Σχετικά έγγραφα

Between Square and Circle

A Classical Perspective on Non-Diffractive Disorder

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,


F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1



Parts Manual. Trio Mobile Surgery Platform. Model 1033

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Diamond platforms for nanoscale photonics and metrology

ITU-R P (2012/02)

Solutions - Chapter 4

ITU-R P (2012/02) &' (

Second Order RLC Filters

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0

Ax = b. 7x = 21. x = 21 7 = 3.

!"#$ % &# &%#'()(! $ * +

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK


m 1, m 2 F 12, F 21 F12 = F 21



u(x, y) =f(x, y) Ω=(0, 1) (0, 1)


m i N 1 F i = j i F ij + F x


TALAR ROSA -. / ',)45$%"67789

Το άτομο του Υδρογόνου

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

Fourier Analysis of Waves

Investigating Non-Periodic Solids Using First Principles Calculations and Machine Learning Algorithms


Homework 8 Model Solution Section

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).


r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t


a,b a f a = , , r = = r = T

(... )..!, ".. (! ) # - $ % % $ & % 2007

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Answers to practice exercises

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

program Inner-Product-1 declare m: integer initially assign end 0..P 1 p program Vector-Sum-4 declare i: integer;

Περιεχόμενα. A(x 1, x 2 )

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &

Topology, Localization, and Quantum Information in Atomic, Molecular and Optical Systems

Oscillatory Gap Damping

-! " #!$ %& ' %( #! )! ' 2003

ITU-R P ITU-R P (ITU-R 204/3 ( )

Review of Single-Phase AC Circuits

MÉTHODES ET EXERCICES

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση Ελατήριο σε οριζόντιο επίπεδο Σχήµα 6.1

Déformation et quantification par groupoïde des variétés toriques

ΤΗΛΕΠΙΣΚΟΠΗΣΗ. Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement)

LTI Systems (1A) Young Won Lim 3/21/15

WXEY Z Z [\ ] ^] Y _A` Z aebec(y ] ] [Ẍ d _A\e] fe[xe[ga\ [[_Ad

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*

COMPLEX NUMBERS. 1. A number of the form.


Derivation of Optical-Bloch Equations


(product-operator) I I cos ω ( t sin ω ( t x x ) + Iy )


Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

1 String with massive end-points

Gradient Descent for Optimization Problems With Sparse Solutions

DC BOOKS. H-ml-c-n-s-b- -p-d-n- -v A-d-n-b-p-w-a-p-¼-v

Inverse trigonometric functions & General Solution of Trigonometric Equations

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Ψηφιακή Επεξεργασία Φωνής

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1


9.BbF`2iBbB2`mM; A,.Bz2`2Mx2Mp2`7?`2M 7Ƀ` T `ib2hh2.bz2`2mib H;H2B+?mM;2M 8.BbF`2iBbB2`mM; AA, 6BMBi2 1H2K2Mi2 o2`7?`2m


.1. 8,5. µ, (=,, ) . Ρ( )... Ρ( ).

ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

ITU-R P (2009/10)

ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018

A 1 A 2 A 3 B 1 B 2 B 3

Chapter 2. Stress, Principal Stresses, Strain Energy

Προβολές και Μετασχηματισμοί Παρατήρησης

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

!"!# ""$ %%"" %$" &" %" "!'! " #$!

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

O.172 ITU-T (SDH) ITU-T O.172 (2005/04)

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

SAW FILTER - RF RF SAW FILTER

Transcript:

1

µ

H = p m + mω x x, p m, ω H = ω ( P + X ) P = p/ mω X = x/ mω p X = x x ZPF, P = p ZPF x ZPF =,p mω mω ZPF = P = 1 i (a a ) X = 1 (a + a ) [ a, a ] = H = ωa a H n = ωn n n

a n = n n 1 a n = n +1 n +1 a a n = n n. a) b) p x M C k q L p M k x φ q L C X P i XP T X = e P X i PX T P = e [X, P] = constant e B e A e B = e A+B [A, B] =

D X, P = T 1 X T PT1 X = ( XP PX) ei D X, P = e ( X i P)a ( X +i P)a X P a) b) c) d) α = X + i P D α = e α a αa α = D α 0 α = α e iφ n

α = e α α n n n! n α(t) = e iht α 0 = e iωa a e α 0 α0 n n n! = e α 0 n = α 0 e iωt n (α 0 e iωt ) n n! n α ω n α I Q ( ) ( ) a+a ω I =cosωt a a sin ωt i ( ) ( ) Q = sin ωt cos ωt a a i a+a

a) b) Q ωt ωt I φ = ωt I Q P = e iπa a =( 1) a a. P P ±1 Pa = ap Pa = a P PD = D P ψ cat = N ( α + e iφ α ) 1 N = (1+e α )cosφ

α α = e α N 1 φ =0,π ψ even = N + ( α + α ) ψ even = N ( α α ) P ψ even = + ψ even P ψ odd = ψ odd H = 1 L ˆφ + 1 C ˆq φ q

ρ = m,n c mn m n m, n c mn = n n n. 0 n N N a m a n m, n N = 15

= 1 π d α α α 1 π d α α α = 1 π n,m 1 n m n!m! d αe α α n (α ) m d αe α α n (α ) m = πγ( n+m +1)δ nm

a) b) W(α) c) Q(α) 1 π d α α α = n,m Γ( n+m +1) n!m! δ nm n m = n n n = α α = 0 C(λ) C a C s C a (λ) = e λ a e λa C s (λ) = e λa λ a

Q(α) =F{C a (λ)} W (α) =F{C s (λ)} F{C(λ)} = 1 π d λc(λ)e αλ α λ p(α) = α ρ α ρ α Q(α) = 1 π α ρ α ρ ψ = N ( α + α ) α α Q(α) = 1 α ρ α = 1 π π 0 D αρd α 0

a) b) W(α) Q(α) ψ = N ( β β ) β =

a) b) W(α) W(α) β β =4 n n =4 Re(α) = P D α W (α) = π Tr[D αρd α P ]= π D αpd α = π P α P α D α PD α P π α ±1

ρ =π d αw (α)p α Tr[ρO(a, a )] = d αw (α)o(α). O(α) =Tr[D αo(a, a )D α P ] β β W (α) = π e α β F = ψ ρ ψ = 1 π W (α)w (α)d α W t (α) = ψ t P α ψ t F =Tr[ρ t ρ] ρ ρ

I (α ) Q (α ) I Q α = α + iα I (α )= dα W (α) Q (α )= dα W (α). P ρ = ρp C s (λ) =Tr[D λ ρ]=tr[d λ /ρd λ /P ]= π W (λ/). ρ W (α) = 1 π F{W ( λ )} Q(α) = d αe α W (α) Q(α) =e α W (α).

C s (λ) =Tr[ρD λ ] β + β n (n =0 ) 0 1

a σ = ( ) 0 1 0 0 a σ + = ( ) 0 0. 1 0 X P N σ x = ( ) 0 1 1 0 σ y = ( ) 0 i i 0 σ z = ( ) 1 0 0 1 σ + σ = 1 σ z = e e = ( ) 0 0 0 1 e σ x, σ y, σ z N N S = i η i log η i η i

N η i = 1 N S q = N i 1 N log N = N N η i = 1 N+1 N S c = N+1 i 1 N +1 log (N +1)=log (N +1)

a) b) log (N +1) N Γ max Γ max Γ 0 Γ /Γ 0 Γ 0 4Γ 0

3

I = I c sin πφ Φ 0 Φ 0 I c ϕ =πφ/φ 0

( ) H = ω q a a E J cos ϕ + ϕ E J = I cφ 0 π ϕ = ϕ q (a + a ) ϕ q E J ϕ 6 q ω 70 1 H = ω q a a E J 4 ϕ4 + O(ϕ 6 ) ( ω q a a ) E J 4 ϕ4 q a + a 4 H = ω qa a α a a α = E J 4 ϕ 4 q ω q = ω q α α E = E n+1 E n = ω q α 0, 1 H = ω q e e E C E J H/ = 8E C E J a a E C (a a)

a) b) c) C q 1 0.5 0-0.5-1 π 0 π L J C φ 1 H = ω r a a + ω q e e + g(a + a )σ x

a e H = ω r a a + ω q e e + g(aσ + + a σ ). a, σ σ +,a κ γ g g κ, γ g ω r ω q = H = (ω r χ e e )a a + ω q e e χ = g χ

γ,κ χ nκ, γ n = a a g H quasi = H disp Ka a σ z K = g4 3 σ z = e e Ka a σ z K a a Ka a e e K

ω q a) b) ω c freq ω q 3 ω c e ω q 5 ω q 4 ω q ω q 3 0 ω q 1 ω q ω c e ω c g ω c g ω c g ω c g ω q 1 ω q 0 ω q ω c e ω c e H = i=q,r ( ) ω i a i a i E J cos ϕ + ϕ a q,r ϕ = i=q,r ϕ i(a i + a i ) ϕ q >> ϕ r ϕ H = ( ω i a i a i K i i=q,r a i a i ) χa qa q a ra r K i = E Jϕ 4 i χ = E J ϕ qϕ r K r

K r α = K q ϕ q ϕ r ϕ = i ϕ i(a i + a i ) H 4 = i ( ω i a i a i K i a i a i ) χ ij a i a ia j a j i,j>i K i = E Jϕ 4 i χ ij = E J ϕ i ϕ j K i ϕ 4 i χ ij χ ϕ H 6 = H 4 + i K i 3 6 a i a 3 i + i, j χ ij a i a i a j a j K i = E Jϕ 6 i 6 χ ij = E Jϕ 4 i ϕ i K χ n K i (n) (K + K 3 K 3 n i) χ ij (n i ) (χ ij + χ ij χ ij n i)

