[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W
|
|
- Ευστοργιος Δαμασκηνός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιανουάριος 2012 Τμήμα Μαθηματικών Διδάσκων: Χρήστος Κουρουνιώτης Μ1124 ΘΕΜΕΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Παρατηρήσεις 1. Διαβάστε προσεκτικά τα θέματα πριν αρχίσετε να απαντάτε. Οι απαντήσεις πρέπει να είναι σαφείς, σύντομες και αιτιολογημένες σε επίπεδο ανάλογο με αυτό της διατύπωσης της ερώτησης. 2. Γράψτε σε διαφορετική σελίδα την απάντηση κάθε θέματος. Συνιστάται να γράφετε τις απαντήσεις μόνο στη δεξιά σελίδα, και να χρησιμοποιείτε την αριστερή για πρόχειρους υπολογισμούς (ή το αντίθετο αν είστε αριστερόχειρες). 3. Πρέπει να παραδώσετε όλες τις κόλλες που χρησιμοποιήσατε. 4. Η εξέταση διαρκεί 180 λεπτά. ΑΠΑΓΟΡΕΥΕΤΑΙ Η ΕΞΟΔΟΣ ΑΠΟ ΤΗΝ ΑΙΘΟΥ- ΣΑ, παρά μόνο μετά από άδεια του διδάσκοντος (όχι του επιτηρητή). Απαγορεύεται το κάπνισμα μέσα στην αίθουσα εξέτασης. Τα πρώτα 30 λεπτά απαγορεύεται η αποχώρηση από την εξέταση. 5. Ο μέγιστος βαθμός είναι 80. Κάθε θέμα αντιστοιχεί σε 10 μονάδες, ενώ άλλες 10 μονάδες δίδονται για την πληρότητα των διατυπώσεων και τη σωστή χρήση των συμβολισμών και της μαθηματικής γλώσσας. ΘΕΜΑ 1. αʹ. V και W είναι υποσύνολα του χώρου U, και A c συμβολίζει το συμπλήρωμα U \A. Εάν γνωρίζετε οτι [(W V c ) (W c V c )] c \ W = τί συμπέρασμα μπορείτε να βγάλετε για τη σχέση μεταξύ των V και W ; βʹ. A και B είναι σύνολα. Δείξτε οτι αʹ. P(A B) = P(A) P(B). [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c V ) (W V )] \ W = [(W c W ) V ] \ W = V \ W, άρα V \ W =, από το οποίο συμπεραίνουμε οτι V W.
2 βʹ. Θεωρούμε V P(A B). Αυτό σημαίνει οτι V A B, και άρα V A και V B. Συνεπώς V P(A) και V P(B). Άρα V P(A) P(B). Αντίστροφα, εάν V P(A) P(B), τότε V A και V B, άρα V A B και συνεπώς V P(A B). Συμπεραίνουμε οτι P(A B) = P(A) P(B). ΘΕΜΑ 2. αʹ. Βρείτε ένα παράδειγμα, όπου A, B, C και D είναι διαστήματα στο R, για να δείξετε οτι (A C) (B D) (A B) (C D). βʹ. Δείξτε οτι εάν σ και ρ είναι συμμετρικές σχέσεις στο σύνολο A, τότε η σχέση σ ρ είναι συμμετρική. αʹ. Θεωρούμε τα διαστήματα A = [1, 3], B = [2, 4], C = [1, 3] και D = [2, 4] στο R. (Τότε A C, B D και (A B) (C D) είναι ορθογώνια στο επίπεδο R 2.) Παρατηρούμε οτι το σημείο (4, 1) ανήκει στο (A B) (C D) αλλά δεν ανήκει στο (A C) (B D). Συμπεραίνουμε οτι (A C) (B D) (A B) (C D). βʹ. Μία σχέση τ στο A είναι συμμετρική εάν για κάθε ζεύγος (a, b) τ, ισχύει επίσης (b, a) τ. Θεωρούμε (a, b) σ ρ. Αυτό σημαίνει οτι είτε (a, b) σ είτε (a, b) ρ. Εάν (a, b) σ, αφού η σ είναι συμμετρική, ισχύει (b, a) σ. Εάν (a, b) ρ, αφού η ρ είναι συμμετρική, ισχύει (b, a) ρ. Σε κάθε περίπτωση (a, b) σ ρ. Συμπεραίνουμε οτι η σχέση σ ρ είναι συμμετρική. ΘΕΜΑ 3. Δίδεται το σύνολο A = {a, b, c, d}. αʹ. Ορίστε μία ενεικονική (1 1) συνάρτηση f : A N. βʹ. Ορίστε μία επεικονική (επί) συνάρτηση g : N A. γʹ. Βρείτε ένα αριστερό αντίστροφο της f, και ελέγξτε οτι πράγματι είναι αριστερό αντίστροφο. δʹ. Βρείτε ένα δεξιό αντίστροφο της g, και ελέγξτε οτι πράγματι είναι δεξιό αντίστροφο. αʹ. Μία συνάρτηση f : A N ορίζεται όταν γνωρίζουμε την τιμή της f για κάθε στοιχείο του πεδίου ορισμού A. Για να είναι η συνάρτηση ενεικονική, πρέπει οι τιμές της f για διαφορετικά στοιχεία του A να μην είναι ίσες. Μπορούμε λοιπόν να θέσουμε f(a) = 1, f(b) = 2, f(c) = 3 και f(d) = 4. (Εναλλακτικά μπορούμε να ορίσουμε τη συνάρτηση ως ένα υποσύνολο του A N, f = {(a, 1), (b, 2), (c, 3), (d, 4)}.)
