9 = 15 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 6 που θα φιλοξενήσουν τα χωρίσματα (C(15,6)) είτε (ισοδύναμα) τις 9 που θα φιλοξενήσουν τα * (C(15, 9)) Άρα για την Περίπτωση 1 οι ζητούμενοι τρόποι είναι C(15,6)=C(15,9)=5005

Ένα κατάστημα πουλάει σάντουιτς με κρεμμύδι, με σπόρους παπαρούνας, με αυγό, σίκαλης, με σουσάμι, με σταφίδες, αλμυρά σάντουιτς και σκέτα σάντουιτς. Με πόσους τρόπους μπορούμε να διαλέξουμε 12 σάντουιτς, από τα οποία τουλάχιστον 3 είναι με αυγό ενώ δεν υπάρχουν περισσότερα από 2 αλμυρά σάντουιτς; Υπάρχουν 8 είδη σάντουιτς κάθε είδος έχει πολλά «αντίγραφα» Παίρνουμε 3 σάντουιτς με αυγό (λόγω του περιορισμού) Μένουν 12-3=9 σάντουιτς που πρέπει να επιλέξουμε από τα 8 διαθέσιμα είδη Διακρίνουμε περιπτώσεις για να ικανοποιήσουμε και τον άλλον περιορισμό: Περίπτωση 2: υπάρχει μόνο 1 αλμυρό σάντουιτς Τότε έχουμε 7 διαθέσιμα είδη δηλ. 7 θέσεις για να οριστούν χρειαζόμαστε 6 χωρίσματα Επιθυμούμε να διαλέξουμε (χωρίς περιορισμούς πλέον) 8 αντικείμενα - Φανταστείτε τα σαν * Άρα έχουμε 6+8 = 14 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 6 που θα φιλοξενήσουν τα χωρίσματα (C(14,6)) είτε (ισοδύναμα) τις 8 που θα φιλοξενήσουν τα * (C(14, 8)) Άρα για την Περίπτωση 2 οι ζητούμενοι τρόποι είναι C(14,6)=C(14,8)=3003

Ένα κατάστημα πουλάει σάντουιτς με κρεμμύδι, με σπόρους παπαρούνας, με αυγό, σίκαλης, με σουσάμι, με σταφίδες, αλμυρά σάντουιτς και σκέτα σάντουιτς. Με πόσους τρόπους μπορούμε να διαλέξουμε 12 σάντουιτς, από τα οποία τουλάχιστον 3 είναι με αυγό ενώ δεν υπάρχουν περισσότερα από 2 αλμυρά σάντουιτς; Υπάρχουν 8 είδη σάντουιτς κάθε είδος έχει πολλά «αντίγραφα» Παίρνουμε 3 σάντουιτς με αυγό (λόγω του περιορισμού) Μένουν 12-3=9 σάντουιτς που πρέπει να επιλέξουμε από τα 8 διαθέσιμα είδη Διακρίνουμε περιπτώσεις για να ικανοποιήσουμε και τον άλλον περιορισμό: Περίπτωση 3: υπάρχουν μόνο 2 αλμυρά σάντουιτς Τότε έχουμε 7 διαθέσιμα είδη δηλ. 7 θέσεις για να οριστούν χρειαζόμαστε 6 χωρίσματα Επιθυμούμε να διαλέξουμε (χωρίς περιορισμούς πλέον) 7 αντικείμενα - Φανταστείτε τα σαν * Άρα έχουμε 6+7 = 13 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 6 που θα φιλοξενήσουν τα χωρίσματα (C(13,6)) είτε (ισοδύναμα) τις 7 που θα φιλοξενήσουν τα * (C(13, 7)) Άρα για την Περίπτωση 3 οι ζητούμενοι τρόποι είναι C(13,6)=C(13,7)=1716 Συνολικά οι ζητούμενοι τρόποι είναι: 5005+3003+1716=9724