ω i /π O(ϕ 4 ) K i /π 1 4!( 4 )( ) EJ ϕ 4 i O(ϕ 4 ) χ ij /π 1 4!( 4 1)( 3 1)( 1)( 1 1) EJ ϕ i ϕ j O(ϕ 6 ) K i/π 1 6!( 6 3)( 3 3) EJ ϕ 6 i O(ϕ 6 ) χ ij/π 1 6!( 6 )( 4 )( 1)( 1 1) EJ ϕ i ϕ 4 j E J ϕ = ϕ i (a i + a i ) cos ϕ O(φ 6 )

a).1 mm phase qubit transmission line resonator 00 µm b) compact resonator Josephson junctions transmon qubit 1 µm 00 µm c) three-dimensional cavity resonator 50 mm 50 µm transmon qubit 6B;m` jxj, _bqm iq`b 7Q` +B`+mBi Z1.X a?qrm Bb b KTH Q7 i? p `Biv Q7 `bqm iq` /bb;mb BMpbiB; i/ 7Q` +B`+mBi Z1.X q?bh i? i` MbKBbbBQM HBM `b@ QM iq` U V M/ +QKT +i `bqm iq` U#V ` 7 #`B+ i/ mbbm; T?QiQ@ Q` H+i`QM # K HBi?Q;` T?v- i? i?`@/bkmbbqm H + pbiv `bqm iq` U+V Bb T`Q/m+/ 7`QK K +?BM/ HmKBMmKX LQiB+ i? HM;i? b+ Hb bbq+b i/ rbi? +? Q7 i?b p `B Mib- ` M;BM; Qp` irq Q`/`b Q7 K ;MBim/X _/m+bm; i? H+i`Q@K ;MiB+ }H/ /MbBiv BM `b@ QM iq` KQ/b?HTb HBKBi i? bm`7 + HQbbb `btqmbb#h 7Q` HBKBi/ `bqm iq` +Q?`@ M+- K FBM; #Qt@KQ/ `bqm M+b M B/ H TH i7q`k 7Q` +` ibm;?b;?hv +Q?`Mi `bqm iq` KQ/bX _T`Q/m+/ 7`QK (>Q7?BMx i HX- kyy3c :`HBM;b i HX- kyrkc S BF i HX- kyrr)x 8k

i` `v [m MimK bi ib + M # +` i/ BM i? `bqm iq` mbbm; i?bb i+?mb[m (G r M/ 1#`Hv- RNNe)X h?bb i+?mb[m? b #M tt`bkmi HHv /KQMbi` i/ M/ b?qr/ i? +` ibqm Q7 +QKTHt [m MimK bi ib mbbm; bmt`+qm/m+ibm; +B`+mBib (>Q7?BMx i HX- kyyn)x a) b) 1 +/π 0.4 0 +1/π 1 W(α ) 0 W(α ) Im(α ) 1 0. 0.0 0. 0 1/π 1 0.4 0 1 0 1 1 Re(α ) 0 1 /π Re(a ) 4 0 Im(a ) 6B;m` jx9, _bqm Mi M/ /BbT`bBp K MBTmH ibqmx lbbm; Bi?` `bqm Mi Q` /BbT`bBp BMi` +ibqmb- +QKTHt [m MimK bi ib + M # +` i/ BM i? + pbivx U V lbbm; bmt`+qm/m+ibm; +B`+mBib rbi? `bqm Mi +QMi`QH- i? T?QiQM MmK#` bi ib M/ i?b` bmt`tqbbibqm + M K MBTmH i/ rbi? [m#bi (>Q7?BMx i HX- kyyn)x qbi? + pbiv Z1. bimt- i? /BbT`bBp BMi` +ibqm HHQrb i? T`QD+iBp K bm`kmib Q7 i? + pbiv iq +` i bmt`tqbbibqm bi ib (.Hû;HBb i HX- kyy3)x qbi? M Qz@`bQM Mi- /BbT`bBp BMi` +ibqm i? [m#bi M/ + pbiv KQ/b rbhh MQi b? ` t+bi ibqmb- #mi #+QK Mi M;H/ /m iq +QM/BiBQM H b?b7ib BM +? KQ/Ƕb i` MbBiBQM 7`[mM+vX qbi? i?bb i+?mb[m- [m MimK MQM@/KQHBiBQM K bm`kmib + M # T`7Q`K/ #v +Q``H ibm; i? T? b Q7 +Q?`Mi }H/ BM i? + pbiv KQ/ rbi? i? ;`QmM/ Q` t+bi/ bi i Q7 i? [m#bix *QmTH/ rbi? M ` [m MimK@HBKBi/ K@ THB}`b ("`; H i HX- kyryc obd v i HX- kyyn) [m MimK DmKTb Q7 [m#bi bi ib? p #M T`7Q`K/ (obd v i HX- kyrrc > i`b/; i HX- kyrj)x "vqm/ [m MimK K @ bm`kmi- i? /BbT`bBp BMi` +ibqm? b b?qrm i? bthbiibm; Q7 M`;v i` MbBiBQMb Q7 i? [m#bi iq # /TM/Mi QM T?QiQM MmK#` (a+?mbi` i HX- kyyd)- r?qb TTHB+ @ ibqmb BM+Hm/ i? Mi M;HBM; Q7 T?QiQM MmK#` bi ib rbi? i? [m#bi KQ/ (CQ?MbQM 8j

4

100 µs 10 ms

H = ω ra ra r + ω s a sa s + ω q e e χ qr a ra r e e χ qs a sa s e e χ qr (χ qs ) κ r κ s κ r

l h w f mnk = c (m ) ( n ) ( ) k + + l h w c m, n, k f 101

6B;m` 9XR, * pbiv Z1. [mbp HMiX hrq@+ pbiv j. +B`+mBi Z1. + M # BHHmb@ i` i/ #v + pbiv Z1. [mbp HMi /B ;` K rbi? 6 #`v@s`qi `bqm iq`b U VX "Qi? bvbikb mb irq + pbibb +QmTH/ iq bbm;h U `ib}+b HV iqkx PM + pbiv Bb /bb;m/ iq # HQM;@HBp/ 7Q` T?QiQM K MBTmH ibqm M/ biq` ; r?bh i? Qi?` + pbiv +QM@ i BMb H Fv KB``Q` UQp`@+QmTH/ QmiTmi +QmTH`V 7Q` iqk bi i /i+ibqmx U#V a?qrm Bb QM? H7 Q7 i? T?vbB+ H /pb+ rbi? irq #Qt@KQ/ `bqm iq`b M/ i` Mb@ KQM [m#bi +QmTH/ iq #Qi? KQ/bX hvtb+ H BKTHKMi ibqmb H p +? + pbiv rbi? 1 GHz bt ` ibqm BM i` MbBiBQM 7`[mM+Bb Q++m``BM; #irm 7 10 GHzX 9XRXk o`ib+ H i` MbKQM [m#bi AM Q`/` iq ` HBx i? irq@+ pbiv BHHmbi` ibqm b?qrm BM 6B;X 9XR- r M/ iq +Qm@ TH #Qi? + pbibb iq bbm;h [m#bix 6Q` TH M ` +B`+mBi /bb;m- i?bb + M T`7Q`K/ #v BKTHKMiBM; +QmTHBM; + T +BiQ`b r?b+? HBMF BM/BpB/m H + pbibb iq bbm;h [m#bi (CQ?MbQM i HX- kyryc J `B MiQMB i HX- kyrrc aizm i HX- kyrj)x 6Q` i?`@/bkmbbqm H `+?Bi+im` i?bb Bb Hbb Q#pBQmbX lmhbf TH M ` ;QKi`v- j. i` MbKQM [m#bi Bb TH +/ T?vbB+ HHv BMbB/ Q7 i? + pbiv M/ MiMM b ` mb/ iq +` i /BTQH +QmTHBM; #irm i? [m#bi M/ + pbiv `bqm iq`x AMbi /- r M/ iq /phqt [m#bi i? i /Qb MQi M/ iq ǵhbpƕ BMbB/ Q7 i? + pbiv #mi + M K`Hv mb M MiMM i? i ` +?b BMiQ i? + pbiv iq +` i bi`qm; [m#bi@+ pbiv +QmTHBM;X h?bb Bb i? # bbb 7Q` i? ǵp`ib+ H i` MbKQMǶ /bb;m r?b+? r rbhh QmiHBM BM KQ` /i BH?`X h? p`ib+ H i` MbKQM Bb /bb;m/ b +Q tb H KQ/ i? i tbbib #irm i? /@ 8N

DQBMBM; + pbiv `bqm iq`bx h?bb +Q tb H KQ/ U HbQ FMQrM b `+i t /m iq Bib `+i M;mH ` /bb;mv Bb +` i/ #v TH +BM; bm#bi` i +QMi BMBM; i? 7 #`B+ i/ /@ pb+ rbi?bm K +?BM/ i`m+? #irm +? + pbiv Ub 6B;X 9XjVX bbm;h CQbT?@ bqm DmM+iBQM Bb HQ+ i/ rbi?bm i?bb i`m+? M/ ; Hp MB+ HHv +QMM+i/ iq irq i` Mb@ KBbbBQM HBMb i? i tim/ BMiQ +? + pbivx h? timbbqm Q7 +? MiMM +` ib + T +BiBp +QmTHBM; iq i? H+i`QK ;MiB+ }H/ BM i? + pbiv HHQrBM; bi`qm; [m#bi@+ pbiv BMi` +ibqm 7Q` #Qi? bt ib HHv bt ` i/ KQ/bX 6B;m` 9Xk, hrq@+ pbiv HM;i? b+ HbX U V a?qrm Bb #Bb+iBQM Q7 irq + pbiv /bb;m K +?BM/ 7`QK H eyerx M BM/BmK i` +F bm``qmm/b #Qi? + pbibb r?b+? T`Q@ pb/b bi`qm; H+i`B+ H +QMM+iBQM i i? /pb+ b KbX U#V h? }`bi BMbi b?qrb i? p`ib+ H i` MbKQM [m#bi #irm #Qi? + pbiv KQ/bX q?bh i? CQbT?bQM DmM+@ ibqm Bb HQ+ i/ rbi?bm i? bk HH i`m+? +QMM+iBM; i? + pbibb- MiMM b 7`QK i? [m#bi tim/ BMiQ #Qi? + pbiv KQ/b T`QpB/BM; bi`qm; [m#bi@+ pbiv +QmTHBM;X U+V 6BM HHv b+qm/ BMbi b?qrb M a1j BK ; Q7 i? i` MbKQM DmM+iBQM rbi? M T@ T`QtBK i DmM+iBQM ` U45 µm V `bmhibm; BM CQbT?bQM BM/m+i M+ Q7 6 nhx *B`+mBi /bb;m Gi mb TT`QtBK i i? /bb;m Q7 i? p`ib+ H i` MbKQM #v +` ibm; +B`+mBi KQ/H iq T`/B+i Bib /TM/M+ QM ;QKi`B+ H 7 im`bx q rbb? iq +` i CQbT?@ bqm DmM+iBQM +B`+mBi r?b+? #? pb HBF i` MbKQM [m#bi #mi rbi?qmi i? mb Q7 HmKT/ HKMi + T +BiQ`b M/ BM/m+iQ`b UiQ KBMBKBx HQbbv bm`7 + z+ibv M/ r?b+? + M? p bb;mb}+ Mi HM;i? BM Q`/` iq +QmTH iq irq bt ib HHv bt ` i/ + p@ ey