3 βʹ. Για να ορίσουμε τη συνάρτηση g : N A, πρέπει να ορίσουμε την τιμή της g για κάθε n N. Για να είναι επεικονική, πρέπει κάθε στοιχείο του A να είναι τιμή της g για κάποιο n N. Μπορούμε λοιπόν να ορίσουμε g(1) = a, g(2) = b, g(3) = c και g(n) = d για κάθε n 4. γʹ. Για να είναι μία συνάρτηση h : N A αριστερό αντίστροφο της f, πρέπει να ισχύει h f(x) = x για κάθε x A. Παρατηρούμε οτι αυτή η συνθήκη ικανοποιείται για τη συνάρτηση g. Πράγματι, g f(a) = g(f(a)) = g(1) = a, και παρόμοια, g f(x) = x για κάθε x A. Συμπεραίνουμε οτι g είναι αριστερό αντίστροφο της f. δʹ. Για να είναι μία συνάρτηση h : A N δεξιό αντίστροφο της g, πρέπει να ισχύει g h(x) = x για κάθε x A. Παρατηρούμε οτι αυτή η συνθήκη ικανοποιείται για τη συνάρτηση f αφού g f(x) = x για κάθε x A. Συμπεραίνουμε οτι f είναι αριστερό αντίστροφο της g. ΘΕΜΑ 4. Γράψτε την άρνηση κάθε μίας από τις ακόλουθες προτάσεις, και περάστε το σύμβολο μέσα από τις παρενθέσεις. αʹ. x : (P (x) Q(x)) βʹ. x : (P (x) Q(x)) γʹ. x R y R : (x y) δʹ. x R y R z Q : (x + y z) αʹ. Εχουμε [ x : (P (x) Q(x))] x : [P (x) Q(x)]. Η άρνηση της πρότασης P Q είναι ισοδύναμη με την πρόταση P Q. Άρα [ x : (P (x) Q(x))] x : ( P (x) Q(x)). βʹ. Η πρόταση P Q είναι ισοδύναμη με την πρόταση P Q. Συνεπώς η άρνηση της πρότασης P Q είναι ισοδύναμη με την πρόταση [ P Q], δηλαδή με την πρόταση P Q. Άρα [ x : (P (x) Q(x))] x : (P (x) Q(x)). γʹ. [ x R y R : (x y)] x R y R : (x < y). δʹ. [ x R y R z Q : (x + y z)] x R y R z Q : (x + y < z) ΘΕΜΑ 5. αʹ. Δείξτε οτι κάθε φυσικός αριθμός μεγαλύτερος από το 11, γράφεται στη μορφή n = 4m + 5l, όπου m και l είναι μη αρνητικοί ακέραιοι αριθμοί. βʹ. Δείξτε οτι το πηλίκο της διαίρεσης του m + m με το n είναι μεγαλύτερο από, ή ίσο με το άθροισμα των πηλίκων του m και του m με το n. Πιο συγκεκριμένα, δείξτε οτι εάν m, m, n N και q, q, q, r, r, r N 0 είναι αριθμοί τέτοιοι ώστε m = qn + r, m = q n + r, (m + m ) = q n + r και r < n, r < n, r < n, τότε q + q q q + q + 1.
