ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς



Σχετικά έγγραφα
Μοντέλα των Cournotκαι Bertrand

Θεωρία Παιγνίων και Αποφάσεων

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 2: Έννοιες λύσεων σε παίγνια κανονικής μορφής. Ε. Μαρκάκης. Επικ. Καθηγητής

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017

παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 4: Μεικτές Στρατηγικές. Ε. Μαρκάκης. Επικ. Καθηγητής

P = 0 1/2 1/ /2 1/

Μικτές Στρατηγικές σε Παίγνια και σημεία Ισορροπίας Nash. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1

Ασκήσεις. Ιωάννα Καντζάβελου. Τµήµα Μηχανικών Πληροφορικής και Υπολογιστών 1

/ / 38

Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

Βασικές Αρχές της Θεωρίας Παιγνίων

Κεφάλαιο 5 R (2, 3) R (3, 0)

Notes. Notes. Notes. Notes

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.

Έστω ότι έχουµε 2 µάρκες υπολογιστών: A (Apricot), B (Banana) [ ιαρκή Αγαθά].

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

Εκτεταμένα Παίγνια (Extensive Games)

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων

Κεφάλαιο 2ο (α) Αµιγείς Στρατηγικές (β) Μεικτές Στρατηγικές (α) Αµιγείς Στρατηγικές. Επαναλαµβάνουµε:

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια.

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

Κεφάλαιο 28 Ολιγοπώλιο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2016

Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών. Ιωάννης Παραβάντης. Επίκουρος Καθηγητής. Απρίλιος 2016

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Αλγοριθμική Θεωρία Παιγνίων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

Συνδυαστικά Παίγνια. ιαµόρφωση Παιγνίων. Θέµατα σε Πάιγνια Μηδενικού Αθροίσµατος

3 ΙΣΟΡΡΟΠΙΕΣ 3 ΙΣΟΡΡΟΠΙΕΣ

Extensive Games with Imperfect Information

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης

Παιγνιακά Μοντέλα Σύγκρουσης και Συνεργασίας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης. Λύσεις εύτερης Σειράς Ασκήσεων

Το Διαδίκτυο ως ερευνητικό αντικείμενο

Δημοπρασίες (Auctions)

Α2 Β2 Γ2 2 Α1 1,0 5,-1-1,-2 9,-2 Β1 2,1-2,0 0,2 0,-1 Γ1 0,3 14,2 2,1 8,1 1 1,2 0,1 3,0-1,0

Το σύστηµα ορίζεται από δύο στοιχεία (µέρη) Χ Υ (τέλεια συµπληρωµατικά µεταξύ τους)

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

Κυριαρχία και μεικτές στρατηγικές Μεικτές στρατηγικές και κυριαρχία Είδαμε ότι μια στρατηγική του παίκτη i είναι κυριαρχούμενη, αν υπάρχει κάποια άλλη

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

Ορισμένες Κατηγορίες Αλγορίθμων

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΙΑ ΓΕΝΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ ΧΡΗΣΕΩΝ ΓΗΣ

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων. Ε. Μαρκάκης. Επικ.

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ

10/3/17. Κεφάλαιο 28 Ολιγοπώλιο. Μικροοικονομική. Ολιγοπώλιο. Ολιγοπώλιο. Ανταγωνισµός ποσότητας. Μια σύγχρονη προσέγγιση

Μελέτη πάνω στην εφαρμογή της θεωρίας παιγνίων σε θέματα πολεμικών τακτικών και στρατηγικής.

Δεύτερο πακέτο ασκήσεων

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ

Το Υπόδειγμα της Οριακής Τιμολόγησης

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης

Κοινωνικά Δίκτυα Θεωρία Παιγνίων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες -Εαρινό Εξάµηνο 2016 ιδάσκων : Π.

