, Άρρητοι Q β Πραγματικοί R Q Q, α β γ δ αγ βδ αδ βγ

Σχετικά έγγραφα
, Ακέραιοι: Z... 3, 2, 1,0,1,2,3..., Ρητοί: Q / α Ζ, β Ζ *, Άρρητοι Q. α β α β α α β α β... β. α β α β α α β α β... αβ β. α β γ αβ βγ αγ α β β γ γ α

α β α < β ν θετικός ακέραιος.

ταυτότητες διάταξη α 2 +β 2 = (α+β) 2-2αβ (α+β) 2 = α 2 +β 2 +2αβ (α+β) 3 = α 3 +β 3 +3α 2 β+3αβ 2 =α 3 +β 3 +3αβ(α+β) α 3 +β 3 = (α+β) 3-3αβ(α+β)

ΥΠΑΙΘ / Ψηφιακά Εκπαιδευτικά Βοηθήματα / Βασικές γνώσεις θεωρίας Μαθηματικών μέχρι την Β Λυκείου. Στοιχεία άλγεβρας

Bbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = {

ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ

Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3

Ταυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συνχ = συνθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z

Μαθηματικά Θετικής - Τεχνολογική Κατεύθυνσης

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Η

γ λυκειου κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο 3 κεφαλαιο3 ολοκληρωτικος λογισμος επιμελεια : τακης τσακαλακος T Ш τ

Τυπολόγιο Μαθηµατικών

Στα επόμενα παρουσιάζουμε τις τρεις βασικές μεθόδους ολοκλήρωσης των ορισμένων ολοκληρωμάτων.

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ορισµοί. Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 )

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

1o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΑ ΟΡΙΣΜΟΣ ( ) Αριθµητική τιµή του πολυώνυµου ( ) Το πολυώνυµο ( ) = = =.

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ

ΜΑΡΙΑ ΓΚΟΥΝΤΑΡΟΠΟΥΛΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

1ο Κεφάλαιο: Συστήματα

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2

x 1 δίνει υπόλοιπο 24

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ

3x 2x 1 dx. x dx. x x x dx.

ΘΕΩΡΗΜΑΤΑ (των οποίων πρέπει να ξέρουμε & τις αποδείξεις) από το σχολικό βιβλίο της ΤΕΧΝΟΛΟΓΙΚΗΣ & ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ Λυκείου

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 3ο Κεφάλαιο - Τριγωνομετρία - Βασικές τριγωνομετρικές ταυτότητες. , να βρεθούν

( ) Λ αφού αν διαιρέσουμε με το 2 τους όρους του 2 ης εξίσωσης το σύστημα γίνεται Ρ =

Κλασικός Ορισμός Πιθανοτήτας. Κανόνες Λογισμού των Πιθανοτήτων

τα βιβλία των επιτυχιών

ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΤ/ΝΣΗΣ ΘΕΩΡΙΑ - ΑΠΟΔΕΙΞΕΙΣ

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ν παραγοντες 1 ( ) β β α β α α α γ + β γ = α+ γ γ

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη.

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

ΑΣΚΗΣΕΙΣ (1) Να ανάγετε τους πιο κάτω τριγωνομετρικούς αριθμούς σε τριγωνομετρικούς αριθμούς οξειών γωνιών: α) 160 β) 135 γ) 150 δ) ( 120

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΠΩΣ; Το «σωσίβιό» σου στον ωκεανό της Γ Λυκείου! ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ ΑΝΑΝΕΩΜΕΝΗ ΣΥΜΠΕΠΛΗΡΩΜΕΝΗ ΕΚΔΟΣΗ!

απέναντι ) έτσι ώστε ο άξονα Ox να είναι η

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

Θεωρήματα και προτάσεις με τις αποδείξεις τους

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008

1.06 Δίνεται ένα σύστημα (Σ) 2 γραμμικών

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΑΛΓΕΒΡΑΣ... ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑ 1 Ο

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

τα βιβλία των επιτυχιών

Ασκήσεις Τριγωνοµετρικοί Αριθµοί

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ

x R, να δείξετε ότι: i)

1.5 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017

[ ] ( ) [( ) ] ( ) υ

( ) ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ 2 = ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. 1) Να βρεθεί το Π.Ο.