Al O 3 ϵ r {9.4, 9.4, 10.} Z line (l) =Z 0 Z L + jz 0 tan(βl) Z 0 + jz L tan(βl) Z 0 Z L β l Z L = 1 jωc Z 0 Z line (l) = jz 0 cot (βl).

l l ( ) ωl Z line (ω, l) = jz 0 cot ν p ν p = c µr ϵ r c µ r,ϵ r ν p (0. 1)c a) Y in (ω) Z 0,ν p b) Y in (ω) L J Z line (ω) E J Z line (ω) l Z 0 ν p Z 0 80Ω ν p 0.4c Y (ω) L J E J = φ 0 L J 1 ω 0 = Leff C eff Y (ω 0 )=0 L Z eff = eff C eff = ω 0 Im[Y (ω 0 )] H/ = ω q a a α a a ϕ

ω q = ω 0 α α = e Z eff L J. Y in (ω) = 1 + j tan jωl J Z 0 Y in (ω 0 )=0 1 = 1 tan ω 0 L J Z 0 ( ω0 l ν p ( ωl ν p ). ). ω 0 Z eff Im[Y (ω)] = 1 + l sec ω L J Z 0 ν p ( ωl ν p ). ( ωl tan ν p ) Y in (ω) 1 + j ωl jωl J Z 0 ν p LC

Y in (ω) 1 jωl J + jωc(l) C(l) = l Z 0 ν p ω 0 = Z0 ν p L J l = 1 LJ C(l) α = e Z eff L J = e Z 0 ν p l = e C(l). ω 0 (l) 1 l α(l) 1 l a) b) Resonance (GHz) Anharmonicity (GHz) Antenna length (mm) Antenna length (mm) ω 0 /π α/π L j = 7 nh,z 0 = 80 Ω, and ν p = 0.4c

tan ( ωl ν p ) ( Y in (ω) 1 + j ( ) ) ωl 1+ ω l. jωl J Z 0 ν p ν p ω 0 = 3 ( νp l ) ( 1+ 8 3 Z 0 L J ) l 1. ν p ω 0 α = e Z 0 ν p l ( 1 Z 0 L J l ν p ).

L J

cavity 1 Y in (ω) cavity Z 1 (ω) Z (ω) 4 mm substrate stripline 0.4 mm Z 1 (ω) Admittance (ms) 4 0 - -4 Y in (ω) cavity 1 7.5 8.0 8.5 9.0 9.5 Frequency (GHz) LC Z 1 (ω), Z (ω) Y in (ω)

O (ϕ 6 ) 150 10

Ω

6B;m` 9Xd, * pbiv T`T ` ibqmx hq KBMBKBx i? z+ib Q7 bm`7 + HQbbb- r rbb? iq `KQp HH `bb/m 7`QK i? bm`7 + Q7 i? + pbiv r HHbX a?qrm Bb ` QTiB+ H BK ;b Q7 + pbiv r HH, U V mbbm; M +iqm- Ki? MQH +H MBM; T`Q+bb M/ U#V i? b K T`Q+bb rbi? M //BiBQM H H+QMQt /i`;mi +H MBM; bitx 9XkXk 6`B/; M/ rb`bm; /bb;m HH tt`bkmib b?qrm?` r` T`7Q`K/ rbi? +`vq;m@7` /BHmiBQM `7`B;` @ iq` QT` ibm; i ky KEX S`QT` bb;m H M/ i?`k H }Hi`BM; Kmbi # T`7Q`K/ iq Mbm` +QH/- T`Qi+i/ MpB`QMKMi 7Q` +? tt`bkmi Ub (a `b- kyrj)vx 1 +? irq@+ pbiv tt`bkmi ivtb+ HHv +QMi BMb irq BMTmi TQ`ib- QM 7Q` +? + pbivx //B@ ibqm HHv- QM Q7 i?b TQ`ib rbhh HbQ b`p b M BMTmi 7Q` i? [m#bi KQ/ UivTB+ HHv i?`qm;? i? /bb;m i/ ` /Qmi + pbivvx h? QmiTmi 7Q` i? ` /Qmi + pbiv Bb ivtb@ + HHv Qp`+QmTH/ iq HHQr bb;m H iq tbi i? + pbivx.tm/bm; QM i? BKTHKMi @ ibqm- Bi?` /BbT`bBp Q`?B;?@TQr` ` /Qmi Bb mb/(: K#ii i HX- kyyec _/ i HX- kyry)x 6Q` H i` tt`bkmib U*?X NV- [m MimK KTHB}` Bb HbQ KTHQv/ 7Q`?B;?@}/HBiv ZL. [m#bi ` /QmiX JQbi tt`bkmib rbhh MQi +QMi BM M QmiTmi TQ`i QM i? biq` ; + pbivx h?bb Bb /m i? 7 +i i? i HH BM7Q`K ibqm Q7 i? biq` ; + pbiv KQ/ rbhh # Q#i BM/ #v T`Q#BM; i? [m#bi bi i /BbT`bBpHv +QmTH/ iq i? KQ/X a 6B;X 9X3 7Q` /i BHb QM 7`B/; rb`bm; 7Q` irq@+ pbiv BKTHKMi ibqmb BM@ +Hm/BM; }Hi`BM; M/ i?`k HBx ibqmx dy

I + iq ω RF,ω LO V sig V cos (ω IF + δ RF δ LO + δ DUT ) ω IF = ω RF ω LO δ RF, LO, DUT ω RF,ω LO ω IF δ V demod cos ω IF V ref cos (ω IF t + δ RF δ LO )

300K 4K 0mK JPC I I S S 180-H 180-H 10dB Ecco Ecco Ecco Ecco 180-H S S JPC 10dB Ecco Ecco Ecco Ecco 10dB 10dB LP 10GHz LP 10GHz Ecco Ecco LP 10GHz 30dB 30dB LP 10GHz LP 10GHz 30dB LP 1GHz 30dB LP 10GHz 30dB LP 1GHz 30dB 10dB 0dB 10dB 0dB 10dB 10dB 10dB 10dB HEMT 0dB 0dB HEMT 0dB 0dB 0dB 0dB 0dB 0dB 0dB 0dB 0dB 0dB 0dB 0dB A B 1 3 4 5 6 7 8 1 3 4 5 6 7 8

a) b) RF δ RF DUT δ signal RF δ RF DUT δ signal signal reference signal LO δ LO LO δ LO ω RF,ω LO ω IF = ω RF ω LO δ RF,δ LO δ signal

a) I/O setup Qubit and readout input TO FRIDGE 1 S 1 S Switch Switch Qubit ω μw Readout AWG ω μw I DAC Q 1 S LO ω μw ADC Readout output FROM FRIDGE I Storage input Switch ω μw Storage DAC Q DIGITAL b) I/O setup with feedback 1 S Switch AWG ω μw Readout I DAC Q DIGITAL 1 S LO ω μw Readout output FROM FRIDGE Qubit and readout input TO FRIDGE 1 S Switch Qubit FPGA ω μw I DAC Q Feedback SE ADC DIGITAL Storage input Switch FPGA ω μw Storage I DAC Q SE DIGITAL ADC g e

6B;m` 9XRR, _ /Qmi +QM};m` ibqmx q mb irq /Bz`Mi [m#bi bi i ` /Qmi +QM};m` ibqmb- Bi?` rbi? Q` rbi?qmi M `@[m MimK HBKBi/ KTHB}`X U V qbi?@ Qmi KTHB}+ ibqm- bb;m Hb 7`QK i? ` /Qmi `bqm iq` ` bmi /B`+iHv iq i? >1Jh KTHB}+ ibqm +? BM i 9 EX AM H i` tt`bkmib- r BMi;` i/ [m MimK KTHB}`b U#V iq T`@ KTHB7v i? ` /Qmi bb;m HX q? p BKTHKMi/ #Qi? CQbT?bQM T ` @ Ki`B+ KTHB}`b UCS*V M/ CQbT?bQM #B7m`+ ibqm KTHB}`b UC" V 7Q` irq@+ pbiv tt`bkmibx de

5

H/ = ω q e e + ω s a a χa a e e e a a ω q,s χ C Φ = e iφa a e e = g g + e iφa a e e g Φ τ Φ=χτ

C Φ { α ( g + e )} = α, g + αe iφ,e α = e α n=0 α n n! n n α C Φ=π π P a) b) e cavity qubit P g X ψ = e, e iφ β Φ=χτ C Φ χ γ,n κ s γ κ s

n χa a e e K s a a χ a a e e m R mˆn,θ = m m Rˆn,θ + n m n n Rˆn,θ ˆn θ χ

a) P b) P c) P d) P m=0 n max X X X X cavity qubit m n max ωq n = ω q χ n n τ 1/χ m ω m q

