Ηλεκτρονικοί Υπολογιστές I

Σχετικά έγγραφα

Ηλεκτρονικοί Υπολογιστές I

Ηλεκτρονικοί Υπολογιστές I

Ηλεκτρονικοί Υπολογιστές I

Ηλεκτρονικοί Υπολογιστές I

Ηλεκτρονικοί Υπολογιστές I

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Μικροβιολογία & Υγιεινή Τροφίμων

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ηλεκτρονικοί Υπολογιστές IV

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ηλεκτρονικοί Υπολογιστές I

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Ηλεκτρονικοί Υπολογιστές IV

Μαθηματικά και Φυσική με Υπολογιστές

Ηλεκτρονικοί Υπολογιστές IV

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Ηλεκτρονικοί Υπολογιστές I

Ηλεκτρονικοί Υπολογιστές I

Ηλεκτρονικοί Υπολογιστές IV

Εφαρμοσμένη Στατιστική

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Υπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Ιστορία της μετάφρασης

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

Μαθηματική Ανάλυση Ι

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Εκκλησιαστικό Δίκαιο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Βέλτιστος Έλεγχος Συστημάτων

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Βασικοί άξονες Μαθηματικά στην εκπαίδευση:

Μαθηματική Ανάλυση ΙI

Εκκλησιαστικό Δίκαιο

Ηλεκτρονικοί Υπολογιστές I

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

Ιστορία της μετάφρασης

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Μαθηματική Ανάλυση Ι

Εισαγωγή στους Αλγορίθμους

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Βασικές Αρχές Φαρμακοκινητικής

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Δείκτες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Ηλεκτρονικοί Υπολογιστές II

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Βέλτιστος Έλεγχος Συστημάτων

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Μηχανολογικό Σχέδιο Ι

Υπολογιστές Ι. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Ηλεκτρισμός & Μαγνητισμός

Εισαγωγή στους Αλγορίθμους

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Μαθηματική Ανάλυση Ι

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Ηλεκτρισμός & Μαγνητισμός

Οικονομετρία. Συστήματα συναληθευουσών εξισώσεων Το πρόβλημα της ταυτοποίησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης

Ηλεκτρονικοί Υπολογιστές I

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Εισαγωγή στην Διοίκηση Επιχειρήσεων

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Εισαγωγή στους Αλγορίθμους

Εφαρμοσμένη Στατιστική

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διπλωματική Ιστορία Ενότητα 2η:

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Παραγώγιση και ολοκλήρωση συναρτήσεων με το Maxima Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

Παραγώγιση συναρτήσεων με το πρόγραμμα Maxima ΜΗ ΕΙΝΑΙ ΒΑΣΙΛΙΚΗΝ ΑΤΡΑΠΟΝ ΕΠΙ ΓΕΩΜΕΤΡΙΑΝ Αθανάσιος Σταυρακούδης http://stavrakoudis.econ.uoi.gr 14 Νοεμβρίου 2013 1 / 27

Συνέχεια συνάρτησης f (x) f (x) = log(x 2) + 2 f (x) = x/2 f (x) = sin 2 x x 2 / 27

Συνέχεια συνάρτησης Ορισμός Μια συνάρτηση f (x) που ορίζεται σε ένα ανοιχτό διάστημα στο οποίο ανήκει το σημείο x = a είναι συνεχής σε αυτό το σημείο, αν για οποιοδήποτε ɛ > 0 υπάρχει κάποιο δ > 0 έτσι ώστε να ισχύει f (x) f (a) < ɛ, οπότε x a < δ 3 / 27

Παράγωγος συνάρτησης Παραγωγίσιμη συνάρτηση Μια συνάρτηση f (x) που ορίζεται στο ανοιχτό διάστημα (α, β) R στο οποίο ανήκει το σημείο x = a είναι παραγωγίσιμη σε αυτό το σημείο, αν το παρακάτω όριο υπάρχει και είναι πεπαρασμένος αριθμός: όπου h = x a f (a + h) f (a) lim x a h Ισχύει f (a + h) f (a) f (x) f (a) lim = lim x a h h 0 h 4 / 27

Παράγωγος ως κλίση εφαπτομένης Κλίση ευθείας: y x 5 35 = 6 ( 4) = 40 10 = 4 5 / 27