Πιθανότητες Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 11: Σχεδίαση μηχανισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Παίγνια Συμφόρησης. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια;

6. Παίγνια αλληλοδιαδοχικών κινήσεων και η αξία του περιορισμού των επιλογών κάποιου ατόμου

Evolutionary Equilibrium

Βασικές Έννοιες Θεωρίας Παιγνίων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 )

Βασικές Έννοιες Θεωρίας Παιγνίων

Παραδείγματα Παιγνίων

Κεφάλαιο 8 ο Τ 3, 1-1, -1 Χ -1, -1 1, 3

Κεφάλαιο 29 Θεωρία παιγνίων

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

Μεθοδολογίες παρεµβολής σε DTM.

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

* τη µήτρα. Κεφάλαιο 1o

Προσφορά και κόστος. Κατηγορίες κόστους. Οριακό κόστος και µεγιστοποίηση του κέρδους. Μέσο κόστος. TC MC = q TC AC ) AC

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

ε = 5 / 4. Αν η τιµή του αγαθού αυξηθεί κατά 10% ποια ποσοστιαία µεταβολή της

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ

ΠΜΣ Ενέργειας, Τμήμα ΔΕΣ, ΠαΠει

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

Mικροοικονοµικές Πολιτικές της ΕΕ. Χρυσοβαλάντου Μήλλιου Οικονοµικό Πανεπιστήµιο Αθηνών

Transcript:

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη, Ηλίας Ρόκος 1 Εισαγωγή Η Θεωρία Παιγνίων αποτελεί ένα παρακλάδι των εφαρµοσµένων µαθηµατικών και των οικονοµικών επιστηµών που µελετά καταστάσεις στις οποίες πολλοί παίκτες παίρνουν αποφάσεις µε σκοπό να ϐελτιώσει ο κάθε παίκτης τη ϑέση του σε σχέση µε τους υπολοίπους παίκτες. Η πρώτη αναφορά στη Θεωρία Παιγνίων έγινε από τον John Von Neumann το 198 και στη συνέχεια το 1944 στο ϐιβλίο του Theory of Games and Economic Behavior σε συνεργασία µε τον Oskar Morgenstern. Επειτα το 1950 ο John Nash όρισε πρώτος την έννοια της ϐέλτιστης στρατηγικής για παίγνια πολλών παικτών, γνωστή ως Nash Equilibrium - NE (Nash Ισορροπία). Η Θεωρία Παιγνίων έχει εφαρµογές σε κοινωνικές, πολιτικές, οικονοµικές επιστήµες καθώς και στην τεχνητή νοηµοσύνη. Πρέπει να σηµειωθεί ότι το ιδιαίτερο χαρακτηριστικό της Θεωρίας Παιγνίων είναι ότι µελετά παίγνια στα οποία οι παίκτες αλληλεπιδρούν µεταξύ τους. Αλγοριθµική Θεωρία Παιγνίων Στο µάθηµα ϑα ασχοληθούµε µε τα παρακάτω : 1. Υπολογιστικά ϑέµατα Γενικά ϑα ασχοληθούµε µε παίγνια της µορφής : ίνονται οι πίνακες ενός παιγνίου δύο παικτών. Να ϐρεθεί µία Nash Ισορροπία. Παράδειγµα 1. (Bach-Stravinsky) ύο άνθρωποι ϑέλουν να ϐγουν έξω µαζί σε ένα κονσέρτο µουσικής του Bach ή του Stravinsky. Το κύριο µέληµα είναι να ϐγουν έξω µαζί, αλλά ο ένας προτιµάει τον Bach και ο άλλος τον Stravinsky. ίνεται ο παρακάτω πίνακας ο οποίος αναπαριστά τις αποδόσεις των παικτών µε ϐάση τις προτιµήσεις τους. Bach Stravinsky Bach,1 0,0 Stravinsky 0,0 1, Σχήµα 1: Παίγνιο Bach-Stravinsky Στον παραπάνω πίνακα ο πρώτος παίκτης επιλέγει γραµµές και ο δεύτερος παίκτης επιλέγει στήλες. 1