H/ = χ(a a m) e e + ϵ(t)σ y ϵ(t) σ y H/ = n = n H n / n n { χ(n m) e e + ϵ(t)σ y } n n. H n / = n ϵ(t)e i n,mt e e σ y e i n,mt e e n,m = ω n q ω m q ψ(t) ψ n (t) = i H n (t) ψ n (t). m Rŷ,θ = e i θ σ y θ = ϵ(t) t ψ n m (t) ψ n (t) { 1 i t } s H n (s) ψ n (0). ψ(0) = n m C n g, n

ψ(t) C n { g, n i n m = C n { g, n n m i t = n m C n { g, n 0 t 0 s H n (s) g, n } sϵ(s)e i n,ms e e σ y e i n,ms e e g, n } t 0 sϵ(s)e i n,ms e, n } n m C n { g, n ˆϵ{ n,m } e, n } ˆϵ{ω = n,m } ϵ(t) n τ ψ(τ) = 1 1+ˆϵ{ n } n m C n { g, n ˆϵ{ n,m } e, n }. ωq m ϵ ψ = n m C n g, n g S = n, g ψ(τ) = n m C n 1+ˆϵ[ n,m ]. m ϵ(t) = Ae σ ωt / σ ω A = 8/πσ ω π ω m q σ ω /π =800 σ t =00

χ/π =3 m (m±1) S =(1+ π 8 e χ /σ ω ) 1 > 99% R m ŷ,π = m m Rŷ,π + n m e iξ n n n m m ξ n σ ω β β R 0 ŷ,π R 0 ŷ,π( β,g + 0,e ) ( β + 0 ) g π 0 n β = n=0 C n n = e β n=0 (β) n n! n σ ω =4 β χ/5 β S = n=1 C n (1 + π 8 e (nχ) /σ ω ) 1 > 99%

ξ n n = χn σ ω ξ n ξ n = ϵ(t) dt/ n 1/( β ) 1 n ξ n 1 n/(8 β ) n ϵ χa a e e σ z σ y H/ = n { χ(n m) σ z + ϵ(t)σ y} n n. ϵ τ

i H/ τ U(τ) =e = n U n (τ) n n = n e iτ{χ(m n) σz +ϵσ y} n n = n e iφnσ θn n n φ n = ϵτ 1+ [ ] (m n)χ θn = arctan ϵ ( ) (m n)χ σ ϵ θn = cos(θ n )σ y + sin (θ n )σ z U n (τ) =e iφ nσ θ n =cos(φ n ) + i sin(φ n )σ θn =[cos(φ n )+isin(φ n )] sin(θ n ) n, g n, g +[cos(φ n ) i sin(φ n )] sin(θ n ) n, e n, e +sin(φ n )cos(θ n )( n, e n, g n, g n, e ). π/ τ =4n π Rŷ, F = 1 N Tr[R ŷ, U(τ)] 0.96 π n max =0 ω m q = ω q nχ n

ωs g ωs e g e ωs e H / =(ω q ω e s) e e χ g g a a + ϵ(t)a + ϵ(t) a. σ ω χ D α e D e α = e iξ g g + D α e e ξ g Dα e Dα{ 0 e ( g + e )} = e iξ 0,g + α, e Dα e C π Dα e = D α/ C π D α/ D α

ω g s H / =(ω q ω g s) e e χ e e a a + ϵ(t)a + ϵ(t) a. ϵ χ D α=1 6 ns ϵ 170 MHz χ 3 MHz H / =(ω q χ qs a sa s χ qr a qa q ) e e χ qs χ qr τ 1 χ qs, 1 χ qr

a) b) storage cavity - qubit readout cavity- qubit increasing n χ n ω 0n n = ω q n K ω 0n ω 0n n

f 01 = ωq f π 0/ = (ωq α) π K 1.5 1.0 0.5 7.0 7.4 7.8 7.3 Spectroscopy Frequency (GHz) 7.36 f 0 / f 01 K

a) b) 80 storage cavity qubit Tone τ=300μs m=0 Readout Voltage (mv) 60 40 0 storage cavity - readout cavity increasing n 0 8.70 8.7 8.74 8.76 Spectroscopy Frequency (GHz) 8.78 τ 1 χ π Rŷ,π 0 π

K s 0 1 0 n n =, 3 K Readout Signal (mv) 40 50 60 70 80 9.740 9.744 9.748 9.75 Spectroscopy Frequency (GHz) π 0 1 0 n n = 1,, 3 0.5 K/π =163

χ C Φ Φ=χ qs t t ψ(0) = β,g ψ(t) = Rŷ, π C Φ=χ qs trŷ, π β,g = e π 4 ( e g g e ) e iχ qsta a e e e π 4 ( e g g e ) β,g = 1 {( β βe iχqst ) g +( β + βe iχqst ) e } Rŷ, π π/ P e P e = 1 {1+Re( β βeiχ qst )} = 1 {1+e β (cos(χ qst) 1) cos( β sin(χ qs t))}. t e 1 ( β χ qst)

a) cavity qubit b) 0 1.00 0.75 c) 0.50 0 0 00 400 600 Wait time ( ) 800 1000 Displacement ( ).0 1.0 0.0 0 00 400 600 Wait time ( ) 800 1.0 0.8 0.6 0.4 1000 β β =0 β =0.5 β =1.0 β =1.5

t =π/χ qs D β β =0.5 t = µ χ qs a a e e χ qs χ qs a a e e χ qsa a e e n nχ qs χ qs n =5 t = π χ qs β χ qs χ qs χ qs χ qs/χ qs =3.6 10 3 χ qs 3 MHz

a) b) Displacment amplitude ( ) 5 4 3 1 0 300 1.0 0.8 0.6 0.4 Wait time ( ) 440 435 430 45 40 400 500 0 Wait time ( ) 5 10 15 0 5 Mean photon number ( ) a a

6

C Φ R ṋ n,θ D α p 0 (α) P α P 0 (α) =πq(α) P α = π W (α) p n (α) = n D α 0 = e α α n n!. P = e iπa a P (α) =Tr[PD α 0 0 D α]=e α. P (α) P 1 0.0 δα/α 0.0

a) cavity qubit m or b) Readout signal (mv) c) 4 0 - -4 0 000 4000 Drive amplitude (DAC value) 6000 Photon probability 1.0 0.8 0.6 0.4 0. 0.0 0 1 3 Displacement ( ) 4 R0ˆn,π P n P n α χ sr P 0 P n n = P n

a) cavity qubit or b) Readout signal (mv) c) 4 0 - -4 0 1.0 0.8 0.6 0.4 0. 0.0 0 000 4000 Drive amplitude (DAC value) 1 3 Displacement ( ) 6000 4 C π P α P α α P α P α P α

χ sr R n π,ŷ e g ρ α Q(α) = 1 π α ρ α α

Q(α) = 1 π 0 D αρd α 0 D α α ρ α = D αρd α 0 a) cavity state prep cavity tomography b) Q(α) qubit Im(α) 0 - - 0 Re(α) Q(α) = 1 π 0 D αρd α 0 β

0 0 0 0 σ z g Q Z (α) = 1 π Tr [ ρ qc σ z D α 0 0 D α ] = 1 π 0,g D αρ qc D α 0,g 1 π 0,e D αρ qc D α 0,e = p g Q g g (α) p e Q e e (α) ρ qc p g,p e g ρ qc g, e ρ qc e α σ z Q g g (α) Q e e (α)

a) b) Im(α) 0 0 - Q Z (α) - Q Z (α) - 0 Re(α) - 0 Re(α) Q g g (α) Q e e (α) ψ = N ( g, β + e, e iφ β ) ρ α = D ρd α 0 n Q n (α) = n D αρd α n

Q n (α) N W (α) = ρd αpd α = n ( 1) n n D αρd α n = n ( 1) n Q n (α) Im(α) a) b) m = 0 Q 0 (α) Re(α) m = 1 Q 1 (α) Re(α) c) d) m = Q (α) Re(α) m = 3 Q 3 (α) Re(α) Q(α) = 1 π 0 D αρd α 0 Q m (α) = 1 π m D αρd α m 0 Q 0 (α), Q 1 (α), Q (α), Q 3 (α) 0, 1,, 3

W (α) = π Tr[D αρd α P ] D αρd α α P P = e iπa a U = π Rŷ, C π Φ=πRŷ, = R ŷ, π a e e e iπa π Rŷ, U U U = n U n n n = n = n = n even = n even Rŷ, π e iπn e e Rŷ, π Rŷ, π n n { (1+( 1) n ) (1 ( 1) + σ n ) z Rŷ, π R ŷ, π n n + Rŷ,π n n + n odd n odd n n } Rŷ, π n n Rŷ, π σ zrŷ, π n n

a) state cavity b) prep tomography cavity W(α) qubit Im(α) 0 - - 0 Re(α) (τ π χ ) P α = D α PD α β β = 3 W i = π σ ip α P α σ i {I, X, Y, Z}

a) cavity state prep qubit tomography cavity tomography qubit b) W I (α) W X (α) W Z (α) W Y (α) Im(α) Re(α) ψ = N ( g e ) β β = 3 W Z (α) W Y (α) W X (α) {X, Y, Z} P α = D α PD α

ρ nm ij ρ = 1 N i,j=0 n,m=0 ρ nm ij i j n m i, j n, m AB =Tr[ABρ] A B σ i = {I,σ x,σ y,σ z } P α = D α PD α N max = 1 α max,min = ±3.4 α =0.085 W i (α) = σ π ip α A A = i A iσ i A i =Tr[Aσ i ] B = 1 B(α)Pα d α π B(α) =Tr[BP α ] ρ = π i W i (α)σ i P α d α ρ = ρ q ρ c

ρ = 1 i Tr[ρ q σ i ]σ i π π Tr[ρ cp α ]P α d α ρ AB =Tr[ABρ] [ =Tr i,j A i B(α)W j (α )σ i σ j P α P α d αd α ] Tr[σ i σ j ]=δ ij Tr[P α P α ]=δ (α α ) AB = i A i B(α)W i (α)d α D α P W (α) = π Tr[D αρd α P ] ρ