4 αʹ. Εστω n > 11 και n = 4m + 5l, για m, l N 0. Τότε n + 1 = 4m + 5l + 1. Εάν m > 0, τότε n + 1 = 4(m 1) + 5(l + 1). Εάν m = 0, και αφού n > 11, έχουμε l 3. Τότε n + 1 = (l 3). Αφού 12 = 4 3, επαγωγικά ισχύει το ζητούμενο για κάθε φυσικό αριθμό μεγαλύτερο από το 11. βʹ. Προσθέτωντας τις δύο πρώτες σχέσεις έχουμε m+m = (q+q )n+r+r με 0 r+r < 2n. Επίσης (m + m ) = q n + r με r < n. Εάν r + r < n, τότε από τη μοναδικότητα του αλγορίθμου διαίρεσης, r = r + r, και q = q + q. Εάν n r + r < 2n, τότε r = r + r n και q = q + q + 1. Σε κάθε περίπτωση, q + q q q + q + 1. ΘΕΜΑ 6. αʹ. Με πόσους τρόπους μπορούμε να επιλέξουμε μία δεκαμελή επιτροπή από τα 80 άτομα σε μία τάξη; Εάν στην τάξη υπάρχουν 60 κορίτσια και 20 αγόρια, με πόσους τρόπους μπορούμε να επιλέξουμε μία δεκαμελή επιτροπή στην οποία να υπάρχουν ακριβώς 3 αγόρια. βʹ. Με πόσους διαφορετικούς τρόπους μπορούν να διαταχθούν τα γράμματα της φράσης ΛΟΥΦΑΚΑΙΠΑΡΑΛΛΑΓΗ ; γʹ. Πόσοι από αυτούς αρχίζουν με ακριβώς 3 Α; (Για παράδειγμα, ΑΑΑΛΟΥΦΚΙΠΡΑΛΛΑΓΗ, αλλά όχι ΑΑΑΑΛΟΥΦΚΙΠΡΛΛΑΓΗ). αʹ. Για να επιλέξουμε μία δεκαμελή επιτροπή από τα 80 άτομα, θεωρούμε συνδυασμούς των 80 ατόμων ανά 10, χωρίς διάταξη και χωρίς επαναλήψεις. Άρα υπάρχουν ( ) 80 = 80! 10 70!10! τέτοιοι συνδυασμοί. Εάν στην τάξη υπάρχουν 60 κορίτσια και 20 αγόρια, και θέλουμε να επιλέξουμε μία δεκαμελή επιτροπή στην οποία να υπάρχουν ακριβώς 3 αγόρια, επιλέγουμε ανεξάρτητα 7 κορίτσια και 3 αγόρια. Υπάρχουν ( 60 7 τρόποι να κάνουμε την επιλογή. ) ( ) 20 = 60!20! 3 57!17! βʹ. Η φράση ΛΟΥΦΑΚΑΙΠΑΡΑΛΛΑΓΗ αποτελείται από 17 γράμματα, μεταξύ των οποίων 5 Α, 3 Λ, και 9 γράμματα που εμφανίζονται μία φορά. Εχουμε περίπτωση μεταθέσεων αντικειμένων που διακρίνονται σε ομάδες. Ο αριθμός των διαφορετικών διατάξεων είναι M(5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1) = 17! 5!.
