ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

Σχετικά έγγραφα
Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

x,f με j 012,,,...,n x,x S x f S x είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S x S x y y Μέθοδος κυβικών splines: Έστω ότι έχουμε τα δεδομένα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. x x

ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

Παράδειγμα #6 ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Πίνακας Περιεχομένων

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ

Επαναληπτικές Ασκήσεις

β) Με τη βοήθεια του αποτελέσµατος της απαλοιφής υπολογίστε την ορίζουσα του πίνακα του συστήµατος. x x = x

Αριθμητική Ανάλυση και Εφαρμογές

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Πίνακας Περιεχομένων

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική Ανάλυση και Εφαρμογές

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

Εφαρμοσμένα Μαθηματικά 3η εργαστηριακή άσκηση

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Παράδειγμα #2 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ. ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης

Χ. Α. Αλεξόπουλος. Τµήµα Μηχ. Η/Υ και Πληροφορικής Πανεπιστήµιο Πατρών

Επίλυση Γραµµικών Συστηµάτων

Ειδικά θέματα στην επίλυση

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

f x και τέσσερα ζευγάρια σημείων

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13

Εφαρμοσμένα Μαθηματικά ΙΙ

2.3 Πολυωνυμικές Εξισώσεις

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

Θεώρημα Bolzano. Γεωμετρική Ερμηνεία του θ.bolzano. Θ. Bolzano και ύπαρξη ρίζας

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17

3.""Πώς"θα"λύσω"μια"εξίσωση"δευτέρου"βαθμού;

όπου Η μήτρα ή πίνακας του συστήματος

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Εφαρμοσμένα Μαθηματικά ΙΙ

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α. Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1. Σφάλματα

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Θέματα Εξετάσεων Σεπτεμβρίου 2011:

2.1 Αριθμητική επίλυση εξισώσεων

ΜΕΜ251 Αριθμητική Ανάλυση

Γιώργος Μπαρακλιανός τηλ ( ) Κώστας Τζάλλας τηλ ( ) Παραγγελίες : τηλ.

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

1ο Κεφάλαιο: Συστήματα

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων.

Επαναληπτικές μέθοδοι

Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον.

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Non Linear Equations (2)

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Αριθμητική Ανάλυση και Εφαρμογές

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)

Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη)

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1

Transcript:

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ, --6 Επιμέλεια λύσεων: Γιώργος Τάτσιος Άσκηση [] Επιλύστε με μία απευθείας μέθοδο διατηρώντας τρία σημαντικά ψηφία σε όλους τους υπολογισμούς το γραμμικό σύστημα. 7 46 6. 9 4 6 7 Αιτιολογήστε την επιλογή της μεθόδου και επαληθεύστε ότι η λύση που προκύπτει ικανοποιεί το γραμμικό σύστημα. Για την επίλυση του γραμμικού συστήματος επιλέγετε η απαλοιφή Gauss με μερική οδήγηση. Η οδήγηση είναι απαραίτητη καθώς τα διαγώνια στοιχεία, και ειδικά το.7, είναι μικρότερα των υπολοίπων.. 7 46 6. 6 7. 89. 55. 548 r r rr / rr9r 9 4 9 4 9 4 rr 7. r 6 7. 7 46 6.. 7 46 6.. 89. 55. 548. 89. 55. 548. 89. 55. 548 8. 9 6.. 6 45. 4 6.. 9. 57. 84 454. 6. 9. 89. 6. 6. 89. 6. 6.. 89. 55. 548. 89. 55. 548 r r / 57 84 6... 57. 84 6 8. 97. r r r r / 45. 4 rr 8. 9r Με την διαδικασία της προς τα πίσω αντικατάστασης προκύπτει:.97.84.57.84.7.987.548.89.55.548.88.699.979 Για την επαλήθευση οι τιμές που βρέθηκαν αντικαθίστανται στο αρχικό σύστημα και προκύπτει.746 6. R.685 45.4.5. R R.85 9 4 R 8.6.8 45. 4 R R. 6 7 R. 5.7.7 7 R R. R, R, R είναι τα υπόλοιπα, δηλαδή η ποσότητα που μένει αν αντικατασταθούν οι τιμές των. (ιδανικά τα R, R, R θα ήταν μηδέν). Ο λόγος που τα υπόλοιπα δεν είναι μηδενικά είναι η απώλεια σημαντικών ψηφίων λόγω της διατήρησης μόνο τριών σημαντικών ψηφίων. Χωρίς οδήγηση:,, T.6,,869,.64 Ακριβής λύση:,, T T,, T

Άσκηση [] Α) Έστω ότι για την εύρεση της ρίζας της εξίσωσης f εφαρμόζεται ο επαναληπτικός αλγόριθμος F όπου ένας πραγματικός αριθμός. Να υπολογιστεί η τιμή του που να βελτιστοποιεί το ρυθμό σύγκλισης της επαναληπτικής διαδικασίας. F G dg Β) Δίδεται ό πίνακας 4 A 4 4 df d d df d Υπολογίστε τη φασματική ακτίνα G του πίνακα επανάληψης της μεθόδου acob για γραμμικά αλγεβρικά συστήματα με πίνακα συντελεστών τον πίνακα A. Πίνακας επανάληψης μεθόδου acob: G I D A 4 4 /4 4 4 4 /4 4 4 4 /4 4 G /4 /4 /4 /4 /4 /4 G /4 /4 /4 /4 /4 /4 Για να βρεθεί η φασματική ακτίνα πρέπει να βρεθούν οι ιδιοτιμές του πίνακα επανάληψης G : det G I / 4 / 4 /4 /4 /4 /4 f 6 f.4. -. -.5.5. -. -.4 Εικόνα : Γραφική απεικόνιση πολυωνυμικής συνάρτησης f ως προς. Από τη γραφική παράσταση προκύπτει ότι και οι τρεις ιδιοτιμές είναι στο διάστημα,. Επομένως, G και η μέθοδος acob συγκλίνει. Για την εύρεση των ιδιοτιμών εφαρμόζεται η μέθοδος της διχοτόμησης στο διάστημα, : l r m m.5 και f f.5.5. Από το γράφημα φαίνεται ότι το μέτρο των άλλων δύο ιδιοτιμών είναι μικρότερο από και επομένως G.5