ΤΖΕΜΠΕΛΙΚΟΥ ΚΑΤΕΡΙΝΑ ΜΑΘΗΜΑΤΙΚΟΣ

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31.

4 ΤΥΠΟΣ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ Στο δι λανό Έστω η συνάρτηση f(x) = l n Αν f( x) = x+ x + 1. Να α οδείξετε ότι

Περιορισμοί στο R. ln x,log. Β= ln Α Β Α Β Α. Σύνοψη γραφικών παραστάσεων

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α - Β ΛΥΚΕΙΟΥ 1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

3.4 Οι τριγωνομετρικές συναρτήσεις

αβ (, ) τέτοιος ώστε f(x

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

2 3x 4 0, να υπολογίσετε χωρίς να λύσετε την

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 11: ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ 2.8: Κυρτότητα Σημεία Καμπής του σχολικού βιβλίου].

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ

ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

τα βιβλία των επιτυχιών

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

1. Υπάρχουν κανονικά πολύγωνα των οποίων οι εξωτερικές γωνίες είναι αµβλείες ; Απάντηση Ναι. Είναι το ισόπλευρο τρίγωνο

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

Transcript:

Βσικές Γώσεις Μθητικώ έχρι κι τη Β Λυκείυ ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Φυσικί: IN,,,..., Ακέριι: Z...,,,,,,..., Ρητί: Q /, *, Άρρητι Q Πρτικί R QQ, εώ R R, Ισχύει: ΝQ R, Εώ ε Ν*, *, Q*, R * συλίζυε τ τίστιχ σύλ χωρίς τ ηδέ. ΤΑΥΤΟΤΗΤΕΣ...... ε εριττ. ή == Euler δ δ δ Lagrange ΑΝΙΣΩΣΕΙΣ. Ειτρέετι ρσθέσω ή φιρέσω ό τ δύ έλη ις ισότητς τ ίδι ριθό. Ειτρέετι λλλσιάσω, διιρέσω κι τ δύ έλη ις ισότητς ε τ ίδι θετικό ριθό, εώ ρέει λλάξω τη φρά της ισότητς υτός είι ρητικός.. Ειτρέετι υψώσω ι ισότητ σε δύη ε εριττό εκθέτη, εώ ρέει έχει θετικύς όρυς τη υψώσω σε δύη ε άρτι εκθέτη ( έχει ρητικύς όρυς κι τη υψώω σε άρτι εκθέτη ρέει της λλάξω τη φρά) 4. Ειτρέετι ρσθέσω δύ ισότητες της ίδις φράς κτά έλη 5. Ειτρέετι λλλσιάσω δύ ισότητες της ίδις φράς κτά έλη εφ όσ όλι ι όρι είι θετικί. 6. Α, θετικί κι ι δύ ή ρητικί ριθί κι ι δύ τότε ισχύει η ισδυί 7. Ισχύει η εττική ιδιότητ: Α κι τότε. Η ιδιότητ υτή υ ειτρέει «εισχύω» ι ισότητ ε κάτι ελύτερ ό τ εάλ ή κάτι ικρότερ ό τ ικρό έλς της. 8. ΙΣΧΥΟΥΝ:,,, 9. ΠΡΟΣΟΧΗ! ΔΕΝ ΑΦΑΙΡΟΥΜΕ, ΔΕΝ ΔΙΑΙΡΟΥΜΕ ΑΝΙΣΩΣΕΙΣ ΚΑΤΑ ΜΕΛΗ ΑΠΟΛΥΤΑ. Αόλυτη τιή εός ριθύ είι η όστση της εικός τυ ριθύ ό τη ρχή τυ άξ.. Η όλυτη τιή εός θετικύ ριθύ είι ίδις ριθός. Η όλυτη τιή εός ρητικύ ριθύ είι τίθετς ριθός.. ι κάθε R,,, > = 4. κι ι κάθε R ή ι κάθε R κι εικότερ: f() f() f() 5. θ θ ή θ, θ ή 6. θ θ θ, θ θ θ ή -θ, θ 7., ε ι κάθε, R. 8. Η όστση δύ ριθώ στ άξ ισύτι ε τη όλυτη τιή της διφράς τυς: d(,) ΠΡΟΣΟΧΗ! Α τότε κι ΡΙΕΣ Ορισός: Ιδιότητες:. Α ε θετικός κέρις,, ι κάθε R, τότε κι. A τότε ή,., θετικί κέριι εώ είι Με, κι,,ρ ισχύυ, R κι, θετικί κέριι,,,, θετικός, κέρις, θετικός κέρις κι,, ρ ρ, ΣΥΣΤΗΜΑΤΑ Γι τη λύση τυ ρικύ συστήτς Σ ε τη έθδ τω ριζυσώ ρίσκυε τις ρίζυσες D, D, D κι ισχύει ότι Α D έχει δική λύση τη D D κι D D, Α D κι D ή D είι δύτ, εώ D D D τότε είι δύτ ή όριστ ή έχει άειρες λύσεις. 4.7