5 γʹ. Για να βρούμε τον αριθμό των μεταθέσεων που αρχίζουν με ακριβώς 3 Α, αφαιρούμε τα 3 Α, και υπολογίζουμε τις διατάξεις των υπολοίπων 14 γραμμάτων οι οποίες δεν αρχίζουν με Α. Για το πρώτο γράμμα μετά τα 3 Α έχουμε 12 επιλογές (14 γράμματα, μείον τα 2 Α). Για τα υπόλοιπα 13 γράμματα, υπάρχουν 1 διατάξεις. Διαιρώντας με τον αριθμό των μεταθέσεων των ίδιων γραμμάτων, έχουμε ! = 6 1 Διαφορετικός τρόπος υπολογισμού: Υπολογίζουμε τις μεταθέσεις που αρχίζουν με τουλάχιστον 3 Α, και αφαιρούμε τον αριθμό των μεταθέσεων που αρχίζουν με τουλάχιστον 4 Α. Ο πρώτος είναι 14!/(2!), και ο δεύτερος 1/. Τελικά 14! 2! 1 = 1. ( ) = 6 1. ΘΕΜΑ 7. αʹ. Εξηγήστε τι σημαίνει οτι ένα σύνολο είναι αριθμήσιμο. Δείξτε οτι το σύνολο των συναρτήσεων από το σύνολο {0, 1} στο σύνολο N είναι αριθμήσιμο. βʹ. Εξηγήστε το διαγώνιο επιχείρημα του Cantor για να αποδείξετε οτι το σύνολο των συναρτήσεων από το σύνολο N στο σύνολο {0, 1} δεν είναι αριθμήσιμο. αʹ. Ενα σύνολο A είναι αριθμήσιμο εάν υπάρχει αμφιμονοσήμαντη συνάρτηση από το σύνολο A σε ένα υποσύνολο του N. Ισοδύναμα, ένα σύνολο είναι αριθμήσιμο εάν είτε είναι πεπερασμένο είτε έχει τον ίδιο πληθικό αριθμό με το N. ( Ενα σύνολο A είναι πεπερασμένο εάν υπάρχει αμφιμονοσήμαντη συνάρτηση από το σύνολο A σε ένα σύνολο της μορφής N(k) = {n N : n k} για κάποιο k N 0.) Εστω T το σύνολο των συναρτήσεων από το σύνολο {0, 1} στο σύνολο N. Τα στοιχεία του T είναι συναρτήσεις f : {0, 1} N. Μία τέτοια συνάρτηση προσδιορίζεται από τις τιμές της, f(0), f(1). Συνεπώς για κάθε συνάρτηση f έχουμε το διατεταγμένο ζεύγος φυσικών αριθμών (f(0), f(1)) N N. Θα δείξουμε οτι η αντιστοιχία ϕ : f (f(0), f(1)) είναι μία αμφιμονοσήμαντη συνάρτηση ϕ : T N N από το S στο N N. Η ϕ είναι συνάρτηση, αφού για κάθε f S ορίζεται μοναδικό ζεύγος (f(0), f(1)) N N. Η ϕ είναι ενεικονική, αφού εάν f, g T και (f(0), f(1)) = (g(0), g(1)) τότε f = g. Η ϕ είναι επεικονική, αφού για κάθε (m, n, ) N N υπάρχει συνάρτηση f : {0, 1} N, με f(0) = m και f(1) = n, ούτως ώστε ϕ(f) = (m, n). βʹ. Εστω S το σύνολο των συναρτήσεων από το N στο σύνολο {0, 1}, δηλαδή των ακολουθιών από 0 και 1. Θεωρούμε μία συνάρτηση ϕ : N S, ϕ(n) = (a n,1, a n,2,..., a n,k,...). Θα κατασκευάσουμε μία ακολουθία b = (b 1, b 2,..., b k,...) διαφορετική από την ϕ(n) για κάθε n N. Ορίζουμε b k = 1 εάν a k,k = 0 και b k = 0 εάν a k,k = 1. (Εάν γράψουμε τις ακολουθίες σε μορφή πίνακα, a k,k είναι τα διαγώνια στοιχεία του πίνακα, εξ ού και
6 το όνομα του επιχειρήματος του Cantor.) Για κάθε n N, η ακολουθία ϕ(n) διαφέρει από τη b, αφού a n,n b n. Συνεπώς η ακολουθία b δεν ανήκει στην εικόνα της ϕ. Αυτό το επιχείρημα ισχύει για καθε συνάρτηση από το N στο S. Συμπεραίνουμε οτι δεν υπάρχει επεικόνιση από το N στο S.
f(t) = (1 t)a + tb. f(n) =
Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία
bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1}
Αλγεβρα Ι, Χειμερινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Το [Α] συμβολίζει το φυλλάδιο ασκήσεων που θα βρείτε στην ιστοσελίδα του μαθήματος επιλέγοντας «Άλλες Ασκήσεις». 1. Πόσες
Περιεχόμενα. Πρόλογος 3
Πρόλογος Τα πρώτα μαθήματα, σχεδόν σε όλους τους κλάδους των μαθηματικών, περιέχουν, ή θεωρούν γνωστές, εισαγωγικές έννοιες που αφορούν σύνολα, συναρτήσεις, σχέσεις ισοδυναμίας, αλγεβρικές δομές, κλπ.
B = {x A : f(x) = 1}.
