Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Σχετικά έγγραφα
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Μικροβιολογία & Υγιεινή Τροφίμων

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επιλύσιμες Ομάδες. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

Ηλεκτρισμός & Μαγνητισμός

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Ιστορία της μετάφρασης

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Ηλεκτρισμός & Μαγνητισμός

Εκκλησιαστικό Δίκαιο

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

ΗΜΙΑΓΩΓΑ ΥΛΙΚΑ: ΘΕΩΡΙΑ-ΔΙΑΤΑΞΕΙΣ

Ηλεκτρονικοί Υπολογιστές I

Εισαγωγή στους Αλγορίθμους

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

Εκκλησιαστικό Δίκαιο

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Εφαρμοσμένη Στατιστική

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Εισαγωγή στους Αλγορίθμους

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Διοικητική Λογιστική

Ιστορία της μετάφρασης

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Η οµή των Κυκλικών Οµάδων

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Δείκτες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Σχεδιασμός & Αξιολόγηση Προγραμμάτων Εκπαίδευσης Ενηλίκων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

Ενότητα: Περιγραφική Στατιστική 1: Πίνακες - Διαγράμματα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Υπολογιστές Ι. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Παράκτια Τεχνικά Έργα

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης

Διπλωματική Ιστορία Ενότητα 2η:

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Βασικοί άξονες Μαθηματικά στην εκπαίδευση:

Transcript:

Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Χαρακτηρισµοί Πεπερασµένων Κυκλικών Οµάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών

233 4. Χαρακτηρισµοί Πεπερασµένων Κυκλικών Οµάδων Είδαµε στην προηγούµενη ενότητα (Πρόταση 3.18) ότι αν (G, ) είναι µια πεπερασµένη οµάδα, τότε η τάξη της o(g) έχει την ιδιότητα : x o(g) = e, x G. Η ακόλουθη πρόταση δείχνει ότι µια πεπερασµένη κυκλική οµάδα ικανοποιεί κάτι ισχυρότερο : Πρόταση 4.1. Εστω (G, ) µια πεπερασµένη κυκλική οµάδα. µικρότερος ϕυσικός αριθµός n έτσι ώστε : x n = e, x G. Τότε ο ϕυσικός αριθµός o(g) είναι ο Απόδειξη. Εστω g ένας γεννήτορας της G: G = g. Τότε o(g) = o(g) := n και όπως γνωρίζουµε n είναι ο µικρότερος ϕυσικός m έτσι ώστε g m = e. Εστω x G. Επειδή G = g = { e = g 0, g, g 2,, g n 1} ϑα έχουµε x = g k για κάποιο k n 1. Τότε x o(g) = (g k ) o(g) = e. Προφανώς ο ϕυσικός n είναι ο µικρότερος ο µικρότερος ϕυσικός m έτσι ώστε x m = e, x G, διότι αν υπήρχε ϕυσικός m < n έτσι ώστε x m = e, x G, τότε ϑα ίσχυε g m = e, κάτι που είναι άτοπο διότι η o(g) = n. Σκοπός της παρούσης ενότητας είναι να αποδείξουµε ότι η παραπάνω ιδιότητα χαρακτηρίζει τις κυκλικές οµάδες στην κλάση των πεπερασµένων αβελιανών οµάδων. Θεώρηµα 4.2. Εστω (G, ) µια πεπερασµένη αβελιανή οµάδα. Τότε τα ακόλουθα είναι ισοδύναµα : (1) Η G είναι κυκλική. (2) Η τάξη o(g) = G της G είναι ο µικρότερος ϕυσικός αριθµός n έτσι ώστε : x n = e, x G. Για την απόδειξη ϑα χρειαστούµε τις ακόλουθες ϐοηθητικές προτάσεις οι οποίες παρουσιάζουν ενδια- ϕέρον από µόνες τους. Στην απόδειξή τους ϑα χρησιµοποιήσουµε στοιχειώδη αποτελέσµατα της Θεωρίας Αριθµών. Λήµµα 4.3. Εστω (G, ) µια αβελιανή οµάδα και x, y G στοιχεία της G έτσι ώστε : Τότε : o(x) = m < και o(x) = n < και (m, n) = 1 x y = {e} και o(xy) = mn Απόδειξη. Εστω x x y και εποµένως z x και z y. Άρα z = x k = y l. Τότε Εποµένως : z m = x km = (x m ) k = e και z n = y ln = (y n ) l = e o(z)/m και o(z)/n Άρα z = e και εποµένως : x y = {e}. (m,n)=1 = o(z) = 1 Εστω o(x y) = r. Τότε, λαµβάνοντας υπ όψιν ότι η G είναι αβελιανή, ϑα έχουµε : και εποµένως : x r y r = (x y) r = e = x r = (y r ) 1 = y r x y = {e} x r = e και y r = e = x r = e και y r = e = o(x) = m/r και o(y) = n/r Τότε [m, n]/r και επειδή όπως γνωρίζουµε από την Θεωρία Αριθµών, [m, n](m, n) = mn, η υπόθεση (m, n) = 1, συνεπάγεται ότι : mn/r. Από τη άλλη πλευρά : (xy) mn = x mn y mn = (x m ) n (y n ) m = e e = e = r/mn Συµπεραίνουµε ότι mn = r, δηλαδή : o(xy) = o(x)o(y) Η παρακάτω Άσκηση γενικεύει το Λήµµα 4.3:

234 Ασκηση 279. Εστω G µια πεπερασµένη αβελιανή οµάδα. Τότε : x, y G : o(xy) = [o(x), o(y)] Λήµµα 4.4. Εστω (G, ) µια πεπερασµένη αβελιανή οµάδα. Τότε η G περιέχει ένα στοιχείο g του οποίου η τάξη είναι το ελάχιστο κοινό πολλαπλάσιο των τάξεων όλων των στοιχείων της G: Απόδειξη. είχνουµε πρώτα ότι : g G : o(g) = [o(g 1 ), o(g 2 ),, o(g n )] αν x, y G και o(x) = m, o(y) = n, τότε υπάρχει ένα στοιχείο z G έτσι ώστε : o(z) = [m, n] Για τους ϑετικούς ακεραίους m, n από την Θεωρία Αριθµών, µπορούµε να γράψουµε : m = p e 1 1 pe 2 2 pe k k και n = p f 1 1 pf 2 2 pf k k όπου οι p 1, p 2,, p k είναι διακεκριµµένοι πρώτοι αριθµοί, και e i, f i 0, 1 i k. Χωρίς ϐλάβη της γενικότητας, (εν ανάγκη αναδιατάσσοντας τους πρώτους αριθµούς p 1, p 2,, p k ), µπορούµε να υποθέσουµε ότι : Θέτοντας e 1 f i,, e j f j και e j+1 f j+1,, e k f k, για κάποιο 1 j k ϐλέπουµε εύκολα ότι : [m, n] = n s Επιπλέον : o(x r ) = m r και εποµένως από το Λήµµα 4.3 ϑα έχουµε ότι : Χρησιµοποιώντας την ταυτότητα : r = p e 1 1 pe 2 2 pe j j και s = p f j+1 j+1 pf j+2 j+2 pf k k m r = pf 1 1 pf 2 2 pf j j pe j+1 1 p e j+2 2 p e k k και ( m r, n s ) = 1 και o(y s ) = n s το στοιχείο z = x r z s έχει τάξη o(z) = [m, n] = n s m, n, t Z + : [[m, n], t] = [m, n, t] και επαναλαµβάνοντας την παραπάνω διαδικασία ϑα έχουµε ότι : αν x, y, z G και o(x) = m, o(y) = n, o(z) = t, τότε υπάρχει ένα στοιχείο w G έτσι ώστε : o(w) = [m, n, t] Συνεχίζοντας την παραπάνω διαδικασία, και λαµβάνοντας υπ όψιν ότι η αβελιανή οµάδα είναι πεπερασµένη, µπορούµε επαγωγικά να κατασκευάσουµε ένα στοιχείο g µε την επιθυµητή ιδιότητα η τάξη του να είναι το ελάχιστο κοινό πολλαπλάσιο των τάξεων των στοιχείων της G. m r Μπορούµε τώρα να δώσουµε την απόδειξη του Θεωρήµατος 4.2. Απόδειξη. (του Θεωρήµατος 4.2): (1) = (2) Αποδείχθηκε στην Πρόταση 4.1. (2) = (1) Από το Λήµµα 4.4 έπεται ότι υπάρχει ένα στοιχείο g G έτσι ώστε : o(g) = [o(g 1 ), o(g 2 ),, o(g n ]

Ανοικτά Ακαδημαϊκά Μαθήματα Πανεπιστήμιο Ιωαννίνων Τέλος Ενότητας

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Σημειώματα Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης «Αλγεβρικές Δομές Ι». Έκδοση: 1.0. Ιωάννινα 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://ecourse.uoi.gr/course/view.php?id=1248. Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1] https://creativecommons.org/licenses/by-sa/4.0/.