Παραγώγιση συναρτήσεων με το Maxima 6 / 27

Παραγώγιση περισσότερο πολύπλοκων συναρτήσεων 7 / 27

Παράγωγοι μεγαλύτερης τάξης d 2 d x 2 x 3 = 6 x d 2 cos x = cos x d x 2 d 3 d x 3 ( x e x ) = 3 e x x e x d 4 d x 4 ( 1 ) = 24 x x 5 8 / 27

Παράγωγοι μεγαλύτερης τάξης 9 / 27

Μερικές και ολικές παράγωγοι συναρτήσεων πολλών μεταβλητών Εστω η συνάρτηση δύο μεταβλητών: Οι μερικές παράγωγοι είναι: f (x, y) = x 2 + y 2 df (x) dx = 2x και df (y) = 2y dx Ο υπολογισμός στο Maxima μπορεί να γίνει ως εξής: 1 f(x, y) := x^2 + y^2; 2 diff(f(x, y), x); 3 diff(f(x, y), y); 10 / 27

Μερικές και ολικές παράγωγοι συναρτήσεων πολλών μεταβλητών 11 / 27

Ορισμός συναρτήσεων παραγώγων f (x) = x 2 Πως μπορούμε να ορίσουμε τη συνάρτηση της παραγώγου: Εστω η συνάρτηση: g (x) = f (x) = 2 x Με χρήση του τελεστή διπλού εισαγωγικού: 1 f(x) := x^2; 2 g(x) := (diff(f(x), x)); Με χρήση της συνάρτησης define: 1 f(x) := x^2; 2 define(g(x), diff(f(x), x)); 12 / 27

Ορισμός συναρτήσεων παραγώγων 13 / 27

Εφαπτομένη σημείου y = f (x) x + f (a) a f (a) 14 / 27

Εφαπτομένη σημείου 1 f(x) := x^2-6*x+20; 2 g(x) := ( diff(f(x), x, 1) ); 3 a : 1; 4 g(a); 5 xy : [[a, f(a)]]; 6 h(x) := ( g(a)*x+f(a)-a*g(a) ); 7 plot2d( [f(x), h(x), [discrete, xy]], 8 [x, a-5, a+5], [ylabel, "f(x)"], 9 [style, [lines, 2, 1], [lines, 2, 2], 10 [points, 3, 5, 1]], 11 [legend, ""], 12 [gnuplot_preamble, "set grid"]); 15 / 27

Συνάρτηση με ένα ακρότατο f (x) = 3 x 2 12 x + 17 16 / 27

Υπολογισμός σημείου ακρότατου Η συνάρτηση: έχει ακρότατο στο σημείο όπου: το οποίο μπορεί να υπολογιστεί ως: 1 f(x) := 3*x^2-12*x +17; 2 f1(x) := (diff(f(x), x)); 3 sol : solve(f1(x)=0, x); 4 x0 : rhs(sol[1]); 5 f(x0); 6 f1(x0); f (x) = 3 x 2 12 x + 17 f (x) = 6 x 12 = 0 17 / 27

Συνάρτηση με περισσότερα από ένα ακρότατα Εστω η συνάρτηση: f (x) = x 4 4 x 3 2 x 2 + 12 x + 120 18 / 27

Συνάρτηση με περισσότερα από ένα ακρότατα f (x) = x 4 4 x 3 2 x 2 + 12 x + 120 Η εξίσωση της παραγώγου της: 4 x 3 12 x 2 4 x + 12 = 0 έχει τρεις ρίζες: x = 1, x = 1, x = 3 19 / 27

Συνάρτηση με περισσότερα από ένα ακρότατα 1 f(x) := x^4-4*x^3-2*x^2 + 12*x + 120; 2 f1(x) := (diff(f(x), x)); 3 sol : solve(f1(x)=0); 4 x1 : rhs(sol[1]); 5 x2 : rhs(sol[2]); 6 x3 : rhs(sol[3]); 7 f2(x) := (diff(f(x), x, 2)); 8 f2(x1); 9 f2(x2); 10 f2(x3); 1: ορισμός συνάρτησης 2: ορισμός πρώτης παραγώγου 3: επίλυση της εξίσωσης f (x) = 0 4 6 : ανάθεση τιμών των ριζών σε μεταβλητές 7: ορισμός δεύτερης παραγώγου (προαιρετικά) 8 10: εξέταση αρνητικών ή θετικών τιμών, μέγιστο ή ελάχιστο; 20 / 27

