( 1) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ A A 1. Σχολικό σελ. 260 Α 2. Σχολικό σελ. 169 Α 3 Α 4 ΘΕΜΑ Β Β1. Άρα. Β2. Άρα από την δεύτερη σχέση έχω: = 1

Σχετικά έγγραφα
Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 11: ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ 2.8: Κυρτότητα Σημεία Καμπής του σχολικού βιβλίου].

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2013

ÈÅÌÁÔÁ 2008 ÏÅÖÅ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

( ) ( ) ( ) ( ) ( ) ( ) = α συνεπώς: α 2βα +β + α 2α + 1= 0 α β + α 1 = 0 α 1= α β = 0 1 β = 0 β = 1 + = + = συνεπώς: ( ) + 1 για κάθε x R.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑ 52 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α

Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α. Απόδειξη σελ

( ) ( ) ( ) ( ) =α συνεπώς: 2α 4βα+β = 2βα+ 2α 1 2α 4βα+β + 2βα 2α+ 1= 0. α 1= ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ Α 3. Σχολικό βιβλίο σελ.

3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

ΥΠΟΔΕΙΞΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελ Ορισμός σχολικού βιβλίου σελ. 303 Α2.

( ) ( ) ΘΕΜΑ 2 ο Α. Είναι. f (x) > 0 e 1 x > 0 1 x > 0 1 > x x < 1. η f είναι γνησίως αύξουσα Στο [ 1, + ) η f είναι γνησίως φθίνουσα.

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( )

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 βλ. σχολικό βιβλίο σελ Α.2 βλ. σχολικό βιβλίο σελ. 246 Α.3 βλ. σχολικό βιβλίο σελ. 222 Α.4 α Λ, β Σ, γ Σ, δ Λ, ε Σ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α T E Y Θ Υ Ν Σ Η Σ

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2.

ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Άγγελος Λιβαθινός, Μαθηματικός. ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ. Α1. Θεωρία ( Σχολικό Βιβλίο, Σελίδα 98. Μέτρο Μιγαδικού αριθμού- ιδιότητα)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. I. Να αποδείξετε ότι η γραφική παράσταση της f δεν έχει σηµεία που να βρίσκονται πάνω από τον άξονα. x x.

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

lim f x lim g x. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΜΑΙΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ. Άρα ο γ.τ. των Μ(z) είναι κύκλος µε κέντρο το Ο(0, 0) και ακτίνα ρ=1

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ÏÑÏÓÇÌÏ ÇÑÁÊËÅÉÏ ( )( ) ( )( ) Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. w w + 1= + 1. α= α.

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 1. x-2 x 5x x -3 x dx, ε. 20x 3- x dx, στ. dx. εφx+εφ3x dx, δ. e dx, ε. ηµ - +3 dx. 2 3

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. Α. Έστω συνάρτηση f παραγωγίσιµη δύο φορές στο [, ] f''! 0 για κάθε χ [ a, β ] και έστω η

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 24 / 5 / 08 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ. Άρα ο γεωμετρικός τόπος του z είναι κύκλος με κέντρο Κ(0, 0) και ακτίνα ρ = 2

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΝΕΟ ΦΡΟΝΤΙΣΤΗΡΙΟ. Λύσεις. Θέμα Α. Α1. Σχολικό βιβλίο σελίδα 262. Α2. Σχολικό βιβλίο σελίδα 169. Α3. α) (1) κάτω, (2) το σημείο επαφής τους

Επομένως ο γεωμετρικός τόπος των εικόνων του z είναι ο κύκλος με κέντρο

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23

1 η ΕΚΑ Α ΜΑΘΗΜΑ 45 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΥΤΕΡΑ 27 ΜΑΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ


γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

Πανελλαδικές εξετάσεις 2016

5o Επαναληπτικό Διαγώνισμα 2016

και g(x) =, x ΙR * τότε

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

3x 2x 1 dx. x dx. x x x dx.

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο

) f (x) = e x - f(x) ΜΑΘΗΜΑ Η ΣΥΝΑΡΤΗΣΗ F(x) = ΑΣΚΗΣΕΙΣ. Ασκήσεις Εύρεση συνάρτησης Ύπαρξη ρίζας. f (t)dt

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου

AΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2018

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ

α) Στο μιγαδικό επίπεδο οι εικόνες δύο συζυγών μιγαδικών είναι σημεία συμμετρικά ως προς τον πραγματικό άξονα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

Ασκήσεις σχ. βιβλίου σελίδας

ΑΠΑΝΤΗΣΕΙΣ. και g(x) =, x ΙR * τότε

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

A3. Σχολικό βιβλίο σελίδα 73 Α4. α. Λάθος, β. Σωστό, γ. Λάθος, δ. Σωστό, ε. Σωστό.

{ } { ( ) } ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 MAΪΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

ΘΕΜΑ 1 ο A.1. σελ. 235 A.2 σελ Β. α. Σ, β. Σ γ. Λ δ. Λ ε. Σ. ΘΕΜΑ 2 ο

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

είναι μιγαδικοί αριθμοί, τότε ισχύει , z 2 Μονάδες 2 β. Μία συνάρτηση f με πεδίο ορισμού Α λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο x 0

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 27 MAΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 13 ΔΕΚΕΜΒΡΙΟΥ 2015 ΑΠΑΝΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 Σχολικό βιβλίο σελ Α2 Σχολικό βιβλίο σελ. 28 Α3. α σωστό, β σωστό, γ λάθος, δ λάθος, ε σωστό. ΘΕΜΑ Β

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ x. Η f είναι συνεχής στο x0. lim lim 1. Παρατηρούμε, δηλαδή, ότι μια

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2015 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ίνονται οι πραγµατικές συναρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη και δεύτερη παράγωγο και g(x) f(α) g(α) f(x) g (x) για κάθε x { α}

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Τετάρτη, 20 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x

Transcript:

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ 7//- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ KAI ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΚΑ () ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ A A Σχολικό σελ. 6 Α Σχολικό σελ. 6 Α 3 Σχολικό σελ. 69 Α Σ, β Λ, γ Λ, δ Σ, ε Λ ΘΕΜΑ Β Β. 3 + ( + 3i)( 3+ i) 3 + ( ) z + i 3i i z 6 z 6 z + i z 3i 3i 6+ i + 9i 6 6 3i 3 z 6 6 i 3i 3+ 3i z z z Άρ i ( ) + z 8 7 [( + i) ] ( 8 i z + i ) 7 7 7 i i 3 i i 8 8 ( i) i Β. Άρ ό την δεύτερη σχέση έχω: z + iz ΤΕΛΟΣ ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

z ( + i) + i z + i Ο γεωµετρικός τόος ( z) M είν ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ( i) z z + νι κύκλος K(, ) 5 ( i) 5 C : ρ, ( ) ( ) + ( ψ+ ) 5 Β3. w+ w+ w+ Έχω ότι R w i w i w i w+ w+ w i w+ i ww+ iw + w + i ww + w iw i i i ( w+ w) i yi + i + w w+ i ( y + ) y + Άρ ο γεωµετρικός τόος της Ν (w) είνι η ευθεί ε ό την οοί εξιρείτι το σηµείο Α(,) λόγω εριορισµού. Β. Αφού w νήκει στον γεωµετρικό τόο του (Β 3 ) κι R(w ) 3 τότε ( ) ( ) Im w 3 + 6+ εοµένως w 3 i κι Α (-3,) η εικόν του w τότε ( AK) ( 3 ) + ( + ) 6 + 9 5 Άρ µέγιστη τιµή : z w ( AΚ ) + ρ 5+ 5 ελάχιστη τιµή : z w ( ) AΚ ρ 5 5 Εοµένως 5 5 z w 5+ 5 ΘΕΜΑ Γ Γ.. f'() f() + συν f'() f() συν f'() + ( )'f( ( ) ( ) ) συν f() ' ηµ ' Εοµένως f() ηµ + c, c R Γι, έχουµε f + + ηµ c c + c c ΤΕΛΟΣ ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Άρ f() ηµ f() ηµ, [,] Γ.. i) H f είνι ργωγίσιµη στο [,] ως γινόµενο ργωγίσιµων συνρτήσεων µε f'() ηµ + συν (ηµ + συν), [,] Η f' είνι ργωγίσιµη στο [,] ως γινόµενο ργωγίσιµ µων συνρτήσεων µε: f''() (ηµ + συν + ν) (συν ηµ) συν γι [,] f() συν, γι [,]. Είσης, γι,, συν >, άρ f''() > κί γι,, Το ρόσηµο της f'' συν <, άρ f''() < φίνετι στον ρκάτω ίνκ f ( ) + ο - f Η f είνι κυρτή στο Σ.Κ., κι κοίλη,. Η C έχει σηµείο κµής το f A,f. ii) Γι κάθε,, είνι f''() >, άρ η f' είνι γνησίως ύξουσ στο,. Εοµένως γι < < f'() < f'() < f' f'() f' f'( < < ) > ΤΕΛΟΣ 3ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