Πόσοι τρόποι υπάρχουν για επιλογή 8 κερμάτων από κουμπαρά που περιέχει 100 ίδια κέρματα του 1 λεπτού και 80 ίδια κέρματα των 5 λεπτών; Έχουμε 2 είδη κερμάτων δηλ. 2 διαφορετικές θέσεις - για να τις ορίσουμε χρειαζόμαστε 1 χώρισμα Πρέπει να επιλέξουμε 8 κέρματα φανταστείτε τα σαν * Άρα έχουμε 1+8=9 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τη 1 που θα φιλοξενήσει το χώρισμα (C(9,1)) είτε (ισοδύναμα) τις 8 που θα φιλοξενήσουν * (C(9,8)) Συνολικά, οι ζητούμενοι τρόποι είναι C(9,1)= C(9,8)=9

Πόσους διαφορετικούς συνδυασμούς κερμάτων 1, 5, 10, 25, 50 λεπτών μπορεί να έχει ένας κουμπαράς αν περιέχει 20 κέρματα; Έχουμε 5 είδη κερμάτων δηλ. 5 διαφορετικές θέσεις - για να τις ορίσουμε χρειαζόμαστε 4 χωρίσματα Πρέπει να επιλέξουμε 20 κέρματα φανταστείτε τα σαν * Άρα έχουμε 4+20=24 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 4 που θα φιλοξενήσουν τα χωρίσματα (C(24,4)) είτε (ισοδύναμα) τις 20 που θα φιλοξενήσουν * (C(24,20)) Συνολικά, οι ζητούμενοι τρόποι είναι C(24,4)= C(24,20)

Ένας εκδότης έχει 3.000 αντίγραφα ενός βιβλίου. Πόσοι τρόποι υπάρχουν για αποθήκευση αυτών των (ίδιων) βιβλίων σε 3 αποθήκες; Έχουμε 3 διαφορετικές θέσεις - για να τις ορίσουμε χρειαζόμαστε 2 χωρίσματα Έχουμε 3.000 ίδια αντίγραφα φανταστείτε τα σαν * Άρα έχουμε 2+3000=3002 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 2 που θα φιλοξενήσουν τα 2 χωρίσματα (C(3002,2)) είτε (ισοδύναμα) τις 3000 που θα φιλοξενήσουν * (C(3002,3000)) Συνολικά, οι ζητούμενοι τρόποι είναι C(3002,2)= C(3002,3000)=3001*1501=4504501

Πόσες λύσεις της εξίσωσης x1+x2+x3+x4=17 υπάρχουν όπου xi, i=1,,4 είναι μη αρνητικός ακέραιος; Έχουμε 4 θέσεις στις οποίες πρέπει να κατανείμουμε 17 μονάδες Με πόσους τρόπου γίνεται αυτό; Για να ορίσουμε τις 4 θέσεις χρειαζόμαστε 3 χωρίσματα Φανταζόμαστε τις 17 μονάδες σαν 17 * Άρα έχουμε 3+17=20 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 3 που θα φιλοξενήσουν τα χωρίσματα (C(20,3)) είτε (ισοδύναμα) τις 17 που θα φιλοξενήσουν τα * (C(20,17)) Συνολικά, το πλήθος των ζητούμενων λύσεων είναι C(20,3)=C(20,17)=1140

Πόσες λύσεις της εξίσωσης x1+x2+x3+x4+x5=21 υπάρχουν όπου xi, i=1,,5 είναι μη αρνητικός ακέραιος και x1 1; Έχουμε 5 θέσεις στις οποίες πρέπει να κατανείμουμε 21 μονάδες Υπάρχει ο περιορισμός η θέση x1 να περιέχει τουλάχιστον 1 μονάδα της την αναθέτουμε Οπότε, πλέον, έχουμε 5 θέσεις στις οποίες πρέπει να κατανείμουμε 20 μονάδες χωρίς περιορισμούς Με πόσους τρόπου γίνεται αυτό; Για να ορίσουμε τις 5 θέσεις χρειαζόμαστε 4 χωρίσματα Φανταζόμαστε τις 20 μονάδες σαν 20 * Άρα έχουμε 4+20=24 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 4 που θα φιλοξενήσουν τα χωρίσματα (C(24,4)) είτε (ισοδύναμα) τις 20 που θα φιλοξενήσουν τα * (C(24,20)) Συνολικά, το πλήθος των ζητούμενων λύσεων είναι C(24,4)=C(24,20)=10.626