Βελτιστοποίηση συνάρτησης δύο μεταβλητών Συνάρτηση κερδών από την πώληση δύο προϊόντων: π (x, y ) = 0.4 x 2 0.1 y 2 0.08 x y + 120 x + 60 y 400 21 / 27

Βελτιστοποίηση συνάρτησης δύο μεταβλητών Το ακρότατο (αν υπάρχει) μπορεί να βρεθεί ως εξής: 1 pi : -0.4*x^2-0.1*y^2-0.08*x*y + 120*x + 60*y - 400; 2 pi1x : (diff(pi, x)); 3 pi1y : (diff(pi, y)); 4 crit : solve([pi1x=0, pi1y=0], [x, y]); 22 / 27

Βελτιστοποίηση συνάρτησης δύο μεταβλητών π (x, y) = 0.4 x 2 0.1 y 2 0.08 x y + 120 x + 60 y 400 Η μερική παράγωγος ως προς x είναι: π x Η μερική παράγωγος ως προς y είναι: π y = 0.8 x 0.08 y + 120 = 0.08 x 0.2 y + 60 Επίλυση του συστήματος 0.8 x 0.08 y + 120 = 0 0.08 x 0.2 y + 60 = 0 23 / 27

Εσσιανή μήτρα H(f ) = 2 f x 2 1 2 f x 2 x 1. 2 f x n x 1 2 f x 1 x 2 2 f 2 f x 2 2. x 1 x n 2 f x 2 x n.... 2 f x n x 2 2 f xn 2 Η εσσιανή μήτρα (Hess matrix) είναι τετραγωνική μήτρα με στοιχεία τις δεύτερης τάξης παραγώγους μιας συνάρτησης. Θετικά ορισμένη Μέγιστο Αρνητικά ορισμένη Ελάχιστο Για την περίπτωση που εξετάζουμε: H(π) = 2 π x 2 1 2 π y x 2 π x y 2 π y 2 = [ 0.8 ] 0.08 0.08 0.2 24 / 27

Καθολική βελτιστοποίηση Πολυσύνθετο πρόβλημα. Περισσότερες από 5000 επιστημονικές εργασίες το χρόνο. Εξειδικευμένα περιοδικά και συνέδρια. Βασικό πρόβλημα σε όλες τις επιστήμες, και στα Οικονομικά. Πολυάριθμες υπολογιστές μέθοδοι προσέγγισης. http://stavrakoudis.econ.uoi. gr/stavrakoudis/?menu=psoe 25 / 27

Καθολική βελτιστοποίηση Πολυσύνθετο πρόβλημα. Περισσότερες από 5000 επιστημονικές εργασίες το χρόνο. Εξειδικευμένα περιοδικά και συνέδρια. Βασικό πρόβλημα σε όλες τις επιστήμες, και στα Οικονομικά. Πολυάριθμες υπολογιστές μέθοδοι προσέγγισης. http://stavrakoudis.econ.uoi. gr/stavrakoudis/?menu=psoe Αν κάποιος πλανόδιος πωλητής πρέπει να επισκεφτεί όλες τις πρωτεύουσες των νομών της Πελοποννήσου, ποια είναι η συντομότερη διαδρομή που πρέπει να επιλέξει; 26 / 27

Σχόλια και ερωτήσεις Σας ευχαριστώ για την προσοχή σας Είμαι στη διάθεσή σας για σχόλια, απορίες και ερωτήσεις 27 / 27

Τέλος Ενότητας

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.0. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση 1.0 διαθέσιμη εδώ. http://ecourse.uoi.gr/course/view.php?id=1064.

Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης. «Ηλεκτρονικοί Υπολογιστές IV. Παραγώγιση και ολοκλήρωση συναρτήσεων με το Maxima». Έκδοση: 1.0. Ιωάννινα 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://ecourse.uoi.gr/course/view.php?id=1064.

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1] https://creativecommons.org/licenses/by-sa/4.0/.