Η έννοια του Πειράµατος Τύχης. 9 3 6 Το σύνολο των πιθανών εκβάσεων ενός πειράµατος τύχης καλείται δειγµατοχώρος ή δειγµατικόςχώρος (sample space)καισυµβολίζεταιµεωήµε S.Έναστοιχείοωήsτου δειγµατικού χώρου Ω ή S καλείται δειγµατικό στοιχείο. Ένας δειγµατοχώρος είναι διακριτός αν το πλήθος των στοιχείων του είναι πεπερασµένο ή άπειρο αλλά αριθµήσιµο, διαφορετικά ο δειγµατοχώρος είναι µη διακριτός. Ένα γεγονός ή ενδεχόµενο είναι ένα υποσύνολο του δειγµατοχώρου. Για διακριτούς δειγµατοχώρουc, κάθε υποσύνολο του δειγµατοχώρου είναι ένα γεγονός. Ένα γεγονός το οποίο περιέχει ένα µόνο στοιχείο του Ω καλείται απλό ή στοιχειώδες γεγονός.
Η έννοια της Πιθανότητας Υπάρχουν πολλές επαναλαµβανόµενες καταστάσεις στη φύση για τις οποίες µπορούµε να προβλέψουµε από προηγούµενη εµπειρία τι θα συµβεί κατά µέσον όρο, αλλά όχι ακριβώς τι θα συµβεί. Σε τέτοιες περιπτώσεις λέµε ότι οι εµφανίσεις είναι τυχαίες. Προδιαγράφουµε ένα στοιχειώδες πείραµα τύχης. Καθορίζουµε όλες τις πιθανές εκβάσεις του στοιχειώδους πειράµατος τύχης. Επαναλαµβάνουµε το στοιχειώδες πείραµα πολλές φορές κάτω από οµοιόµορφες συνθήκες (φαινοµενικά τουλάχιστον) και παρατηρούµε τις εκβάσεις του πειράµατος. Ονοµάζουµεσχετικήσυχνότητατουγεγονότος A σε nδοκιµέςτολόγο n n A Όπου n A είναιηφορέςπουεµφανίστηκετογεγονός Aστις nεπαναλήψειςτουπειράµατος τύχης. Οι σχετικές συχνότητες πραγµατοποίησης των ενδεχοµένων ενός πειράµατος σταθεροποιούνται γύρω από κάποιους αριθµούς (όχι πάντοτε ίδιους), καθώς ο αριθµός των δοκιµών ενός πειράµατος επαναλαµβάνεται απεριόριστα (στατιστική οµαλότητα ή νόµος των µεγάλων αριθµών). -
Σε πείραµα τύχης υπάρχουν N πιθανές εκβάσεις A, A,, A Ν, που είναι αµοιβαία αποκλειόµενες (mutually exclusive), δηλαδή, η εµφάνιση οποιασδήποτε έκβασης αποκλείει την εµφάνιση όλων των άλλων. Για όλα της δυνατές εκβάσεις ισχύει N = A ) = Η από κοινού πιθανότητα εµφάνισης δύο γεγονότων Α και Β είναι n AB A, B) = lim n n όπου n ΑΒ είναιηφορέςπουεµφανίστηκετοσυνδυασµένογεγονός (Α,Β)στις nεπαναλήψεις του πειράµατος τύχης. Ο λόγος παριστάνει τη σχετική συχνότητα της εµφάνισης του γεγονότος B δοθέντος ότι έχει εµφανιστεί το γεγονός A. Για µεγάλο πλήθος επαναλήψεων του πειράµατος τύχης ο λόγος n AB n A n AB n A. ορίζει την πιθανότητα εµφάνισης του γεγονότος B δοθέντος ότι έχε ι εµφανιστεί το γεγονός A. Η πιθανότητα αυτή αναφέρεται ως υποσυνθήκη πιθανότητα και συµβολίζεται ως B A), δηλαδή, B A) = lim n n n AB A -4
Για µη διακριτούς δειγµατοχώρους, δεν είναι δυνατό να εκχωρήσουµε σε κάθε υποσύνολο του δειγµατοχώρου Ω µία πιθανότητα χωρίς να θυσιάσουµε θεµελιώδεις διαισθητικές ιδιότητες της πιθανότητας. Για να ξεπεράσουµε τη δυσκολία αυτή, ορίζουµε ως σ-πεδίο B στο δειγµατοχώρο Ω µία συλλογή από υποσύνολα του Ω τέτοια ώστε να ικανοποιούνται οι ακόλουθες συνθήκες Ω B Αν ένα υποσύνολο (γεγονός) Bτότε c B Αν i B για όλα τα i, τότε i = i B Ορίζουµε ένα µέτρο πιθανότητας P στο B ως µία συνάρτηση η οποία αντιστοιχίζει µη αρνητικές τιµές για όλα τα γεγονότα στο B έτσι ώστε να ικανοποιούνται οι ακόλουθες συνθήκες -5 5