Βσικές Γώσεις Μθητικώ έχρι κι τη Β Λυκείυ ΔΙΑΣΤΗΜΑΤΑ:, R/, R/, Αικτό:, Κλειστό, R/,, R/,, R/,, R/ ΣΥΝΑΡΤΗΣΕΙΣ Η όστση τω σηείω Α(, ) κι Β(, ) είι ίση ε (ΑΒ) ( ) ( )., κ.λ. Τ σηεί, είι συετρικό ως ρς: τ ε τ,, τ ε τ, τ, ε τ,, τη ευθεί ε τ, Οι ευθείες κι είι ράλληλες κι ό Οι ευθείες κι ε είι κάθετες κι ό Μι συάρτηση f λέετι άρτι κι ό ι κάθε Af ισχύει ότι: Af κι f f Η ρφική ράστση ις άρτις συάρτησης έχει άξ συετρίς τ Μι συάρτηση f λέετι εριττή κι ό ι κάθε Af ισχύει ότι: Af κι f f. Η ρφική ράστση ις εριττής συάρτησης έχει κέτρ συετρίς τ (,) Μι συάρτηση f σε έ διάστη Δ τυ εδίυ ρισύ της: Είι ήσι ύξυσ κι ό ι κάθε, Δ ισχύει ότι: Α τότε f f Είι ήσι φθίυσ κι ό ι κάθε, Δ ισχύει ότι: Α Η τί ις συάρτησης κθρίζετι ό τ ρόση τυ λόυ ετλής: λ τότε f f f f. Α C f είι η ρφική ράστση της συάρτησης f τότε η ρφική ράστση της g ε : g f c, c ρκύτει ό τη ράλληλη εττόιση της C f κτά c άδες άω g f c, c ρκύτει ό τη ράλληλη εττόιση της C f κτά c άδες ριστερά g f είι η συετρική της C f ως ρς άξ συετρίς τ. g f είι η συετρική της C f ως ρς άξ συετρίς τ. f f g f f f ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Η λυωυική συάρτηση f() Η λυωυική συάρτηση f() =,. > a> a< a= < Η λυωυική συάρτηση f() =,. > < = =- Η ρητή συάρτηση a f(), a. Οι συρτήσεις f ( ), g( ). > < =η =συ M. Πρηράκης