W (α) = π Tr[D αpd αρ] =Tr[M(α)ρ] = i,j M ji (α)ρ ij M(α) =D α PD α M ji (α) ρ ij M(α) ρ ρ ij W (α) ρ Tr[ρ] =1 n max

7

φ Kerr = KIτ I τ K ω s H = ω s a a K a a

K κ s β RHR R = e i(ω s K )a at H kerr / = K (a a) U(t) =e ih kerr t ψ(t) = U(t) β = e ikt (a a) β = e β n β e ikn t n. n n! n β(t) βe iφ Kerr(t) φ Kerr = K β t n t π T col = π nk T rev = π K U(T rev) =e iπ(a a) =( 1) (a a) =( 1) a a ψ(t rev ) = β

a) P b) P c) P X φ Kerr nkt X X P n=0,1,,3 P φ=n Kt P X X X β = n c n n n c n = c n e iφn φ n =0 c n φ n = n Kt t = π K t = Trev q ψ( T rev ) = 1 q q q 1 p=0 q 1 k=0 e ik(k p) π q βe ipπ q. T rev q q q =

cavity state prep evolution t cavity tomography qubit β t U(t) =e ih kerr t t ψ = 1 ( β + i β ). β P β 0 1 κ s /π = ω q /π = K q /π =(ω 01 q ω 1 q )/π = 50 MHz K

Re(α) - 0 Experiment time Im(α) 0-15 ns 65 ns 440 ns 815 ns Theory - Re(α) 0 Experiment time Im(α) 0-1065 ns 1565 ns 565 ns 3065 ns Theory β β =4 A κ s T 1 =10µ T =8µ ω s /π =9.7 GHz

H = ω q e e +(ω s χ) a a e e K a a. χ/π = ω s K/π = K χ /4K q K > 30κ s β = n =4 Q 0

H Kerr β 15 ns β = βe iφ Kerr =.0e i0.13 n T col =385ns T rev β t = T rev /q q>1 q = q =3, 4 T rev =3065 β = 1.78 β = κ/π =10 ω s µ

- Re(α) 0-0 - 0 Im(α) 1 0-1 0-0 - Q n (α) n = 0 8 t π q =, 3, 4 qk q A = e n q>0 Q n (α)

Q n χ - Re(α) 0 a) Im(α) 0 - Theory Reconstruction b) c) t = π q = 3 4 qk

t = π/k, π/3k, π/4k F = Ψ id ρ m Ψ id ρ m Ψ id β = e κt/ F = 0.71,F 3 = 0.70,F 4 = 0.71 K >> κ

8

0, 1 β, β ψ = 1 N { cos( θ ) β +sin(θ )eiφ β } θ, φ N = 1+sin(θ)cos(φ)e β N 1 β β +Z c Z c X c Y c ±Z

Z β, β +X c, +Y c, +Z c ±Z c = ±β ±X c = 1 N ( β ± β ) ±Y c = 1 N ( β ±j β ) N (β) β β β = e β. S = j η j log η j.

η j ρ = j η j j j ρ = 1 ( β β + β β ) ρ E, O ρ = 1 (1 + e β ) E E + 1 (1 e β ) O O S = 1+e β log [ 1+e β ] 1 e β [ ] 1 e β log. S β 0 =0 S β =1 β =0 β β =1 S =0.99 a) P d X b) Entropy (bits) Displacement β β, β β β = 0 d =(β β) β S S 1 β β =1 e d

β, β d =β d d β β = e d ρ ρ(t) = 1 [ ] β(t) β(t) + β(t) β(t) + e β(t) (1 e κt) ( β(t) β(t) + β(t) β(t) ) β(t) =βe 1 κt κ e 1 d κt

ψ 0 = β ( g + e ) β π ψ 1 = C π ψ 0 = β,g + β,e ψ = D β ψ 1 = β,g + 0,e π 0 ψ 3 Rŷ,π 0 ψ =( β + 0 ) g ψ 4 = D β ψ 3 =( β + β ) g 0 { cos( θ ) g +sin(θ )eiφ e } { cos( θ ) β +sin(θ )eiφ βe iφ } g θ φ β β iφ 1

ω s π κ s =7. = 1 π π.1 µ ωr π κ r = 330 = 1 π π 480 = 8.18 = 9.36 ω q π γ =7.46 =36 = 1 π π 4.4 µ χ qs π =.4 K s χ qs n n =min[χ qs /χ qs =560,χ qs /K s =650,χ qs /κ s =330] β C Φ Q = α ρ α α = β

βe iφ α = β Q(β) = β βe iφ = e β (1 cos Φ) Φ Φ χ qs β 1 n Q(α) = 1 α ρ α ρ π ψ = 1 { 0 ( g + e )} ψ = N{( β + β ) g } β = 7 N 1 0,g P e Dβ e ρ = 0 0 {P g g g + P e e e } D e β ρde β = P g 0,g 0,g + P e β,e β,e

a) mapping cavity qubit m=0 tomography b) 8 4 (1) () (3) (4) Im( ) 0-4 -8 8 4 (5) (6) (7) (8) Im( ) 0-4 -8-8 -4 0 4 8 Re( ) -8-4 0 4 8-8 -4 0 4 8-8 -4 0 4 8 Re( ) Re( ) Re( ) ϵ/π =990.5µ β,e β 17 α =6

[ρ] =1 W (α) α =1 P e =0.1 P e 0.01 W (α) = [ D α PD αρ ] ρ F = W W α W

a) Im( ) Re( ) -4-0 4 4 b) Z Re( ) Im( ) 1.0-4 0 4 1.0-0 Z Y 0.5 Y 0.5 X X 0.0 0.0 0.6 0.0 0 Z -0.5-1.0 Y X 1.0 0.5 0.0-0.5 Z -0.5-1.0 Y X 1.0 0.5 0.0-0.5-0.6 - Z 1.0 Y 0.5 X 0.0-1.0 Z 1.0 Y 0.5 X 0.0-1.0-4 0.6 0.4 0. 0.0 0.6 0.0-0.6 Z -0.5-1.0 Y X 1.0 0.5 0.0-0.5-1.0 Z -0.5-1.0 Y X 1.0 0.5 0.0-0.5-1.0 ψ = N ( β + β ) β, β ψ = { cos( θ ) g +sin(θ ) e } ψ = 1 { g + e iφ e }

β ± β β P n ( β ) = n β = e β β n n! P n ( β ± β ) (1 ± e iπn ) e β β n n! β,g { β + β } g { β β } g β =.3 d = β 1 β β 1 β d W (Re(α) =0, Im(α)) W (0, Im(α)) Ae Im(α) cos(d Im(α) +δ) A δ 111 +0 d

φ Z Y X Ramsey angle (φ) θ Z Y X Rabi angle (θ) Im(α) Re(α) Φ C π/3 C π/ F A = 0.60 F B = 0.58 F C = 0.5

α cal = α act (1 + δα) α cal α act δα =( (n th +1) n th W (α) e α n th +1 n th 0.01 d d (1 n th ) <d act d d act 109 <d 111 β δφ 1 n n = β

1 n g g + e β 0 + β n = β Φ δφ = 1/ P e Φ P e Φ δφ D = e/ n Φ δφ C =1/ n δφ C nκτ 1 κ τ δφ C = e nκτ / n n = 15.5.5

σ z F F recov F F recov

a) b) Spectroscopy frequency (GHz) 7.435 7.445 7.455 0.8 0. 0.0 Normalized spectroscopy signal 0.1 0.0 0.4 0. 0.0 0.4-0.8 0.7 0.0-0.7 0.5 0.0-0.5 0.3 0. 0.0 0.0 10 9 8 7 6 5 4 3 Photon number 1 0-0.3 - -1 0 1 Im( ) β β + β β β β =.3 111 +0 d Ae Im(α) cos(d Im(α) +δ) S A δ

Im( ) Re( ) -4-0 4 4-4 4-0 4 a) b) 0 0-0.4 - - 0.0-4 4 c) -4 d) 0.4 1 0 0 - -1-4 -4-0 4 - - -1 0 1 C π/3 C π/ β + e iλ 1 βe iπ/3 + e iλ βe i4π/3 β = 7 λ 1 =0.6π λ = 0.3π 0 + e iµ 1 iβ + e iµ βe iπ/3 + e iµ 3 βe iπ/3 β = 7 µ 1 =0.5π µ = 0.4π µ 3 = 0.π β + e iν 1 iβ + β + e iν iβ β = 7 ν 1 = π ν = 0.π

a) cavity 1 qubit or or Readout b) Re( ) 0 c) Re( ) 0 Im( ) Im( ) (radians) d) 0.50 0.5 0.00 0.50 0.5 0.00 f) 0 1 0.1 6 5 4 3 6 5 4 Phase (radians) 0.50 0.5 0.00 3 4 5 6 7 8 9 3 4 10 Energy e) 0 0.8 0.6 0.4 0. 0.0 0.8 0.8 0.6 0.4 0. 0.0 (photons) Phase (radians) 0.6 0.4 0. 0.0 δφ n Φ P e 1/ n 1/ n δφ C e nκτ / n κ τ nκτ > 1

a) cavity 1 b) cavity 1 qubit Readout qubit QPT c) 16 photons 1 0.5 0 8 photons 1 0.5 0 40 photons 1 0.5 0 100 photons 1 0.5 0 0 Rotation Angle ( ) d) Re( ) Re( ) 16 photons 8 photons 1 1 0.5 0.5 0 0 I I X X Y Y Z I X Y Z Z 40 photons 100 photons 1 0.5 0 I X Y Z I X Y Z Re( ) Re( ) 1 0.5 0 I X Y Z I X Y Z I X Y Z < 0.06 90%

9

β β

β ψ = 1 ( g + e ) β g, e β t = π χ ψ B = 1 ( g, β + e, β ) ψ = 1 ( gg + ee ) ψ B ψ B = II c + XX c YY c + ZZ c {I, X, Y, Z} {I c,x c,y c,z c }

cavity state preparation qubit tomography cavity tomography qubit ψ = 1 ( g + e ) β D β β Rŷπ π ŷ ψ B = 1 ( g, β + e, β ) R i X Y Z P α