Αν και οι δύο παίκτες επιλέξουν να πάνε στον Bach τότε ο πρώτος παίκτης έχει κέρδος και ο δεύτερος κέρδος 1. Αντίστοιχα, αν και οι δύο παίκτες επιλέξουν να πανε στον Stravinsky τότε ο πρώτος παίκτης ϑα έχει κέρδος 1 και ο δεύτερος κέρδος. Στην περίπτωση που επιλέξουν να πάνε σε χωριστά κονσέρτα το κέρδος και των δύο παικτών είναι µηδενικό. Το παραπάνω παίγνιο έχει δύο Nash Ισορροπίες. Η µία είναι η (Bach, Bach) και η άλλη είναι η (Stravinsky, Stravinsky). Ας εξετάσουµε την ισορροπία (Bach, Bach). Εστω ότι ο πρώτος παίκτης προτιµάει τον Bach, δηλαδή έχει επιλέξει την πρώτη γραµµή. Ο δεύτερος παίκτης - δεδοµένου ότι ο πρώτος παίκτης έχει επιλέξει Bach- δεν έχει λόγο να αλλάξει στρατηγική τη στιγµή που η απόδοσή του από 1 ϑα γίνει 0 (επιλέγει στήλη). Παράδειγµα. Matching Pennies. ύο παίκτες επιλέγουν σε ένα νόµισµα κορόνα ή γράµµατα. Αν οι επιλογές των δύο παικτών είναι διαφορετικές, τότε ο πρώτος παίκτης πληρώνει 1$ στον δεύτερο παίκτη. Αν οι επιλογές των παικτών είναι ίδιες, τότε ο δεύτερος παίκτης πληρώνει 1$ στον πρώτο παίκτη. Ο κάθε παίκτης ενδιαφέρεται αποκλειστικά για το κέρδος του. Αυτό το παίγνιο ϕαίνεται στον παρακάτω πίνακα. Κορόνα Γράµµατα Κορόνα 1,-1-1,1 Γράµµατα -1,1 1,-1 Σχήµα : Παίγνιο Matching Pennies Τα παίγνια αυτής της µορφής όπου τα συµφέροντα των παικτών είναι αντιδιαµετρικά ονοµάζονται αυστηρά ανταγωνιστικά. Το παίγνιο Matching Pennies δεν έχει γνήσια Nash Ισορροπία.. Τίµηµα της αναρχίας (Price Of Anarchy - PE) Ορισµός 1. Τίµηµα της αναρχίας (για παίγνια συµφόρισης) PE = Cost Of E max Nash Equilibria E OPT Στο παρακάτω παράδειγµα ϑα µελετήσουµε το τίµηµα της αναρχίας σε ένα παίγνιο κυκλοφοριακής συµφόρισης (congestion game).

Παράδειγµα 3. Παίγνιο κυκλοφοριακής συµφόρισης ή παίγνιο Network Flow. Θεωρούµε το κυκλοφοριακό δίκτυο που ϕαίνεται στον παρακάτω γράφο. Οι ακ- µές του γράφου αναπαριστούν τους δρόµους του κυκλοφοριακού και τα ϐάρη των ακµών αντιστοιχούν στο κόστος (χρόνο) µετακίνησης. Οι µεταβάσεις από κόµβο σε κόµβο µπορούν να γίνουν σε 0 ώρες, 1 ώρα ή σε χρόνο f(ρ) = ρ 1. 1 hour f(ρ) = ρ 0 f(ρ) = ρ 1 hour Σχήµα 3: Κυκλοφοριακό δίκτυο Nash Equilibrium. Ευρισκόµενος στην εκκίνηση κάθε παίκτης έχει να επιλέξει µία διαδροµή µε κόστος 1 ώρα ή µία διαδροµή µε κόστος f(ρ) = ρ 1 και προφανώς κάθε παίκτης επιλέγει τη διαδροµή µε κόστος ρ. Στην επόµενη ϑέση κάθε παίκτης έχει να επιλέξει ανάµεσα σε 0 και 1 ώρα και προφανώς επιλέγει 0, και τέλος επιλέγει τη διαδροµή µε κόστος ρ. (Στο σχήµα είναι η πράσινη διαδροµή). Εφόσον όλοι οι παίκτες ακολουθούν την ίδια διαδροµή ϑα έχουµε f(ρ) = 1 και το ΝΕ ϑα είναι : ΝΕ=1+0+1=. Optimun Solution. Εστω ότι ρ παίκτες αποφασίζουν να ακολουθήσουν κάποια από τις µπλε διαδροµές. Τότε το κόστος της διαδροµής ϑα είναι (1 ρ) ρ το οποίο ελαχιστοποιείται για ρ = 1. Άρα οι µισοί παίκτες ϑα επιλέξουν τη µία µπλε διαδροµοί και άλλοι µισοί την άλλη µε κόστος 1 + 1 το οποίο είναι και το ϐέλτιστο. Σύµφωνα µε τον παραπάνω τύπο µπορούµε να υπολογίσουµε το τίµηµα της αναρχίας για το συγκεκριµένο παίγνιο : PE = Cost Of E max Nash Equilibria E OPT = 1 + 1 = 4 3 > 1. 3