Βσικές Γώσεις Μθητικώ έχρι κι τη Β Λυκείυ ΠΟΛΥΩΝΥΜΑ Πλυώυ είι κάθε ράστση υ ρεί άρει τη ρφή: P.... ε,,..., στθερί ρτικί ριθί κι R Τ λυώυ P έχει ρίζ τ ρ κι ό Pρ δηλ κι ό P ( ρ)(). Α P, Q δύ λυώυ ε Q τότε υάρχυ δύ λυώυ () κι υ() ώστε : P Q()() υ(). Τ λυώυ () κι υ() ρίσκτι κάτς τη διίρεση P :Q() Τ λυώυ P... είι τ ηδεικό κι ό = =... = εώ δύ λυώυ είι ίσ κι ό ι συτελεστές τω άθιω όρω τυς είι ίσι. ΤΡΙΩΝΥΜΟ Τριώυ είι κάθε ράστση υ ρεί άρει τη ρφή ε. ΡΙΕΣ Δ Δ Δ Έχει δύ ρίζες άισες τις:, Δ Έχει ι διλή ρίζ τη, ΜΟΡΦΗ f() f() i Δ i Δ Δ Έχει δύ ιδικές ρίζες τις, Δ f() 4 TΟ ΠΡΟΣΗΜΟ ΤΟΥ, Τιές τυ - Πρόση τυ, ετερόση τυ όση τυ Πρόση τυ τριωύυ Δ, Τιές τυ - + Πρόση τυ όση τυ ετερόση τυ όση τυ + Δ Τιές τυ - + Πρόση τυ όση τυ όση τυ Δ Τιές τυ - + Πρόση τυ όση τυ Πρσχή!!. Α ι κάθε R είι τότε είι Δ είι. Στη ερίτωση υτή τ τριώυ όση τυ δηλδή: ι κάθε R. Ισχύει ι κάθε ρτικό ριθό κι ό ισχύει: Δ κι. Ισχύει ι κάθε ρτικό ριθό κι ό ισχύει: Δ κι, κ.λ.. 4. Τ τριώυ διτηρεί στθερό ρόση ι κάθε ρτικό κι ό ισχύει Δ Δ Η συάρτηση f, είι ρλή ε κρυφή τ σηεί,f 4 Σχέσεις ριζώ συτελεστώ: (τύι Vietta) S ρ ρ, Ρ ρρ Εώ ι εξίσωση υ έχει δσέες ρίζες ρ, ρ είι η ΤΡΙΓΩΝΟΜΕΤΡΙΑ Πίκς τριωετρικώ ριθώ: Γωί ω ηω συω εφω, 6 45, 4 σφω SP 6, 9, 8, 7, M. Πρηράκης

Βσικές Γώσεις Μθητικώ έχρι κι τη Β Λυκείυ Βσικί τριωετρικί τύι κι ριθί:. η συ ή η συ ή η. εφ R κ,κ : κέρις συ. η, συ, ι κάθε R, εφ R, σφ R ι συ η, R, εφ σφ σφ, Rκ, κ Z συ η 4. η() η συ συ η, συ() συσυ ηη, 5. η η συ, ι R κ,κ : κέρις εφ συ συ η συ η, εφ εφ εφ εφ εφ() εφεφ 6. συ συ συ η, συ, εφ συ (Τύι τετρωισύ): 7. εφ εφ εφ εφ, σφ η συ εφ συ η εφ εφ εφ ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ κ θ Είι: η κ, κ, η ηθ ή ε κ συ κ, κ, κ θ κ θ η κ, κ συ συθ ή ε κ κ θ η κ, κ εφ εφθ κ θ ε κ συ κ, κ σφ σφθ κ θ ε κ συ κ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΑΝΙΣΩΣΕΙΣ: λύτι ε χρήση τυ τριωετρικύ κύκλυ.. Νός ηιτόω: Σε κάθε τρίω ΑΒΓ ισχύει ότι R ηα ηβ ηγ. Νός συηιτόω: Σε κάθε τρίω ΑΒΓ ισχύει ότι συα ΑΝΑΓΩΓΗ ΣΤΟ ΠΡΩΤΟ ΤΕΤΑΡΤΗΜΟΡΙΟ Οι ωίες κ ω κι ω έχυ τυς ίδιυς τριωετρικύς ριθύς ε κ. Οι τίθετες ωίες έχυ τ ίδι συηίτ συω συω, κι τίθετυς τυς άλλυς τριωετρικύς ριθύς ηω ηω, εφω εφω, σφω σφω. Δηλδή η συάρτηση f συ, R είι άρτι, εώ ι f η, R, fεφ, κ, fσφ, κ είι εριττές συρτήσεις. Οι ωίες της ρφής ή υ ρύ άρυ τη ρφή 8 ω, ω ή 6 ω ω, έχυ τυς ίδιυς τριωετρικύς ριθύς ε τη ωί ω ε ρόση ή άλ ε τ τετρτηόρι στ ί η τελική λευρά της ωίς τέει τ τριωετρικό κύκλ, θεωρώτς ότι ω Οι ωίες της ρφής ή υ ρύ άρυ τη ρφή 9 ω, ω ή 7 ω, ω, ελλάσσυ τυς τριωετρικύς ριθύς ε τη ωί ω, δηλδή τ ηίτ ίετι συηίτ ή τίστρφ κι εφτέη ίετι συεφτέη ή τίστρφ ε ρόση ή άλ ε τ τετρτηόρι στ ί η τελική λευρά της ωίς τέει τ τριωετρικό κύκλ, θεωρώτς ότι ω ΠΡΟΟΔΟΙ Αριθητική ρόδς άζετι η κλυθί ριθώ,,...,. στη ί κάθε όρς ρκύτει ό τ ρηύε ρσθέττς τ ίδι ριθό, (διφρά), ω. Ισχύυ: = +(-)ω, Σ + + +... ( )ω, εώ κί κι ική συθήκη ι είι τρείς ριθί,, διδχικί όρι ριθητικής ρόδυ είι η Γεωετρική ρόδς άζετι η κλυθί τω η ηδεικώ ριθώ,,..., στη ί κάθε όρς ρκύτει ό τ ρηύε λλλσιάζτς τ ίδι η ηδεικό ριθό, (λός), λ. (-) λ Ισχύυ: =λ, Σ + + +... εφόσ λ κι Σ λ, εώ κί κι ική λ συθήκη ι είι τρείς η ηδεικί ριθί,, διδχικί όρι εωετρικής ρόδυ είι η M. Πρηράκης