Γι κάθε,., ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ είνι f''() <, άρ η f' είνι γνησίως φθίνουσ στο 3 Πρτηρώ ότι η εξίσωση f'() έχει ρίζ τον ριθµό. Γι 3 3 < < f' f'() f' f'() > > > > Γι 3 < < 3 f' > f'() > f'() > f'() > Το ρόσηµο της f' ' κι η µονοτονί της f φίνοντι στον ρκάτω ίνκ f ( ) 3 f Ο.Μ. Ο.Ε. Ο.Ε. Η f είνι γνησίως ύξουσ στο 3, κι γνησίως φθίνουσ στο 3,. 3 + ο - Προυσιάζει ολικό µέγιστο το 3 γι 3 κι ολικό ελάχιστο το γι κι. Γ.3. i) H g είνι ργωγίσιµη στο [,] µε g'() συν ηµ Άρ g'() f'(). Είσης f() g(). Εοµένως οι C,C έχουν f g στο σηµείο τους µε τετµηµένη εφτοµένη των (ε): y ( ) y., κοινή ii) Εειδή η f '()είνι γνησίως ύξουσ στο,, η C f στρέφει τ κοίλ άνω στο,. Εοµένως f( () () γι κάθε,. ΤΕΛΟΣ ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

ΑΡΧΗ 5ΗΣ ΣΕΛΙ ΑΣ Εοµένως f() () γι κάθε Το «ίσον» ισχύει γι.,. Η g' είνι ργωγίσιµ µη στο, µε g''() ηµ (ηµ + συν) ηµ συν < γι,. Άρ η C στρέφει τ κοίλ κάτω στο g,. Εοµένως g() () γι,. Το «ίσον» ισχύει γι. Αό τις σχέσεις () κι () συµερίνουµε ότι f() g() γι,. Γ.. i) Eειδή η f'() (ηµ + συν) >,, η f είνι γνησίως ύξουσ στο,, άρ κι στο διάστηµ υτό. Εοµένως ορίζετι η f Η f είνι συνεχής στο, µε σύνολο τιµών το f, f(),f, Άρ το εδίο ορισµ µού της f είνι το,. ii) Η f είνι ρ γωγίσιµη στο,. Σύµφων µε το θεώρηµ µέσης τιµής, υάρχει έν τουλάχιστον ξ, ΤΕΛΟΣ 5ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

τέτοιο, ώστε (f )'(ξ Θεωρούµε τη συνάρτηση ΑΡΧΗ 6ΗΣ ΣΕΛΙ ΑΣ f ( ) f () ξ) h(), R.. Η h είνι ργωγίσιµη στο R, µε h'() ( ( ) h'() ( > ) > < Το ρόσηµο της h' κι η µονοτονί της hφίνοντι στον ρκάτω ίνκ h ( ) 3 + + ο - h Η hείνι γνησίως φθίνουσ στο,+. Άρ < h 3 > > 3 h 3 3 - Εοµένως, ( f ) ( ξ < 3 ( ) 3 ΘΕΜΑ :. f (t)ln( ) dt t f (t)(ln ln t)dt (f (t)ln f (t)ln t)dt f (t)ln dt f (t)ln tdt ln f (t)dt f (t)ln tdt f ( t) u t t u t dt du ( t) dt dt f ( t) u t ( dt) t u t u - f (u) f (u) du du u Αρ η δοθείσ σχέση γίνετι: : t t ln f (t)dt f (t)ln tdt ΤΕΛΟΣ 6ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ f (u 3 f (t) dt f (t) dt +, > 8 3 u t u) du f (t) dt

ln 3 f (t)dt f (t)ln tdt, > 8 3 Oι συνρτήσεις: f(t) συνεχής στο (, + ), f (t)ln t συνεχής (ως γινόµενο συνεχών) στο 3 (, + ), h () ργωγίσιµη στο (, + ) ως ολυωνυµική κι οι 8 3 κ () f (t)dt, κ () f (t)ln tdt κι κ () ln 3 ργωγίσιµες ως ράγουσες οι (), κ κ () κι η κ () 3 ως λογριθµική Πργωγίζοντς την ροηγούµ µενη σχέση έχω: 3 f (t)dt+ ln f () f ()ln 3, > 8 3 3 f (t)dt, > 3 f (t)dt, > ΑΡΧΗ 7ΗΣ ΣΕΛΙ ΑΣ 3 Πργωγίζοντς έχω: f () 3, > g( ) g( β) ( ) g ( β ) tdt g ( )tdt) <<β, g( ) g( β Οι συνρτήσεις ϕ (t) ( ) g ( β))t, t R κι κ (t) g ( )t, t R R g( ) g( ) είνι συνεχείς στο R κι οι w () β ( g ( β ))tdt, w () g ( )tdt συνεχείς κι ργωγίσιµες ως ράγουσες Πργωγίζοντς την σχέση έχω : g( ) g( ) g( β) ( ) (g( ) g( β)) ( g ( β )) g ( ) g ( β ) g ( ) g ( β ) g ( ) g( β) g ( ) g ( β) g () Έστω λ () g( ) g( β) g() λ () συνεχής ως ηλίκο κι σύνθεση συνεχών στο [,β] λ () ργωγίσιµη ως ηλίκο κι σύνθεση ργωγίσιµων στο (,β) g ( ) g ( β) λ( ) λ( β ) g( ) g( β) ΤΕΛΟΣ 7ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