Βασικά αξιώµατα της πιθανότητας. Η πιθανότητα όλου του δειγµατοχώρου Ω (δηλαδή του βέβαιου ενδεχόµενου) είναι ίση µε ένα.. Η πιθανότητα ενός ενδεχόµενου περιορίζεται στο διάστηµα [0, ] P 0 ), ( Ω) Ω 3. Γιαασυµβίβαστα (ήαµοιβαίωςαποκλειόµενα) γεγονότα (δηλαδή, γεγονόταγιαταοποία = γιαόλατα i j όπου είναιτοκενόσύνολο), έχουµε i j ( ) = ) P i= i i= i,, 3, Η τριάδα (Ω, B, P) ονοµάζεται χώρος πιθανότητας. -6 6
ισχύει όπου P ( τα και µαζί (joint probability). Ιδιότητες των πιθανοτήτων Α. Προσθετικός νόµος των πιθανοτήτων. Για δύο οποιαδήποτε ενδεχόµενα και ) = ) + ) ) ) είναι η συνδυασµένη πιθανότητα, δηλαδή, η πιθανότητα να εµφανισθούν Β. Γιατατυχαίαενδεχόµενα,, n γιαταοποία ισχύει P i j = για i j και Ε Ε Ε ( Ε ) = Ε S) = P[ Ε ( Ε Ε Ε )] = P[ ( Ε Ε ) ( Ε Ε ) ( Ε Ε n )] = Ε Ε ) + Ε Ε ) + + Ε Ε ) n n n = Ω Ταενδεχόµενα,,, n λέµεότιείναιαµοιβαίααποκλειόµεναήασυµβίβασταανάδύο και πλήρη. -7 7
Γ. Αν = Ω και =, τότετο c λέγεται συµπληρωµατικότου C C ενδεχόµενου, δηλώνει το γεγονός να µη συµβεί το και ισχύει P C ( ) = ). ΓιαδύοενδεχόµεναΕ καιε µε ισχύουν P ) P ( ) και P ) P ( ) P ( ) ( ( Ε. ΗπιθανότητατουΕ µετηνπροϋπόθεσηότιπραγµατοποιήθηκετοε, λέγεταιδεσµευµένη ήυπόσυνθήκηπιθανότητα (conditional probability), συµβολίζεταιµε ) καιορίζεταιως P P ( ) = P ( ) 0, ), ( ύοενδεχόµεναε καιε λέγονταιστατιστικάανεξάρτηταόταν ) 0 αλλιώς ) = ) ) ήόταν P ) = P ( ) ( -8 8
. Ο πολλαπλασιαστικός νόµος των πιθανοτήτων ) = ) P ( ) = P ( P (. ( ) P = ) ) ) 3. ΓιαένασύνολοΕ, Ε,, Ε n απόαµοιβαίααποκλειόµεναπλήρηενδεχόµεναισχύειτο θεώρηµα ολικής πιθανότητας { } n i = καιοκανόναςτου Bayes P ( A) P = ( A) = A ) ) A ) ) m = m = Τα γεγονότα i αποτελούν µία διαµέριση του δειγµατοχώρου Ω. A ) ) -9 9
Μίαπηγήπληροφορίαςπαράγειτασύµβολα και 0 µεπιθανότητες 0,6 και 0,4 αντίστοιχα. Η έξοδος της πηγής µεταδίδεται µέσα από κανάλι που έχει πιθανότητα σφάλµατος (µετατρέπει ένα σε 0 ήένα 0 σε ίσηµε 0,. είσ = = 0,6 εξ = = 0,9 εξ = = ; είσ = = 0,4 A) εξ = 0 = 0,9 A B = N n= Η πιθανότητα η έξοδος του καναλιού να είναι δίνεται ) n B n = + = 0,9 0,6+ 0, 0,4= 0,58 Η πιθανότητα η έξοδος του καναλιού να είναι 0 δίνεται = 0 + 0 = 0, 0,6+ 0,9 0,4= 0,4 ) εξ = = ; Η πιθανότητες P ( και συνήθως αναφέρονται ως a priori probabilities. Επίσης οι πιθανότητες P ( εξ = και εξ = 0 τυπικά είναι γνωστές πριν την πραγµατοποίηση του πειράµατος. -0
είσ = = 0,6 εξ = = 0,9 εξ = = 0,58 είσ = = 0,4 εξ = 0 = 0,9 εξ = = 0,4 A B) B) P ( B A) = A) Ηπιθανότηταηείσοδοςτουκαναλιούναείναι είναιυπότηνπροϋπόθεσηότιηέξοδοςείναι δίνεται 0,9 0,6 = = 0,93 0,58 0 0,9 0,4 0 = = 0,857 0,4 0 0, 0,6 = = 0,43 0,4 0, 0,4 0 = = 0,069 0,58 Ηπιθανότητες P ( n), όπου =, και n =,, συνήθωςαναφέρονταιως a posteriori probabilities αφού γίνονται γνωστές µετά την πραγµατοποίηση πειραµάτων. -
είσ = = 0,6 εξ = = 0,9 εξ = = 0,58 είσ = = 0,4 εξ = 0 = 0,9 εξ = = 0,4 Η πιθανότητα εσφαλµένης µετάδοσης είναι P e = + 0 = 0, 0,4+ 0, 0,6= 0, Ή αν χρησιµοποιήσουµε το διάγραµµα έχουµε είσ = = 0,6 0,93 εξ = = 0,58 είσ = = 0,4 0 0,857 εξ = = 0,4 P e = 0 + = ( 0,93 0,58+ ( 0,857) 0,4= 0,069 0,58+ 0,43 0,4= 0, -
Η έννοια της Τυχαίας Μεταβλητής Η απεικόνιση των εκβάσεων ενός πειράµατος τύχης στην ευθεία των πραγµατικών αριθµών οδηγεί στην τυχαία µεταβλητή. 9 3 6 X = X ( ω ) = ω X 0 9 36 00 44 x Τααποτελέσµαταενόςπειράµατοςτύχηςορίζουνµιατυχαίαµεταβλητή (random variable). -3 3