Βσικές Γώσεις Μθητικώ έχρι κι τη Β Λυκείυ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ Οάζετι η συάρτηση f(), ρίζετι ι κάθε R κι ίρει τιές στ,. Α είι ησίως φθίυσ εώ είι ησίως ύξυσ. Ορισός τυ e: lim =,788884594556874757...=e ΛΟΓΑΡΙΘΜΟΙ Ορισός lg θ θ ε, θ Νεέρις λάριθς λέετι λάριθς υ έχει άση τ e : ln e ε κι R. Δεκδικός λάριθς λέετι λάριθς υ έχει άση τ : lg ε κι R. Κάθε ρτικός ριθός ρεί ρφεί ως λάριθς : ι κάθε R ισχύει: lne ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Η συάρτηση f() lg, ρίζετι στ,, έχει τιές στ IR κι είι η τίστρφη της f Α είι ησίως φθίυσ, εώ είι ησίως ύξυσ ΙΔΙΟΤΗΤΕΣ: --- στις εόεες ιδιότητες όυ δε ράφετι τ εριεχόε τω λρίθω είι θετικά εώ ι άσεις θετικές κι όχι έ. ln P() lnp() ln ln e lne e ε lne P() e P() ε P lg () lg lg lg lg lg lg ε, κ κ lg ln lg ΑΛΛΑΓΗ ΒΑΣΗΣ σε λάριθ: lg, εικότερ ισχύει: lg,,, ln lg ΑΛΛΑΓΗ ΒΑΣΗΣ σε εκθετική συάρτηση : ση ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΕΚΘΕΤΙΚΗΣ ΛΟΓΑΡΙΘΜΙΚΗΣ εκθέτης εκθέτη ln(άσης) Οι συρτήσεις f() κι f() lg ε Είι τίστρφες κι έχυ ρφικές ρστάσεις υ είι συετρικές ως ρς τη ευθεί (Διλά σχήτ) ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΔΙΑΝΥΣΜΑΤΑ Α Α(, ) κι Β(, ) τότε AB, Α (,), τότε i j, e ή, e ln εώ τ έσ M τυ AB είι τ M, λ εφω, =a > =lg a =a << =lg a Έστω τ διύστ (, ) κι (, ). Tότε: Ορίζυε: συ(,) Ισχύυ (, ) ( ),, συ,, ρ (, ) (, ) det(,) // det(,) = ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ ε είι η: Α Β Γ ε A ή B. Ισχύυ: B, είι λαβ Η ευθεί (ε): Α Β Γ είι ράλληλη στ διάυσ δ ( Β,Α), στ διάυσ ε (Β, Α) κι έχει A συτελεστή διεύθυσης λ, εφόσ Β εώ είι κάθετη στ διάυσ. p (Α, Β) B Α Β Γ Η όστση εός σηείυ Μ(, ) ό τη (ε) είι: d(μ,ε) Α Β Τ εδό τυ τριώυ ΑΒΓ ε Α,, B,, Γ, είι: (ΑΒΓ) det(ab,aγ) Ο συτελεστής διεύθυσης της ευθείς υ διέρχετι ό τ A,,, M. Πρηράκης