3. Μηχανισµοί (Αλγόριθµοι - Πρωτόκολλα) Παράδειγµα 4. Πρόβληµα διαµοιρασµού αγαθών/κόστους (Cost Sharing) ίνεται το παρακάτω δέντρο το οποίο αντιστοιχεί στο κόστος του δικτύου ενός τηλεοπτικού σταθµού ο οποίος εκπέµπει µέσω καλωδίων σε ένα σύνολο χρηστών. Οι χρήστες (ϕύλλα του δέντρου) είναι διατεθειµµένοι να δώσουν κάποια χρηµατικά ποσά για να συνδεθούν µε τον τηλεοπτικό σταθµό. Τα ϐάρη στις ακµές του δέντρου αντιπροσωπεύουν το κόστος των γραµµών σύνδεσης από τον τηλεοπτικό σταθµό προς τους χρήστες. Το πρόβληµα είναι να ϐρούµε το ποσό που ϑα δώσει κάθε χρήστης για να συνδεθεί µε τον τηλεοπτικό σταθµό και η Ϲητούµενη λύση ϑέλουµε να είναι badget balanced. Για το συγκεκριµένο πρόβληµα γνωρίζουµε ότι δεν υπάρχει µία καλή πολιτική. 10 10 1 4 1000 7 10 5 30 3 10000 10 Σχήµα 4: ιαµοιρασµός κόστους Παράδειγµα 5. Mechanism Design (Πλειστηριασµοί). Ενα αντικείµενο ϑα πουλη- ϑεί σε έναν παίκτη από ένα σύνολο {1,,..., n} µε κάποιο χρηµατικό αντίτιµο. Κάθε παίκτης i δίνει µία αποτίµηση του αντικειµένου v i και v 1 > v >... > v n > 0. Ο µηχανισµός που χρησιµοποιείται για τη πώληση του αντικειµένου είναι µία (sealedbid) δηµοπρασία : οι παίκτες ταυτόχρονα ποντάρουν για το αντικείµενο (η αποτίµησή τους είναι ένα χρηµατικό ποσό µη αρνητικό), και το αντικείµενο τελικά πωλείται στον παίκτη µε την µεγαλύτερη αποτίµηση. 4

Παράδειγµα 6. Markets Εστω ότι έχουµε 10 διαφορετικά αγαθά και µία αγορά από n πιθανούς αγοραστές των αγαθών. Κάθε ένας από τους πιθανούς αγοραστές δίνει µία αποτίµηση (προσφορά) για κάθε ένα από τα 10 αγαθά (µπορεί να δώσει και 0). Το πρόβληµα είναι να ϐρεθεί µία αγορά (να οριστούν οι τιµές των αγαθών) ώστε όλοι να είναι ικανοποιηµένοι. (,3,0,4,...) (4,1,...) Σχήµα 5: Market Game Θεώρηµα 1. Η αγορά δουλεύει! 5