Θεωρία Συνόλων Χειμερινό Εξάμηνο 016 017 Λύσεις 1. Χρησιμοποιώντας την Αρχή του Περιστερώνα για τους φυσικούς αριθμούς, δείξτε ότι για κάθε πεπερασμένο σύνολο A και για κάθε f : A A, αν η f είναι 1-1 τότε
ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις
ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 018 Τελική Εξέταση Ιουνίου Λύσεις Προσοχή: Οι παρακάτω λύσεις είναι ενδεικτικές, μπορεί να υπάρχουν και άλλες που επίσης να είναι σωστές. Θέμα 1: [16 μονάδες]
Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.
Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη
(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac
Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία
Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος
Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος
Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr
Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας
Απειροσ τικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών
Απειροστικός Λογισμός ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών - Περιεχόμενα Υπακολουθίες και βασικές ακολουθίες. Υπακολουθίες. Θεώρημα Bolzno Weierstrss.αʹ Απόδειξη με χρήση της
m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G
Λύσεις Θεμάτων Θεμελίων των Μαθηματικών 1. Εστω A, B, C τυχόντα σύνολα. Να δειχθεί ότι A (B C) (A B) (A C). Απόδειξη. Εστω x τυχαίο στοιχείο του A (B C). Εξ ορισμού, το x ανήκει σε ακριβώς ένα από τα A,
Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί
Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι
Φ(s(n)) = s (Φ(n)). (i) Φ(1) = a.
1. Τα θεμελιώδη αριθμητικά συστήματα Με τον όρο θεμελιώδη αριθμητικά συστήματα εννοούμε τα σύνολα N των φυσικών αριθμών, Z των ακεραίων, Q των ρητών και R των πραγματικών. Από αυτά, το σύνολο N είναι πρωτογενές
ΚΕΦΑΛΑΙΟ 4 Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ
50 ΚΕΦΑΛΑΙΟ Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ Εισαγωγή. Η αρχή του εγκλεισμού αποκλεισμού είναι ένα ισχυρό μέσο απαρίθμησης με το οποίο υπολογίζεται ο αριθμός των στοιχείων της ένωσης και της τομής των συμπληρωμάτων
β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1
Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα
, για κάθε n N. και P είναι αριθμήσιμα.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ Διδάσκοντες: Δ.Φωτάκης Θ. Σούλιου η Γραπτή Εργασία Ημ/νια παράδοσης 5/4/8 Θέμα (Διαδικασίες Απαρίθμησης.
G n. n=1. n=1. n=1 G n) = m (E). n=1 G n = k=1
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Επαναληπτικές Εξετάσεις στη Θεωρία Μέτρου και Ολοκλήρωση Θέμα. Εστω R Lebesgue μετρήσιμο σύνολο. (αʹ) Να αποδειχθεί ότι για κάθε ε
n = r J n,r J n,s = J
Ανάλυση Fourer και Ολοκλήρωμα Lebesgue (2011 12) 4ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω E [a, b] με µ (E) = 0. Δείξτε ότι το [a, b] \ E είναι πυκνό υποσύνολο του [a, b]. Υπόδειξη. Θεωρήστε ένα μη κενό
ιακριτά Μαθηµατικά Ορέστης Τελέλης Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36
ιακριτά Μαθηµατικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36 Γνωριµία ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr
x < y ή x = y ή y < x.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 011-1 Τμήμα Μαθηματικών Διδάσκων: Χ.Κουρουνιώτης Μ8 ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ Φυλλάδιο 1 Ανισότητες Οι πραγματικοί αριθμοί είναι διατεταγμένοι. Ενισχύουμε αυτήν την ιδέα με
Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C
Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο
Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K =
Α Δ Ι Α - Φ 5 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 29 Νοεμβρίου 2013 Ασκηση
ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, 5-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα μιλήσουμε για την έννοια της περιοχής, η οποία έχει κεντρικό ρόλο στη μελέτη της έννοιας του ορίου (ακολουθίας και συνάρτησης). Αν > 0, ονομάζουμε
a = a a Z n. a = a mod n.
Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση
Ασκήσεις Απειροστικού Λογισμού ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Περιεχόμενα Υπακολουθίες και ακολουθίες Cuchy Σειρές πραγματικών αριθμών 3 3 Ομοιόμορφη συνέχεια 3 4 Ολοκλήρωμα
Περιεχόμενα. Πρόλογος 3
Πρόλογος Η Γραμμική Άλγεβρα είναι ένα σημαντικό συστατικό στο πρόγραμμα σπουδών, όχι μόνο των Μαθηματικών, αλλά και άλλων τμημάτων, όπως είναι το τμήμα Φυσικής, Χημείας, των τμημάτων του Πολυτεχνείου,
Γνωριµία. ιακριτά Μαθηµατικά. Βιβλία Μαθήµατος. Επικοινωνία. ιδάσκων: Ορέστης Τελέλης. Ωρες γραφείου (502, Γρ.