Πόσες λύσεις της εξίσωσης x1+x2+x3+x4+x5=21 υπάρχουν όπου xi, i=1,,5 είναι μη αρνητικός ακέραιος και xi 2 για i=1,,5; Έχουμε 5 θέσεις στις οποίες πρέπει να κατανείμουμε 21 μονάδες Υπάρχει ο περιορισμός κάθε θέση να περιέχει τουλάχιστον 2 μονάδες τις αναθέτουμε Οπότε, πλέον, έχουμε 5 θέσεις στις οποίες πρέπει να κατανείμουμε 11 μονάδες χωρίς περιορισμούς Με πόσους τρόπου γίνεται αυτό; Για να ορίσουμε τις 5 θέσεις χρειαζόμαστε 4 χωρίσματα Φανταζόμαστε τις 11 μονάδες σαν 11 * Άρα έχουμε 4+11=15 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 4 που θα φιλοξενήσουν τα χωρίσματα (C(15,4)) είτε (ισοδύναμα) τις 11 που θα φιλοξενήσουν τα * (C(15,11)) Συνολικά, το πλήθος των ζητούμενων λύσεων είναι C(15,4)=C(15,11)=1.365

Πόσες λέξεις των 10 τριαδικών ψηφίων (0,1 ή 2) υπάρχουν που περιέχουν 2 «0», 3 «1» και 5 «2»; Διαλέγουμε τις 2 από τις 10 θέσεις που θα φιλοξενήσουν «0»: C(10,2) τρόποι Από τις 8 θέσεις που μένουν, διαλέγουμε τις 3 που θα φιλοξενήσουν «1»: C(8,3) τρόποι Οι 5 θέσεις που απομένουν αναγκαστικά θα φιλοξενήσουν τα «2» Άρα συνολικά μπορούμε να σχηματίσουμε C(10,2) * C(8,3) =2.520 λέξεις

Μια μεγάλη οικογένεια έχει 14 παιδιά μεταξύ των οποίων 2 ομάδες τριδύμων, 3 ομάδες διδύμων και 2 ακόμη παιδιά. Πόσοι τρόποι υπάρχουν να κάτσουν τα παιδιά σε σειρά από καθίσματα, αν τα τρίδυμα ή τα δίδυμα δεν ξεχωρίζουν μεταξύ τους; Διαλέγουμε 3 από τα 14 καθίσματα για την πρώτη ομάδα τριδύμων: C(14,3) τρόποι Από τα 11 καθίσματα που μένουν, διαλέγουμε 3 για την άλλη ομάδα τριδύμων: C(11,3) τρόποι Από τα 8 καθίσματα που μένουν, διαλέγουμε 2 για την πρώτη ομάδα διδύμων: C(8,2) τρόποι Από τα 6 καθίσματα που μένουν, διαλέγουμε 2 για τη δεύτερη ομάδα διδύμων: C(6,2) τρόποι Από τα 4 καθίσματα που μένουν, διαλέγουμε 2 για την τρίτη ομάδα διδύμων: C(4,2) τρόποι Από τα 2 καθίσματα που μένουν, διαλέγουμε 1 για το ένα παιδί: C(2,1) τρόποι Το κάθισμα που μένει δίνεται αναγκαστικά στο παιδί που έμεινε Άρα συνολικά, οι ζητούμενοι τρόποι είναι: C(14,3)*C(11,3)*C(8,2)*C(6,2)*C(4,2)*C(2,1)= 14!/(3!*3!*2!*2!*2!*1!*1!)=302.702.400 τρόποι

Με πόσους τρόπους μπορούμε να κατανείμουμε 6 ίδιες μπάλες σε 9 διαφορετικά κουτιά; Τα 9 κουτιά είναι 9 θέσεις που για να τις ορίσουμε χρειαζόμαστε 8 χωρίσματα Φανταζόμαστε τις 6 ίδιες μπάλες σαν * Άρα έχουμε 8+6=14 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 8 που θα φιλοξενήσουν τα χωρίσματα (C(14,8)) είτε (ισοδύναμα) τις 6 που θα φιλοξενήσουν τα * (C(14,6)) Συνολικά, οι ζητούμενοι τρόποι είναι C(14,8)=C(14,6)=3.003