F C ψ target = 1 ( gg + ee ) F = ψ target ρ ψ target = 1 ( II + XX YY + ZZ ). 4 II, XX, Y Y, ZZ W = 1 ( II XX + YY ZZ ) 4 W F > 1 ±1 O= AA c + AB c BA c + BB c A, B A c,b c

τ s =55µs τ r =30ns T 1,T 10 µs 5 8 GHz H/ = ω s a a +(ω q χa a) e e a e e ω s,ω q χ π 1.4 MHz {X, Y, Z} g P α P α = D α PD α D α

P W (α) = π P α α W i (α) = π σ ip α σ i {I, X, Y, Z} W i (α) W B i (α)w i (α)d α Wi B (α) F = ψ B ρ ψ B = π i ψ B W i (α) F =(87± )% β = 3 β β = 6 10 5 1 V = IPα d α =(85± 1)% π V F V

(a) Im( ) 0 - Re( ) - 0 (b) g e g e 0 4 6 8 10 0 4 6 8 10 0 4 6 8 10 0 4 6 8 10 Re( ) 0.1 0.0-0.1 Mean Value 1.0 0.5 0.0-0.5 (c) Fock state basis Re( ) 0.5-1.0 g e g Encoded basis e 0.0 W i (α) = σ π ip α σ i = {I,X,Y,Z} P α ψ B β = 3 XP α YP α ρ β β + β β

W (α) β β 1 X c = P 0 I c = P β + P β Y c = P jπ 8β Z c = P β P β {I c,x c,y c,z c } ψ B β = 3 F DFE = 1( II 4 c + XX c YY c + ZZ c )= (7 ± )% F DFE V F

(a) 0.0 0.5 1.0 1.5.0 0.0 0.5 1.0 1.5.0-3 - -1 0 1 3 - -1 0 1 Re( ) Im( ) (b) 1.0 0.5 0.0 Mean Value -0.5-1.0 1.0 0.5 0.0-0.5-1.0-3 - -1 0 1 3 - -1 0 1 Re( ) Im( ) 1.0 0.5 0.0-0.5-1.0 Mean Value ψ B β =0 IP α ZP α Im(α) =0 XP α YP α Re(α) =0 β = 3 {II c,xx c,yy c,zz c }

X(θ),Z(θ),X c,z c θ β O 1 =.30 ± 0.04 θ = π 4 β =1 X, Y, X c (α),y c (α) α O =.14 ± 0.03 β =1 ± ±M q 1 ± M q 1

(a) 3 ideal photon loss visibility 0 Rotation ( ) 1 0.0 0.5 1.0 1.5.0 Cat amplitude ( ) (b) 3 ideal photon loss visibility 0-1.0 0.0 1.0 Displacement ( ) 0.0 0.5 1.0 1.5.0 Cat amplitude ( ) X(θ) Z(θ) Z c X c O = AA c + AB c BA c + BB c θ X Y X c (α) Y c (α) α β O =

± ±M c ± M c g AB A, B AB =(A + A )B A + + A = I A + B (1 p c ) A + B p c AB (1 p c ) A + B A B =(1 p c ) A + B A B p c A + B + A B =(1 p c ) AB p c B B = X c,y c,z c ψ c B =0 AB (1 p c ) p c =1 e τ wait T 1 0.06 V V pred =(1 p c )V =8% V 85%

σ i P α V [0, 1] W meas i (α) =VW ideal (α) V W ideal I (α)d α i V = W meas I (α)d α I V =85% {I,X,Y,Z} {I c,x c,y c,z c } A, B A c,b c O = AA c + AB c BA c + BB c

ψ B

ψ B Z c,x c Z(θ),X(θ) Z(θ) =Z cos θ X sin θ X(θ) =X cos θ + Z sin θ θ O θ = π 4 A = X+Z ; B = X Z A c = Z c ; B c = X c AZ c BZ c O ideal = ( e 8 β ) V O vis = V( e 8 β ) AX c BX c O loss = (1 e 8 β e β γ )

γ = t eff τs τ s t eff O pred = V(1 e 8 β e γ β ) V =0.85 t eff =1.4 µs X, Y X c (α),y c (α) X c (α) =D jα P 0 D jα X c cos α 4β + Y c sin α 4β Y c (α) =D jα P jπ 8β D jα Y c cos α 4β X c sin α 4β α O α =0.15 β =1 A = X; A c = X c+y c B = Y B c = X c Y c O ideal =(cos4α 0 β +sin4α 0 β)e α 0 α 0

O pred =Ve γ β (cos 4α 0 β +sin4α 0 β)e α 0 V =0.85 t eff =1.4 µs β 1 P ±jα0 1 ( ˆX c ± Ŷc) β α 0 β + α 0 =tan4α 0 β α 0 D jα0 P jα0 β β 1 ( ˆX c + Ŷc) P α= jπ 16β W = II c XX c +YY c ZZ c ψ = 1 ( gg + ee )

β W < 0 W F β β =0 1 ( g + e ) 0

W = II ZZ XX + YY F = II + XX YY + ZZ F > 0.5 a) b)

M m ψ m = M m ψ ψ M mm m ψ {X, Y, Z} X : 1 Y : 1 Z : ( ) 1 1 1 1 ( ) 1 j j 1 ( ) 1 0 0 0 c, c, 1 c, 1 ( ) 1 1 1 1 ( ) 1 j j 1 ( ) 0 0 0 1 c c c ψ m = ψ q ψ c ψ cav X : N ( β + β ) N ( β β ) Y : N ( β j β ) N ( β + j β ) Z : β β ψ B

ψ B = 1 ( g, β + e, β ) X Y e m th m β m =3 β = 3 ψ = C m e, m + n m C n g, n C m = m β Ẑ +1

ψ cav = N ( β C m m ) 1 ψ cav = m β β = 3 m th m =3 ψ = C m e, m + n m C n g, n C n n th C n = n β Z +Z ψ c = N n 3 C n n

10

a a α = α α ap = Pa

0 L = N ( β + β ) 1 L = N ( jβ + jβ ) N 1 β 0 L 0 L, 1 L 1 L P

S n (θ) =e iθ n n S( θ) S( θ)= S n (θ n ) n=0 θ = {θ n } n=0

ψ = N ( β,β + β, β ).

a) 1 P L b) 0 L X Im(α) 0 - c) Readout (mv) 40 0-40 0-0 Re(α) 100 Time (μs) 1 0-1 00 Parity 0 L 1 L N ( 0 L + 1 L ) P

b) Signal (mv) 1 a) c) d) x y 8 x y 4 0 0 x -10-0 -30-40 Qubit drive detuning (MHz) initial y manipulation final 6B;m` RyXk, * pbiv K MBTmH ibqm rbi? i? al S ; ix U V h? T?QiQM@ MmK#` bthbiibm; /m iq i? /BbT`bBp BMi` +ibqm HHQrb QM iq T`7Q`K [m#bi `Qi @ ibqmb +QM/BiBQM/ QM T?QiQM MmK#` bi i. U+? Ti` 8VX U#V h? + pbiv bi i BM i? T?QiQM MmK#` # bbb Bb r`biim b ψc = n cn n r?` cn Bb +QKTHt MmK#`X U+V "v /`BpBM; i? [m#bi +QM/BiBQM/ QM i? T?QiQM MmK#` bi i n bm+? i? i i? [m#bi bi `ib M/ M/b # +F g - bh+ibp MmK#`@/TM/Mi `#Bi` `v T? b ; i Bb TTHB/ UaL SVX U/V h?bb //BiBQM H T? b K MB7bib BibH7 QM +? T?QiQM bi i +QKTQMMi cn X _T`Q/m+/ 7`QK (>`b i HX- kyr8)x Rde

A

σ x = σ y = σ z = 1 σ x σ y = iσ z σ y σ z = iσ x σ z σ x = iσ y e iθσ n = 1 cos θ + iσ n sin θ e i π σn e i π σm = σ n σ m H / = 1 (ξ + ξ )σ x + 1 i (ξ ξ )σ y + 1 σ z ξ ξ σ x σ y δt U =e i δt 0 H(t)dt ξ(t) ξ(t) =0 t<0 t>δt

A x =e i A σ x B y =e i B σ y ξ Ω(t)σ x Ω(t) σ y π/ Uˆx π/ = ( X π/ X π/ ) N Xπ/ = ( e i π 4 σx e i π 4 σx ) N e i π 4 σx

N π π (1 + ϵ) [ U ˆx π/ = e i π 4 (1+ϵ)σ x e i π N 4 x] (1+ϵ)σ e i π 4 (1+ϵ)σ x [ Nπ =e i (1+ϵ)+ π ] 4 (1+ϵ) σ x e iθ/σ x Z =cosθ Uˆx π/ 0 Z =cos [ Nπ(1 + ϵ)+ π (1 + ϵ)] =( 1) N+1 sin [ πϵ + Nπϵ] ϵ 1 Z ϵ Z ( 1) N+1 [ Nπϵ+ π ϵ] π π/m Uˆx π/m = ( X π/m ) mn Xπ/ = (e i π m σ x) mn e i π 4 σ x σ x σ y σ y σ y =cosφσ y sin φσ x X Y

U = Y π/ (X π Y π X π Y π ) N X π/ =e i π 4 σy (e i π σx e i π σy e i π σx e i π σy ) N e i π 4 σx Y σ y X Y π e i π σ x e i π σ y e i π σ x e i π σ y = σ x σ yσ x σ y = σ x [cos φσ y sin φσ x ] σ x [cos φσ y sin φσ x ] = [cos φσ x σ y +sinφ][cosφσ x σ y +sinφ] = 1 i sin(φ)σ z = 1 cos(π +sin(φ)) + iσ z sin(π +sin(φ)) =e iσz(π+sin(φ)) Z π/ X/Y Z Z =( 1) N+1 sin(n sin(φ)) φ/(π) 1 Z ( 1) N+1 Nφ