Γνωριµία ιακριτά Μαθηµατικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr Ωρες γραφείου (502, Γρ.Λαµπράκη 26): ευτέρα
Πεπερασμένες Διαφορές.
Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x
* * * ( ) mod p = (a p 1. 2 ) mod p.
Θεωρια Αριθμων Εαρινο Εξαμηνο 2016 17 Μέρος Α: Πρώτοι Αριθμοί Διάλεξη 1 Ενότητα 1. Διαιρετότητα: Διαιρετότητα, διαιρέτες, πολλαπλάσια, στοιχειώδεις ιδιότητες. Γραμμικοί Συνδυασμοί (ΓΣ). Ενότητα 2. Πρώτοι
B = F i. (X \ F i ) = i I
Κεφάλαιο 3 Τοπολογία μετρικών χώρων Ομάδα Α 3.1. Εστω (X, ρ) μετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το G \ F είναι
Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),
Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου
x 2 + y 2 x y
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 014-15 Τμήμα Μαθηματικών και Διδάσκων: Χρήστος Κουρουνιώτης Εφαρμοσμένων Μαθηματικών ΜΕΜ0 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ Φυλλάδιο Προβλημάτων Κύκλος, Ελλειψη, Υπερβολή, Παραβολή
x 2 + y 2 + z 2 = R 2.
Σημειώσεις μαθήματος Μ2324 Γεωμετρική Τοπολογία Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2011 Εισαγωγή Η Γεωμετρική Τοπολογία είναι ο κλάδος των μαθηματικών που μελετάει τα ολικά χαρακτηριστικά
Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο
Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο Ακριβής ορισμός του πλευρικού ορίου Έστω ότι το πεδίο ορισμού της f x περιέχει ένα διάστημα d, c στα αριστερά του c. Η f x έχει αριστερό όριο L στο c
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
(β ) ((X c Y ) (X c Y c )) c
Λύσεις Ασκήσεων στα Θεμέλια των Μαθηματικών II Ρωμανός-Διογένης Μαλικιώσης Παρασκευή, 29 Οκτωβρίου 2010 Άσκηση 1. Απλοποιήστε τις ακόλουθες εκφράσεις (α ) (D c F ) c (D F ) (β ) ((X c Y ) (X c Y c )) c
Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:
Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
g (v + W ) = gv + W gv = 0.
Ασκήσεις #1 Σε ότι ακολουθεί, G είναι πεπερασμένη ομάδα και V είναι C-διανυσματικός χώρος πεπερασμένης διάστασης. 1. Δείξτε ότι η απεικόνιση G G G που ορίζεται θέτοντας g x = gxg 1 για g, x G αποτελεί
Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015
Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις διάγραμμα. f : A B, : g B C και h: C D που ορίζονται στο παρακάτω Υπολογίστε την συνάρτηση h
Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
(ii) X P(X). (iii) X X. (iii) = (i):
Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Δείξτε ότι ισχύουν τα ακόλουθα: (i) ω / ω (με άλλα λόγια, το ω δεν είναι φυσικός αριθμός). (ii) Για κάθε n ω, ισχύει ω / n. (iii) Για κάθε n ω, το n
Μη γράφετε στο πίσω μέρος της σελίδας
Διακριτά Μαθηματικά Ενδιάμεση εξέταση 1 Φεβρουάριος 2014 Σελ. 1 από 7 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις
i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a
Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Άσκηση 1.9 (σελ. 17), από τις σημειώσεις του Σκανδάλη. Εστω A, B δεδομένα σύνολα. Θα χρησιμοποιήσουμε τα αξιώματα αλλά αναφερόμενοι, αποκλειστικά, είτε
ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ
ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα
Διακριτά Μαθηματικά Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών http://eclass.uoa.gr/ Οκτώβριος 2017 Οργάνωση Μαθήματος Προτασιακή Λογική, Αποδείξεις Κατηγορήματα και ποσοδείκτες Συνεπαγωγή Αποδείξεις
Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)
Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,
Διακριτά Μαθηματικά Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών http://eclass.uoa.gr/ Οκτώβριος 2018 Οργάνωση και περιεχόμενα Μαθήματος Προτασιακή Λογική, Αποδείξεις Κατηγορήματα και ποσοδείκτες
(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ).