ΑΡΧΗ 8ΗΣ ΣΕΛΙ ΑΣ Αό το θεώρηµ του ROLLE έχω ότι θ υάρχει έν τουλάχιστον (, β) : λ ( ). g () (g ()) ( ) '' g() g() ' ' λ () g() Αρ θ υάρχει g () (g ()) g() '' ' [ ] έν τουλάχιστον (, β ) : g ( ) g ( ) 3 f () f () g(t) g(t) g(t) g( f ()) ) g (t) dt ( ) dt λ λ ( ) ( g(f ()) g( λ) g f () g 3 f () 3, > f () 6 6 6(), f f () > 6( ) > < f () ) g ր 3 f () 3 g: λ λ λ f () 6( ) ή ή > λ ( ορ.) g( g λ ) f ( ) + _ + f γνησ.φθίνουσ O.E γνησ.ύξουσ (,] [, ) + ( ] f συνεχής, f f (,] (( ]) ) [ ), f (), lim f (), + 3 f (), lim f () lim ( 3 ) + + ΤΕΛΟΣ 8ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

f ή (, f ր (, + ) συνεχ ς + f ΑΡΧΗ 9ΗΣ ΣΕΛΙ ΑΣ ( ) ( ) (, + ) lim f (), lim f () (, + ) + + 3 3 lim( 3 ), lim ( 3 ) + + + + λ < λ λ f ( ), f ( ) άρ η f () λ Α ΥΝΑΤΗ 3 3 λ λ f ( ) 3 3 +, p(ρίζ) -3 III - - - - ( )( ) διλή Eοµένως η f()λ κι λόγω µονοτονίς θ έχει µονδική διλή ρίζ την <λ< λ f ( ), λ f ( κι λόγω µονοτονίς δύο κριβώς ρίζες θετικές. λ λ, f ( ) ορ ( > ) ) άρ η εξίσωση f()λ έχει δύο τουλάχιστον 3 3 ( 3) ( ορ > ) η 3 3 Άρ η f () λ έχει µονδική λύση την 3 λ > λ f ( ) άρ η f() λ έχει τουλάχιστον κι λόγω µονοτονίς κριβώς ρίζ θετική β) g ր t. > t t t lnβ g(ln ) < g(t) < g(ln β) g(ln ) < g(t) < g(ln β) t lnβ lnβ t t g(ln ) dt g(t)dtt < lnβ t g(ln ) dt < β ΤΕΛΟΣ 9ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ

g(ln ) lnβ ln t dt β t g(t)dt < < g(ln β) g(ln ) ln lnβ t β t < g(t)dt ln ln lnβ β t ln ln g(ln )( + ) < g(t)dt g(ln )( β < β + ) ln ln lnβ t g(ln )( β ) ln β + < g(t)dt < g(ln β) + lnβ t g(ln ) < g(t)dt < β g(ln β) β ( β) lnβ t g(ln ) ( ) < g(t)dt < g β g(ln β) β β β > β g(ln ) β lnβ t < g(t)dt < β η [ ] ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ lnβ t g συνεχής ln,lnβ ΘΕΤ g(ln ) g(ln β)( λόγωότιg ր) θ υάρχει έν τουλάχιστον ξ (ln,ln β) : g( ξ ) η () g(ln ) <η< g(ln β) ln t Άρ θ υάρχει έν του ά (ln,ln ) : β β υλ χιστον ξ β g(t)d β dt g( ξ ) Άρ θ υάρχει έν τουλά χιστον ξ (ln,ln β) : ( β)g( ξ ) β dt t t < g(ln β) g(ln β ) () lnβ ln β lnβ t g(t)dt ΤΕΛΟΣ ΗΣ ΑΠΟ ΣΕΛΙ ΕΣ