U =(X π Y π X π Y π ) N X π/ = ( e i π σ x e i π σ y e i π σ x e i π σ y) N e i π 4 σ x σ x σ y σ x + δσ z σ y + δσ z δ e i π σ x e i π σ y e i π σ x e i π σ y = σ xσ yσ xσ y = [σ x + δσ z ][σ y δσ z ][σ x + δσ z ][σ y + δσ z ] = [ σ x σ y + δ(σ z σ y σ x σ z )+δ ][ σ x σ y + δ(σ z σ y + σ x σ z )+δ ] 1 δiσ x = 1 cos( δ)+iσ x sin( δ) =e δiσ x X N Z 4Nδ V out =(1+ϵ)[cos(ω IF t φ)+γ]cos(ω LO t)+(1 ϵ)[sin(ω IF t + φ)+γ]sin(ω LO t) ϵ φ γ

V out =cos(ω IF t)cos(ω LO t)+sin(ω IF t)sin(ω LO t) =cos([ω LO ω IF ]t) V out =(1+ϵ)cos(ω IF t)cos(ω LO t)+(1 ϵ)sin(ω IF t)sin(ω LO t) =cos([ω LO ω IF ]t)+ϵ cos([ω LO + ω IF ]t) ϵ ϵ =10 P dbc /0 P dbc V out =cos(ω IF t + φ)cos(ω LO t)+sin(ω IF t + φ)sin(ω LO t) =cos(ω LO t)[cos(ω IF t)cos(φ) sin(ω IF t)sin(φ)] +sin(ω LO t)[cos(ω IF t)cos(φ) sin(ω IF t)sin(φ)] =cos(φ)cos([ω LO ω IF ]t) sin(φ)sin([ω LO + ω IF ]t) tan(φ) tan(φ) =10 P dbc /0 P dbc

V out =[cos(ω IF )+γ]cos(ω LO t)+[sin(ω IF t)+γ]sin(ω LO t) =cos([ω LO ω IF ]t)+γ [cos(ω LO t)+sin(ω LO t)] =cos([ω LO ω IF ]t)+γ sin(ω LO t + π/4) F = [χ χ ]

α / π = 50MHz

α q 8.453 ξ π φ π 5.5 10 3 ϵ 0.0 σ τ X Y π/ /π

a) b) (1 3.5e 3) (1 1.0e 3)

a) 6B;m` X9, sny K@ THBim/ 1``Q`X h?bb Bb bbkmh i/ TmHb i` BM iq /@ i+i KTHBim/ ``Q`bX 7i` +? `Qi ibqm- r?qt iq `K BM QM i? [m#bi [m @ iq`x qbi? +? bm#b[mmi TmHb- KTHBim/ ``Q` ;ib KTHB}/X h? i` D+iQ`v Q7 i? [m#bi U#HmV Bb b?qrm rbi? M N = 15 i` BMX 1 +? T?vbB+ H ǵk bm`kmiƕ Q+@ +m`b i +? `/ +B`+HX 6B;@ m` U V Bb #7Q` immbm;};m` U#V Bb 7i`X b) `Q`b- r + M }i i?b /pb ibqmb rbi? i? KQ/H + H+mH i/ BM i? #Qp i?q`v% & Z ( 1)N +1 N πϵ + π ϵ - M/ +Q``+i 7Q` i?kx X@ tbb i` BMb, Ux π/! "N = Xπ/ Xπ/ Xπ/ Y@ tbb i` BMb,! "N Uy π/ = Yπ/ Yπ/ Yπ/ Ux π = (Xπ )N Xπ/ Uy π = (Yπ )N Yπ/ S? b TmHb i` BM LQr i? i KTHBim/b ` imm/ mt #irm [m /` im` +? MMHb- r + M MQr /i+i 7Q` KBb HB;MKMi #irm +? MMHb M/ +Q``+i 7Q` i?bb //BiBQM H T? b- Z ( 1)N +1 N φ, U = Yπ/ (Xπ Y π Xπ Yπ )N Xπ/ U XkRV._ : TmHb i` BM Lti r imm mt._ : rbi? i? #HQr b[mm+ M/ }iibm; 7Q` i? +Q``bTQM/BM; ``Q` bvm/`qk- Z 4N δ, R3N

a) 6B;m` X8, sr3y K@ THBim/ 1``Q`X TmHb i` BM bbkbh ` iq sny t+ti i? i r ` ibibm; i? /B7@ 7`M+ BM KTHBim/ ``Q` #irm π `Qi ibqm M/ π/x b bm BM i?bb T `ib+@ mh ` BKTHKMi ibqm- tt+i `Qm;?Hv yx8w /Bz`M+ BM i? K bm`/ sr3y K@ THBim/ M/ irb+ i? sny KTHBim/X b) a) 6B;m` Xe, uny KTHB@ im/ 1``Q`X AM i? x`q@a6 `;BK- i?bb tt`bkmi rbhh ibi KBt` KTHBim/ Qz@ bibx a?qrm?` Bb rbi? yx8w /Bz`M+ BM KTHB@ im/ Qzbib #irm KBb@ + HB#` i/ KBt` M/ +Q`@ `+i/ QMX b) RNy

a) b) 6B;m` Xd, S? b._ : 1``Q`X S? b M/._ : rbhh K MB7bi i?kbhpb 7`QK i? b K ivt Q7 TmHb i` BM Ur + HH Bi " JyVX S? b Bb M+Q// QM i? t@ tbb Q7 i? "HQ+? bt?` r?bh._ : Bb QM i? x@ tbbx 6B;m` U V b?qrb #7Q` imm@ BM; M/ };m` U#V 7i`X U = (Xπ Y π Xπ Yπ )N Xπ/ U XkkV hmm@mt Q`/` M/ +QMp`;M+ +`Bi`B h? i?q`v T`bMi/ BM i? T`pBQmb b+ibqm bbmkb i? i 7Q` +? TmHb@i` BM i?` Bb QMHv bbm;h ``Q` Ui? QM r ` i`vbm; iq /i+i M/ +Q``+i 7Q`VX h?bb K Mb i? i Qi?` mm+q``+i/ ``Q`b +QmH/ bfr i? }ib M/ BM im`m /BbiQ`i i? +Q`@ `+i/ T ` Ki`bX aqk Q7 i?b TmHb i` BMb ` KQ` bmbbibp iq ti` ``Q`b i? M Qi?`bX hq K/B i i?bb- r rbhh ǵ#qqibi` TǶ #v TB+FBM; T `ib+mh ` Q`/` Q7 i?b TmHb@imMBM;bX h? +m``mi T`7``/ Q`/` Bb b 7QHHQrb, _ #B- _ Kbv- snyuny- sr3y- S? b-._ :- sny- sr3yx A U"`B MV? p +?QbM i?bb Q`/` #+ mb sr3y Bb bmbbibp iq sny KTHBim/ ``Q`bc S? b M/._ : ` bmbbibp iq snyuny- M/ sr3y ``Q`bc M/ }M HHv +? M;b BM._ : T ` Ki`b rbhh z+i sny M/ sr3y /`Bp KTHBim/b Ui?Bb Bb /m iq Qm` +m``mi TmHb T ` Ki` /}MBiBQMb 7Q` RNR

10 4.63e 05 ±3.4e 05 7.9e 06 ±3.7e 05.0e 06 ±6.3e 05.6e 05 ±3.4e 05 4.9e 05 ±9.7e 05

1 1e 04.1e 06% 50 > 60 σ z

.8e 5 8.9e 5 X π/ π X Y

(1 8.e 4) (1 1.4e 3)

1 8.e 04 1 1.4e 3 (0IF) 1.1e 05 ±.7e 05 1.4e 06 ±8.5e 05 8.1e 05 ±1.3e 04

B

ρ Q(α) =F{C a (λ)} ] C a (λ) =Tr [ρe λ a e λa F {} = 1 π d λe αλ α λ Q(α) = 1 π [ d λe αλ α λ Tr ρe λ a e λa ] 1 π d β β = Q(α) = 1 [ρ π Tr 3 ] d λd βe λ (α β) λ(α β ) β β λ e λ µ λµ = π δ(µ) Q(α) = 1 [ρ π Tr ] d βδ(α β) β β = 1 Tr [ρ α α ] π = 1 π α ρ α. α

ρ W (α) =F{C s (λ)} C s (λ) =Tr[ρD(λ)] F {} = 1 π d λe αλ α λ W (α) = 1 π d λe αλ α λ Tr [ρd(λ)]. α, λ α + iα,λ + iλ e αλ α λ = e i(α λ α λ ) D(λ) =e λa λ a = e iλ ( a ) ( +a iλ a ) a i = e iλ λ T P =λ T X=λ x C s (λ) =Tr[ρD(λ)] = dx x ρd(λ) x.

W (α) = 1 π d λdxe i(α λ α λ ) x ρd(λ) x. D(λ) x = e iλ λ T P =λ T X=λ x = e iλ λ T P =λ x + λ = e iλ λ e iλ (x+λ ) x + λ. W (α) = 1 π = 1 π d λdxe i(α λ α λ ) e iλ λ e iλ (x+λ ) x ρ x + λ d λdxe iλ (λ +x α ) e iα λ x ρ x + λ. dµe iµν =πδ(ν) W (α) = π = π = π dλ dxδ(λ +x α )e iα λ x ρ x + λ dxe iα (α x) x ρ x +α x dxe 4iα (α x) x ρ α x u =(x α ) D(α) u = eiα α e iα u α u u D (α) = α + u e iα α e iα u W (α) = 1 π = 1 π due iα u e iα α e iα α e iα u u D (α)ρd(α) u du u D (α)ρd(α) u.