ΕΜ0 - Διακριτά Μαθηματικά Ιανουαρίου 006 Άσκηση - Λύσεις Πρόβλημα [0 μονάδες] Εστω L και L δύο κυκλώματα σε ένα γράφημα G. Εστω a μία ακμή που ανήκει και στο L και στο L και έστω b μία ακμή που ανήκει
Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επιλύσιμες Ομάδες. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Επιλύσιμες Ομάδες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 4 Επιλύσιμες Ομάδες 41 Προκαταρκτικές Έννοιες 411 Ορισμός και Παραδείγματα
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις Επαναληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015/nt015.html Τρίτη Ιουνίου 015 Ασκηση 1. (1) Να λυθεί η γραµµική
1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n
Οι ασκήσεις αυτές έχουν σκοπό να βοηθήσουν τους φοιτητές στην μελέτη τους για το μάθημα «Ανάλυση ΙΙ» του Τμήματος Μαθηματικών του Πανεπιστημίου Αιγαίου. Συνιστούμε στους φοιτητές να επεξεργαστούν αυτές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Παρασκευή, 17 Μαρτίου 2017 Διάρκεια : 9.00 10.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:
ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου
ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου Θέμα 1: a. Δείξτε κατά πόσον η πρόταση ((p q) r) ((p q) (q r)) αποτελεί ή όχι ταυτολογία. Κάποιος ιδιόρρυθμος δικαστής ρωτήθηκε κατά
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί
f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).
Κεφάλαιο 4 Συναρτήσεις μεταξύ μετρικών χώρων 4.1 Συνεχείς συναρτήσεις Εστω (X, ρ) και (Y, σ) δύο μετρικοί χώροι. Στην 2.2 δώσαμε τον ορισμό της συνέχειας μιας συνάρτησης f : X Y σε κάποιο σημείο x 0 X:
ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων
ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):
7 Μάθημα Πορεία μελέτης Ακόμη μία Άσκηση
Περιεχόμενα I Εναρξη μαθήματος 3 II Αρχικά μαθήματα 5 1 Μάθημα 1 5 1.1 Εισαγωγή............................... 5 1.2 Πορεία μελέτης............................ 5 1.3 Γραμμικά συστήματα.........................
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 23 Νοεµβρίου
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Abstract Algebra: The Basic Graduate Year: Robert B. Ash
Περιεχόμενα I Εναρξη μαθήματος 2 II Βασική άλγεβρα. Αρχικά μαθήματα 4 1 Μάθημα 1 4 1.1 Πορεία μελέτης............................ 4 1.2 Διάφορα σχόλια............................ 5 1.3 Πορεία μελέτης............................
ii
Σημειώσεις Γενικής Τοπολογίας Σημειώσεις Μ. Γεραπετρίτη από τις παραδόσεις (διορθώσεις, 2016) Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013 ii Περιεχόμενα 1 Τοπολογικοί Χώροι 3 1.1 Ανοικτά σύνολα,
Γραμμική Άλγεβρα Ενότητα 2: Διανυσματικοί χώροι
Γραμμική Άλγεβρα Ενότητα 2: Διανυσματικοί χώροι Ευάγγελος Ράπτης Τμήμα Πληροφορικής 5 Μάθημα 5 Τετάρτη 10 Οκτωβρίου 2012 Με το σημερινό 9 μάθημα αρχίζουμε τη μελέτη των Διανυσματικών χώρων, μία πολύ βασική
x < A y f(x) < B f(y).
Χειμερινό Εξάμηνο 2016 2017 Ασκήσεις στα Κεφάλαια 5 & 6 1. Αυτή είναι ουσιαστικά η Άσκηση 5.2 (σελ. 119), από τις σημειώσεις του Σκανδάλη. Εστω A, < καλά διατεταγμένο σύνολο και έστω στοιχείο a A. Αποδείξτε
Α Δ Ι Θ Θ Α Ε Ι Μ : https://sites.google.com/site/maths4edu/home/algdom114
Α Δ Ι Θ Θ Α Ε 2013-2014 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 12 Μαρτίου 2014 19:26
sup(a + B) = sup A + sup B inf(a + B) = inf A + inf B.