Γ) Υπολογίστε τον αριθμό προσθέσεων/αφαιρέσεων, πολλαπλασιασμών και διαιρέσεων ανά επανάληψη της μεθόδου acob. ( ) ( ) Η μέθοδος acob περιγράφεται από τον αλγόριθμο: a j j b a j j Σε κάθε επανάληψη και για κάθε άγνωστο απαιτούνται προσθέσεις/αφαιρέσεις και μία διαίρεση. Σε κάθε επανάληψη συνολικά, αφού υπάρχουν άγνωστοι, απαιτούνται: διαιρέσεις. πολλαπλασιασμοί, Άσκηση [] Α) Έστω η συνάρτηση και τις αντίστοιχες τιμές πολυώνυμα f S,,, προσθέσεις/αφαιρέσεις και πολλαπλασιασμοί,. Με βάση τα σημεία, /, / και 5 f,,,, εφαρμόστε κυβικές sples και βρείτε τα με την υπόθεση ότι S S.,, f f f, f f f, f f f Συναρτήσεις Sples: y y f y f y S,, 6 6 6 6 y y f y f y S,, 6 6 6 6 y y f y f y S,, 6 6 6 6 Προσδιορισμός y, y, y, y : Από την εκφώνηση της άσκησης δίνεται y y και οι άλλες δύο άγνωστες ποσότητες θα βρεθούν από την λύση του συστήματος f f y y y 6 8 9 y y y 7 7 f 8 9 f y y y 6 y y y 7 7 Έτσι οι συναρτήσεις παρεμβολής γίνονται 9 6 4 S 8 7 4 9 9 S 8 8 4 9 6 4 S S 8 7 4,,,,,,

Β) Μια εναλλακτική στρατηγική στη μέθοδο των κυβικών sples είναι να χρησιμοποιούνται στα πρώτα δύο υποδιαστήματα και στα δύο τελευταία υποδιαστήματα μόνο από ένα πολυώνυμο ης τάξης. Με βάση αυτή τη προσέγγιση διατυπώστε την ελαφρά τροποποιημένη μαθηματική επεξεργασία ώστε να προκύψει το σύστημα των εξισώσεων για τον υπολογισμό των άγνωστων συντελεστών των πολυωνύμων ης τάξης. Στη κλασσική μεθοδολογία για σημεία,,...,, προκύπτουν πολυώνυμα S, S, S..., S, S, S Σύμφωνα με την προτεινόμενη μεθοδολογία τα πολυώνυμα S αντικαθίστανται με ένα πολυώνυμο ης έστω το S S και και αντίστοιχα τα πολυώνυμα S αντικαθίστανται με ένα πολυώνυμο ης έστω το S. Επομένως τα πολυώνυμα που πρέπει να προσδιοριστούν είναι : S S S, S,...,, και ο συνολικός αριθμός αγνώστων 4 Για τα 4 πολυώνυμα S,..., S,,...,, και S που αναφέρονται στα διαστήματα η διαδικασία παραμένει η ίδια όπως και στη κλασσική μεθοδολογία δηλαδή προκύπτουν οι παρακάτω εξισώσεις: Συνθήκη Α: Συνθήκες Β + Γ: Επίσης, στα διαστήματα, και, τώρα οι εξισώσεις είναι: Συνθήκη Α: 6 S f,,, S f,,,, Συνθήκες Β + Γ: 4 και, S S, S S και S S, S S Ο αριθμός των εξισώσεων είναι ο ίδιος με τον αριθμό των αγνώστων. ------ Λεπτομερή διατύπωση εξισώσεων -------- Τα πολυώνυμα είναι (, και ): y y f y f y S 6 6 6 6,, y y f y f y S 6 6 6 6,,, y y f y f y S 6 6 6 6, Στις σχέσεις αυτές εμφανίζονται άγνωστοι: y, y, y,..., y, y, y,

Για τον προσδιορισμό τους χρησιμοποιείται το σύστημα ( f f f, f f f και f f f): f f y y y 6, ( 5 εξισώσεις) f f y y y 6, f f y y y 6, Το σύστημα κλείνει (αριθμός εξισώσεων = αριθμό αγνώστων) με τις εξισώσεις: και S f Άσκηση 4 [] S f Έστω τα δεδομένα, y,...,, y. Διατυπώστε τη μέθοδο των ελαχίστων τετραγώνων για την εύρεση της γραμμικής συνάρτησης παρεμβολής y af bg όπου f και g είναι γνωστές συναρτήσεις. και S d y y y af bg d f y S y a f b g abf g af y bg y ds af bf g y f a f b f g y f da ds bg af g yg b g a f g yg db a f b f g y f a f g b g y g ak ak bk bk K K a K K K K K b K K K a b y f g yg f g f g f g f g ygf y f f g f g f g f g