Βσικές Γώσεις Μθητικώ έχρι κι τη Β Λυκείυ ΚΥΚΛΟΣ είι τ σύλ τω σηείω τυ ειέδυ Ο τ ί έχυ στθερή όστση ρ, (κτί τυ κύκλυ), ό έ στθερό σηεί Κ, (κέτρ τυ κύκλυ). Α Μ(,) υτά τ σηεί κι Κ(, ) τότε: ρ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΚΥΚΛΟΥ ABΓ ε Α Β 4Γ Α Β Τότε έχει κέτρ τ σηεί: Κ, κι κτί Α Β 4Γ ρ Η εξίσωση τυ κύκλυ στ ιδικό είεδ είι: zz ρ, ε z στθερός ιδικός ριθός κι ρ R. ΠΑΡΑΒΟΛΗ είι τ σύλ τω σηείω τυ ειέδυ Ο τ ί ισέχυ ό ι ευθεί δ, (διευθετύσ) κι έ στθερό σηεί Ε, (Εστί). p Α Μ(,) υτά τ σηεί κι δ:, Ε ( p,) τότε: dm,δ ME p. Τ άω τή είι η ρφική ράστση της συάρτησης p, εώ τ κάτω της p ε M(,) Α(,) Ο P p> M(,) Α p E, p δ: p p Α Μ(,) υτά τ σηεί κι δ :, Ε, τότε: dm,δ ME p. Αυτή η ρλή είι η ρφική ράστση της συάρτησης: p ΈΛΛΕΙΨΗ είι τ σύλ τω σηείω Μ(,) τυ ειέδυ Ο τ ί έχυ στθερό άθρισ στάσεω,, ό δύ στθερά σηεί Ε, Ε (εστίες), ( EE. Α είι E(,), E(,) τότε: ΜΕ ΜΕ Α,. Α είι E(,), E(, ) τότε: ΜΕ ΜΕ Α,. Τ άω τή της έλλειψης είι η ρφική ράστση της συάρτησης:, εώ τ κάτω της,,. Ατίστιχ ισχύυ ι τη Εκκετρότητ της έλλειψης άζετι ριθός ε. Ότ ε τότε η έλλειψη ίετι ι ελτυσέη, εώ ότ ε η έλλειψη τείει ίει κύκλς ΥΠΕΡΒΟΛΗ είι τ σύλ τω σηείω τυ ειέδυ τ ί έχυ στθερή όλυτη διφρά στάσεω,, ό δύ στθερά σηεί Ε, Ε (εστίες), ( EE ). a a Α Μ(,) υτά τ σηεί κι E(,), E(,) τότε: ΜΕ ΜΕ,. Ν Κ Α Μ(,) υτά τ σηεί κι E(, ), E(,) τότε ΜΕ ΜΕ, Α Α Ο Τ άω τή της υερλής είι η ρφική ράστση της συάρτησης: Μ Λ, εώ τ κάτω της,,,, Εκκετρότητ της υερλής άζετι ριθός ε.- Ατίστιχ ισχύυ ι τη ΑΣΥΜΠΤΩΤΕΣ ΤΗΣ ΥΠΕΡΒΟΛΗΣ είι ι κι εώ της είι ι κι. Ισσκελής υερλή λέετι η υερλή:. ΕΦΑΠΤΟΜΕΝΕΣ: τω ράω κυλώ στ σηεί τυς Α, ΚΩΝΙΚΗ ρ p p ΕΦΑΠΤΟΜΕΝΗ ρ p( ) p( ) A =p p> E(,) E, p p δ: B B M (, ) E(,) Α M. Πρηράκης