Ασκήσεις, Φυλλάδιο. Βρειτε το συνολο Φ A ολων των ανω ϕραγματων του A, και το συνολο φ A ολων των κατω ϕραγματων του A, οταν: a) A = m :, m N}, b) A = + m 2. Βρειτε το if και sup οποτε υπαρχουν) των συνολων
1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου
Μη γράφετε στο πίσω μέρος της σελίδας
Μαθηματική Λογική Τελική εξέταση Ιούλιος 2014 α Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),
Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο
x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)
Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την
ψ φ2 = k χ φ2 = 4k χ φ1 = χ φ1 + χ φ2 + 3 = 4(k 1 + k 2 + 1) + 1 ψ φ1 = ψ φ1 + χ φ2 = k k = (k 1 + k 2 + 1) + 1
Ασκήσεις στο μάθημα της Λογικής 15 Οκτωβρίου 2015 Άσκηση 1. Να δειχτεί ότι δεν υπάρχουν τύποι μήκους 2,3,6 αλλά κάθε άλλο (θετικό ακέραιο) μήκος είναι δυνατό (άσκηση 2, σελίδα 39) Απόδειξη. Δείχνουμε πρώτα
d(v) = 3 S. q(g \ S) S
Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε S υποσύνολο
ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι
ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους
Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 2018
Ανάλυση Ι και Εφαρμογές Σημειώσεις από τις παραδόσεις Α. Γιαννόπουλος Τμήμα Φυσικής Πανεπιστήμιο Αθηνών Αθήνα 08 Περιεχόμενα Το σύνολο των πραγματικών αριθμών. Φυσικοί, ακέραιοι και ρητοί αριθμοί............................
Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013
Α Δ Ι Α - Φ 7 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 13 Δεκεμβρίου
of Mathematics των I.Stewart και D.Tall, Oxford University Press.
Σημειώσεις του Μαθήματος ΜΕΜ 103 Θεμέλια των Μαθηματικών Βασισμένες στο βιβλίο των I.Stewart και D.Tall Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2018 Εισαγωγή Αρχίζοντας τη μελέτη των
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ ΕΙΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, 5--3 Μ. Παπαδημητράκης. Είδαμε στο προηγούμενο μάθημα ότι για να έχει νόημα το όριο f(x) x ξ πρέπει το ξ να είναι σε κατάλληλη θέση σε σχέση με το πεδίο ορισμού A της συνάρτησης
Κ Ε Μη γράφετε στο πίσω μέρος της σελίδας
Διακριτά Μαθηματικά Εξέταση Ιούνιος 206 Σελ. από 6 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις σας
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 06, 26 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Η ανάλυση LU 2. Η ανάλυση LDM T και η ανάλυση LDL T 3. Συμμετρικοί
Αριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Λύσεις 1ης Ομάδας Ασκήσεων
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ Λύσεις ης Ομάδας Ασκήσεων Τμήμα Α Λ. Ισότητα συνόλων Έστω C = A i= B i και D = i= A B i. Θα αποδείξουμε ότι τα C, D ταυτίζονται,
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο
b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.
Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2...
ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Β.ΒΛΑΧΟΥ, Α. ΣΟΥΡΜΕΛΙΔΗΣ Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών Φθινόπωρο 2013 1 Θα θέλαμε να αναφέρουμε ότι για την συγγραφή αυτών των σημειώσεων χρησιμοποιήσαμε ιδιαίτερα α)το βιβλίο
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 4: Θεωρία Μέτρησης Po lya Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Ευθέα Γινόμενα Ομάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 Ευθέα Γινόμενα Ομάδων Για την περαιτέρω ανάπτυξη τής θεωρίας θα χρειαστούμε
Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών
Ισότητα, Αλγεβρικές και Αναλυτικές Ιδιότητες Πραγματικών Ακολουθιών Συμβολισμοί Σε αναλογία με τους ορισμούς συμβολίζουμε μια ακολουθία: 1 είτε μέσω του διανυσματικού ορισμού, παραθέτοντας αναγκαστικά
Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων
Π Κ Τ Μ Ε Μ Λύσεις των ασκήσεων Πρ. Η f : [0, ] R είναι συνεχής στο [0, ]. Χρησιμοποιώντας το Θεώρημα Bolzao- Weierstraß δείξτε ότι η f είναι φραγμένη στο [0, ]. Μην επικαλεστείτε κάποιο άλλο θεώρημα.
ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.
ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός
h(x, y) = card ({ 1 i n : x i y i
Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,
Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27
Εισαγωγικό κεφάλαιο 27 Η έννοια του συνόλου Σύνολο είναι κάθε συλλογή αντικειμένων, που προέρχονται από την εμπειρία μας ή τη διανόησή μας, είναι καλά ορισμένα και διακρίνονται το ένα από το άλλο. Αυτός