P P x = x W (α) = 1 π = π du u D (α)ρd(α)p u dv v D (α)ρd(α)p v = π Tr [ D (α)ρd(α)p ] = π Tr [ D(α)PD (α)ρ ] P α = D(α)PD (α) W (α) =Tr[D α PD αρ] Q n (α) =Tr[D α n n D αρ] W (α) = i,j W(α) i,j ρ i,j Q n (α) = i,j Q(α) i,j ρ i,j W(α) =D α PD α, Q(α) =D α n n D α

W(α) W i,j (α) = j D α PD α i D α a =(a α)d α Pa = ap D αa =(a + α)d α Pa = a P. ad α PD α =αd α PD α D α PD αa D α PD αa =α D α PD α a D α PD α W(α) W 0,0 (α) = 0 D α PD α 0 = 0 α = e α

W k,0 (α) = 0 D α PD α k = 1 k 0 D α PD αa k 1 = α k W k 1,0 (α). W(α) W T (α) =W (α) W 0,k (α) = α k W 0,k 1 (α) =W k,0(α). W k,l (α) = l D α PD α k = 1 k l D α PD αa k 1 = 1 (α W k 1,l (α) ) lw k 1,l 1 (α). k W l,k (α) = k D α PD α l = W k,l(α). n max (n max 1) α n max ρ α import numpy as np

def designw(basis = 10, alpha = np.zeros([10,10]) ): Returns the design matrix to build a Wigner function from a given density matrix. Parameters ---------- basis : integer The truncation number of the density matrix which will be used to determine the Wigner function. alpha : complex matrix An array of complex values which represent the displacement amplitude for a set of measurements Returns ------- Wmat : complex 4-dim array Values representing the design matrix to create a Wigner function given an arbitrary cavity state density matrix. rho_shape = [basis, basis] Wmat = np.zeros(np.append(rho_shape, alpha.shape), dtype = complex) #initial seed calculation for 0><0 Wmat[0][0] = np.exp(-.0 * np.abs(alpha) ** ) for n in range(1,basis): # calculate 0><n and n><0 Wmat[0][n] = (.0 * alpha * Wmat[0][n-1]) / np.sqrt(n) Wmat[n][0] = np.conj(wmat[0][n]) for m in range(1,basis): for n in range(m, basis): # calculate m><n and n><m Wmat[m][n] = (.0 * alpha * Wmat[m][n - 1] - np.sqrt(m) * Wmat[m - 1][n - 1]) / np.sqrt(n) Wmat[n][m] = np.conj(wmat[m][n]) return Wmat Q n (α) Q n (α) =Tr[Q n (α)ρ] Q n i,j(α) = j D α n n D α i ad α 0 0 D α = αd α 0 0 D α

D α n n D α = 1 n Da n 1 n 1 ad α = 1 n (a α )D n 1 n 1 D α(a α) = 1 n (a D n 1 n 1 D αa α D n 1 n 1 D αa αa D n 1 n 1 D α + α D n 1 n 1 D α). Q n i,j(α) Q 0 0,0(α) = 0 D α 0 0 D α 0 = e α Q 0 k,l(α) = l D α 0 0 D α k = 1 l l 1 ad α 0 0 D α k = α l l 1 D α 0 0 D α k = α l Q 0 k,l 1(α) Q T (α) =Q (α) Q n l,k(α) =Q n k,l (α). Q n k,l = 1 n ( lkq n 1 k 1,l 1 (α) α kq n 1 k 1,l (α) α lq n 1 k,l 1 (α)+ α Q n 1 k,l )

n th Q n (α) (0, 1,...,n 1) import numpy as np def designq(basis = 10, alpha = np.zeros([10,10]), photon_proj = 0): Returns the design matrix to build a generalized Q function from a given density matrix. Parameters ---------- basis : integer The truncation number of the density matrix which will be used to determine the generalized Q function. alpha : complex matrix An array of complex values which represent the displacement amplitude for a set of measurements Returns ------- Qmat : complex 5-dim array Values representing the design matrix to create a generalized Q-function given an arbitrary cavity state density matrix. rho_shape = [basis, basis] photon_array = np.arange(photon_proj + 1) Q_size = np.append(rho_shape, photon_array.shape) Q_size = np.append(q_size, alpha.shape) Qmat = np.zeros(q_size,dtype = complex) #initial seed calculation for 0><0, 0 photon Qmat[0][0][0] = np.exp( -np.abs(alpha) ** ) for k in np.arange(1,basis): # calculate k><0 for 0 photon Qmat[0][k][0] = (alpha * Qmat[0][k-1][0]) / np.sqrt(k) Qmat[k][0][0] = np.conj(qmat[0][k][0]) for k in np.arange(1,basis): for l in np.arange(k, basis): # calculate k><l for n photon Qmat[k][l][0] = (alpha * Qmat[k][l-1][0]) / np.sqrt(l) Qmat[l][k][0] = np.conj(qmat[k][l][0]) for n in np.arange(1, photon_proj+1): # calculate 0><0 for n photon Qmat[0][0][n] = np.abs(alpha)** * Qmat[0][0][n-1] / n for k in np.arange(1, basis): # calculate k><0 for n photon Qmat[0][k][n] = ( (1./n) * (np.abs(alpha)** * Qmat[0][k][n-1] - alpha * Qmat[0][k-1][n-1] * np.sqrt(k) ) ) Qmat[k][0][n] = np.conj(qmat[0][k][n]) for k in np.arange(1, basis): for l in np.arange(k, basis): # calculate k><l for n photon Qmat[l][k][n] = ( (1./(n)) * ( 1.*np.sqrt(l*k) * Qmat[l-1][k-1][n-1] - (alpha) * Qmat[l][k-1][n-1] * np.sqrt(k) - np.conj(alpha) * Qmat[l-1][k][n-1] * np.sqrt(l)

+ np.abs(alpha)** * Qmat[l][k][n-1] ) ) Qmat[k][l][n] = np.conj(qmat[l][k][n]) return Qmat β ψ(t) = U(t) β = e ikt (a a) β = n e iktn e β β n n! t q = π qk q ψ(t q ) = n F n e β β n! n F n = e iπn q F q q F n+q = e iπ q (n+q) = e iπn q e 4πni e 4πqi = e iπn q = F n F n F n = q 1 p f p e iπpn q

f p = 1 q q 1 k F k e iπkp q = 1 q q 1 k e iπk q e iπkp q = 1 q q 1 k e iπ q k(k p) ψ(t q ) = = q 1 p q 1 p = 1 q f p ( n f p βe ipπ q q 1 p=0 q 1 k=0 e β β n e iπkn q n! n e iπ q k(k p) βe ipπ q ) q = ( ψ(t ) = 1 e iπ 4 ) iπ β + e 4 β

C

d X = 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 Z = 1 0 0 0 0 ω 0 0 0 0 ω 0 0 0 0 ω (d 1) ω = e πi d X, Z d d = d X Z ZX = ωxz Z d = X d = I. j X j = (j +1)modd Z j = ω j j Y Y = ωxz d

d = G {±I,±X, ±Y,±Z, } g 1,...,g k G G G g 1,...,g k G = g 1,...,g k G = X, Z, I. d G d = X, Z, ωi d X,Z 3, G d S V S S = g 1,...,g l V S S S V S

V S S V S P ψ S P = N l (I + g l ). N 1 S P V S G d S C(S) {E j } E j g l = g l E j C(S) d g l S g l g k = g k g l

P V S g l {E i } S C(S) {E i } V S d =4,S = Z C(S) d =4 G 4 = X, Z, ωi 0 1 0 0 1 0 0 0 X = 0 0 1 0 0 0 0 1 Z = 0 ω 0 0 0 0 ω 0 1 0 0 0 0 0 0 ω 3 ω = e iπ S = Z Z 1 0 0 0 Z = 0 1 0 0 0 0 1 0 0 0 0 1 S P V S

1 0 0 0 P = 1 (I + Z )= 0 0 0 0 0 0 1 0. 0 0 0 0 P = 0 0 + 0 L = 0 1 L =. V S Z G 4 XZ = ω Z X = Z X C(S) 0, Z X d =4,S = X S = X 0 0 1 0 X = 0 0 0 1 1 0 0 0 0 1 0 0 X 1 0 1 0 P = 1 (I + X )= 1 0 1 0 1 1 0 1 0. 0 1 0 1

P = 1 ( 0 + ) c.c. + 1 ( 1 + 3 ) c.c. 0 L = 1 ( 0 + ) 1 L = 1 ( 1 + 3 ). ZX = ω X Z = X Z C(S) 1 ( 0 + ) 1 ( 1 + 3 ) X Z d =4,S = X, Z Z X S Z X = ω 4 X Z = X Z V S 1 0 1 0 P = 1 (I + Z )(I + X )= 1 0 0 0 0 1 0 1 0. 0 0 0 0 P = 1 ( 0 + ) c.c. ψ = 1 ( 0 + ) S = X,Z

d =8,S = X 4, Z 4 Z 4 X 4 (X 4 ) = X 4, (Z 4 ) = Z 4 Z 4 X 4 = ω 16 X 4 Z 4 = X 4 Z 4 ω = e iπ 4 V S P = 1 (I + Z4 )(I + X 4 ) P = 1 ( 0 + 4 ) c.c. + 1 ( + 6 ) c.c. 0 L = 1 ( 0 + 4 ) 1 L = 1 ( + 6 ). C(S) 1 ( 0 + 4 ), 1 ( + 6 ) S = X 4,Z 4 X, Z d =18 9

j = βω j ω = e πi d d βω j β j k δ j,k X j (j +1)modd X = e πi d a a a,a X j

j +1 Z j ω j j d =4,S = Z d =4 Z Z =( β β + β β ) ( iβ iβ + iβ iβ ) 0 L = β 1 L = β. X X = e πi a a d =4,S = X d =4 S = X

X =( β β + β β )+( iβ iβ + iβ iβ ) ( ) 1 = ( β + β ) c.c. + 1 ( iβ + iβ ) c.c ( ) 1 ( β β ) c.c. + 1 ( iβ iβ ) c.c X P = e iπa a 0 L = 1 ( β + β ) 1 L = 1 ( iβ + iβ ). Z Z a ax = ae iπa a = ap = Pa = X a. d =4 S = X C(S)

d =8,S = X 4,Z 4 d =8 X Z X 4 = e iπa a = P Z 4 Z 4 0 L = 1 ( β + β ) 1 L = 1 ( iβ + iβ ) X Z X 4 a

d =18